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The oscillator method for the construction of unitary highest (or lowest) weight 
representations of noncompact groups and supergroups is generalized. Within this 
generalization, the method yields unitary highest weight representations of all simple 
supergroups whose even subgroups are in the form of a direct product of a compact group with 
a simple noncompact group. The method is illustrated by studying in detail the unitary highest 
weight representations of the supergroup OSp (2n + l/2m,R). The generalized supercoherent 
states associated with these unitary representations are also defined. 

I. INTRODUCTION 

The Lie superalgebras have come to play an increasingly 
important role in theoretical physics. They appear as sym­
metry algebras of supersymmetrical theories such as su­
perstring l and supergravity theories.2 They also appear as 
effective dynamical symmetry algebras in the study of nu­
clear states. 3 For physical theories in which the supersym­
metry enters at a fundamental level the relevant supergroups 
are, in general, noncompact. (We define a noncompact su­
pergroup as one whose even subgroup is noncompact.) For 
example, the space-time superalgebras are all noncompact. 
One can expect noncom pact supergroups to be also relevant 
as dynamical symmetry groups in various branches of phys-
lCS. 

Motivated by the possible applications to supergravity 
theories, a general method for the construction of oscillator­
like unitary representations of noncom pact Lie groups was 
developed in Refs. 4 and 5. This method was then extended 
to the construction of oscillatorlike unitary representations 
of noncom pact supergroups.6 Later, this method was further 
developed and applied to supergravity and superstring the­
ories. 7-11 The oscillator method developed in the above cited 
references yields the (oscillatorlike) unitary irreducible rep­
resentations (VIR's) of the lowest weight type of noncom­
pact groups and supergroups that have a three-graded (Jor­
dan) structure with respect to a maximal compact subgroup 
or subsupergroup. For noncompact Lie groups the oscillator 
method is of complete generality for the construction of uni­
tary representations of the highest weight type (or equiv­
alently lowest weight type). This is a consequence of the fact 
that the noncom pact simple Lie groups that admit VIR's of 
the highest weight type all have a Jordan structure with re­
spect to their maximal compact subgroups. However, this is 
not the case for noncom pact supergroups. There is a large 
class of noncom pact supergroups that admits highest weight 
VIR's but does not have a Jordan structure with respect to a 
maximal compact subsupergroup. Therefore for noncom­
pact Lie supergroups the oscillator method needs to be gen­
eralized for it to be of complete generality. In this paper we 
give such a generalization. This generalization allows one to 
construct unitary highest weight representations of all sim­
ple noncom pact supergroups whose even subgroups are di­
rect products of a compact group with a simple noncompact 
group. 

II. THE OSCILLATOR METHOD AND THE UNITARY 
HIGHEST WEIGHT REPRESENTATIONS OF 
NONCOM PACT LIE GROUPS 

A simple connected noncom pact Lie group G with a 
maximal compact subgroup K has unitary representations of 
the highest weight type (or, equivalently, of the lowest 
weight type) if the quotient space G / K is an Hermitian sym­
metric space. 12 (If G has a center Z then K /Z is assumed to 
be compact.) A unitary representation of the highest weight 
(or lowest weight) type is defined as a unitary representa­
tion for which some generator belonging to the Lie algebra L 
of G has a spectrum bounded from above (or from below). 
Thus from the list of Hermitian symmetric spaces13 one can 
easily read off the simple noncom pact groups that admit 
unitary representations of the highest weight (or lowest 
weight) type. In Table I we give a complete list of such 
groups and their maximal compact subgroups. We should 
note that unitary representations of the highest weight and 
the lowest weight type are related by a simple involution. In 
the mathematical literature the use of the term "highest 
weight representations" has been traditional. In most phys­
ical problems the term "lowest weight representation" is 
more appropriate since the operator whose spectrum is 
bounded is often the energy operator or the particle number 
operator. 

The Lie algebra L of a noncom pact group G that pas­
seses unitary highest weight (VHW) representations has a 
Jordan decomposition (three-grading) (Ref. 5) with re­
spect to the Lie algebra Lo of the maximal compact subgroup 
K, i.e., it can be decomposed in a split basis as a vector space 
direct sum 

TABLE I. The first column gives a complete list of simple noncompact Lie 
groups G that possess unitary representations of the highest weight type. 
The second column gives their maximal compact subgroups. 

G 

SU(n,m) 
SO(n,2) 

Sp(2n,R) 
SO*(2n) 
E6(-14) 

E,( -2S1 

K 

SU(n) XSU(m) XU( 1) 
SO(n) XSO(2) 

U(n) 
U(n) 

SOC to) xSO(2) 
E6 xU(l) 
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(2.1) 

The elements of Lm satisfy the formal commutations rela­
tions 

(2.2) 

where Lm+ n = 0 for 1m + nl>2. In Refs. 4 and 5, a simple 
method was developed for constructing the oscillatorlike 
unitary irreducible representations (VIR) of noncompact 
Lie groups G that admit a Jordan decomposition with re­
spect to their maximal compact subgroup K. In this method, 
which we refer to as the oscillator method, the elements of L 
are realized as bilinears of an arbitrary number of bosonic 
oscillators (annihilation and creation operators) satisfying 
the usual canonical commutation relations. In the Fock 
space of these oscillators one chooses a set of states, denoted 
as 10) and referred to as the lowest weight state, that is 
annihilated by all the operators belonging to the L _ 1 space 
and that transforms in a definite representation of the maxi­
mal compact subgroup K. By acting on 10) with the opera­
tors belonging to the L + 1 space repeatedly one generates an 
infinite set of states that forms the basis of a unitary represen­
tation of G. The resulting unitary representation of G is irre­
ducible if the lowest weight state 10) transforms in an irre­
ducible representation of the maximal compact subgroup K. 
Clearly, these oscillatorlike unitary representations are all of 
the lowest weight type and the generator whose spectrum is 
bounded from below corresponds to the number operator for 
the bosonic oscillators. 

Subsequently, a classification of the unitary highest 
weight representations of simple noncompact groups was 
given in the mathematical literature. 14 A comparison of the 
oscillatorlike representations with the classification of Ref. 
14 shows that the oscillatorlike VIR's exhaust the list of 
VIR's of the lowest weight type for the groups SV (n,m), 
Sp(2n,R), and SO*(2n). A straightforward application of 
the oscillator method to the noncom pact groups SO(n,2), 
E6 ( _ 14)' and E7( _ 25) gives, in general, reducible unitary rep­
resentations. A simple systematic algorithm for extracting 
the irreducible unitary representations of the groups 
SO(n,2), E6 ( _ 14» and E7( _ 25) within the framework of the 
oscillator approach is yet to be developed. 

We should note that the bilinear operators belonging to 
the L _ 1 and L + 1 spaces of the noncompact groups G listed 
in Table I involve di-annihilation and di-creation operators. 
The repeated application of the bosonic di-creation opera­
tors on the lowest weight state 10) generates an infinite set of 
states forming the basis of the VIR of G. If one replaces the 
di-creation and di-annihilation operators by bilinears involv­
ing one creation and one annihilation operator then the os­
cillator method yields the VIR's of the compact forms of the 
groups listed in Table I. If we use fermionic oscillators in­
stead of the bosonic ones the method yields the representa­
tions of the compact forms of these groups as well. To con­
struct VIR's of noncompact groups with fermionic 
oscillators we need an infinite set of them. Such realizations 
do occur in string theories 1 and will be the subject of a sepa­
rate study. 
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III. UNITARY REPRESENTATIONS OF NONCOM PACT 
SUPERGROUPS WITH A JORDAN STRUCTURE 

The oscillator method for the construction of the uni­
tary representations of noncompact groups4,S has been ex­
tended to the construction of the VIR's of noncompact su­
pergroups.6 Later this method was further developed and 
applied to supergravity and superstring theories. 7-1 1 The os­
cillator method developed in these works yields the VIR's of 
the highest (or lowest) weight type for those noncom pact 
supergroups G that have a (super)-Jordan decomposition 
with respect to a maximal compact subsupergroup K, i.e., 
the Lie superalgebra L of G has a three-graded structure with 
respect to the Lie superalgebra Lo of a maximal compact 
subsupergroup K: 

L=L_1(f)Lo(f)L+ 1. (3.1) 

In this case the identity (2.2) holds in a graded sense, i.e., 

[Lm,Ln}~Lm + n' (3.2) 

with Lm + n = 0 for 1m + n I >2. The bracket [ , } means an 
anticommutator among any two odd generators of L and a 
commutator otherwise. The elements of L are now realized 
as bilinears of bosonic and fermionic oscillators. The even 
generators correspond to bilinears in purely bosonic or pure­
ly fermionic oscillators while the odd generators are realized 
as bilinears involving one bosonic and one fermionic oscilla­
tor. To construct the oscillatorlike unitary representations of 
the noncom pact supergroup G one proceeds as in the case of 
ordinary Lie groups and considers a set of states 10) in the 
super-Fock space transforming in a definite representation 
of the maximal compact subsupergroup K and is annihilated 
by all the bilinear operators in the L _ I space of L. Acting on 
10) with the operators belonging to the L + 1 space repeated­
ly one generates an infinite set of states that forms the basis of 
a unitary representation of G. Again the resulting represen­
tation is irreducible if and only if the state 10) transforms 
irreducibly under K. Clearly these representations are of the 
lowest weight type. 

The application of this method to the noncom pact Lie 
superalgebras SV(n,mlp), OSp(2nI2m,R), and OSp(2n*1 
2m) (Refs. 6-10) yields readily the VIR's of the lowest 
weight type of the respective superalgebras. Now the oscilla­
tor method can be used to construct all the VIR's of the 
lowest weight type of the even subgroups of these super­
groups. Therefore we expect the oscillatorlike VIR's of the 
supergroups SV(n,mlp), OSp(2n/2m,R), and OSp(2n*1 
2m) to exhaust the list of their VIR's of the lowest weight 
type. For the other noncompact Lie superalgebras that have 
a Jordan decomposition with respect to a maximal compact 
subsuperalgebra the unitary representations obtained by the 
oscillator method are, in general, reducible. A simple meth­
od for decomposing these reducible representations into ir­
reducible pieces has not yet been developed. 

IV. JORDAN AND KANTOR DECOMPOSITIONS OF LIE 
ALGEBRAS AND LIE SUPERALGEBRAS 

With the exception of G 2, F4, and Eg all finite dimen­
sional simple Lie algebras have a Jordan decomposi­
tions,ls-ls with respect to some subalgebra. Furthermore all 
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Lie algebras with a Jordan decomposition can be construct­
ed from Jordan triple systems via the Tits-Koecher con­
struction. 15

-
18 In this construction the elements of the Lie 

algebra L that belong to the L + 1 space are labeled by the 
elements of some Jordan triple system. The commutation 
relations of the elements of L can all be expressed in terms of 
the Jordan triple product and the Jacobi identities follow 
from the two defining identities ofJordan triple systems. 15-18 

The Tits-Koecher construction has been generalized to the 
construction of Lie superalgebras from super Jordan triple 
systems. 17.18 With the exception ofG(3), all "classical" Lie 
superalgebras as classified by Kac l9 (which include the ex­
ceptional and strange superalgebras) have a Jordan decom­
position and can be constructed from super Jordan triple 
systems. A complete list of Lie superalgebras that can be 
constructed from Jordan superalgebras via the generalized 
Tits-Koecher method can be found in Ref. 18. 

The Tits-Koecher method has been extended by Kan­
tor l6 to give a construction of all finite dimensional simple 
Lie algebras, including G 2, F 4, and E8, from more general 
triple systems. These generalized triple systems, which we 
shall refer to as the Kantor triple systems, are defined by two 
identities and include the Jordan triple systems as a subclass. 
The Kantor construction has also been generalized to give a 
unified construction of Lie algebras and Lie superalgebras 
from (super-) Kantor triple systems. 17 In the Kantor con­
struction and its generalization one makes crucial use of a 
five-dimensional graded decomposition (Kantor structure) 
of a Lie algebra or a Lie superalgebra L with respect to a 
subalgebra Lo of maximal rank 

(4.1 ) 

The elements of L belonging to various subspaces Lr satisfy 
the (super) commutation relations 

[Lr,Lsh;;Lr+s' r,s=O,+!,+I, (4.2) 

and Lr+ s = 0 if Ir + sl > 1. The elements belonging to the 
LI/2 space can be labeled by the elements of the underlying 
(super-) triple system and all the (super) commutators in L 
can be expressed in terms of the (super-) Kantor triple prod­
uct. The Jacobi identities follow from the two defining iden­
tities of the (super-) Kantor triple systems. 17 All simple Lie 
algebras and classical Lie superalgebras have a Kantor de­
composition with respect to a subalgebra of maximal rank 
and can be constructed in this manner. Clearly, the subspace 
of L consisting of L _ I' Lo' and L + I spaces form a subalgebra 
with a Jordan structure. 

Of noncompact simple Lie groups only those that have a 
Jordan structure with respect to their maximal compact sub­
groups have unitary representations of the lowest (or high­
est) weight type. 14 However, this is not true for noncompact 
Lie supergroups. As we shall discuss in detail in Sec. VI, the 
noncompact Lie superalgebra OSp(2n + 1!2m,R) has uni­
tary representations of the lowest weight type but does not 
have a Jordan structure with respect to a compact subsuper­
algebra of maximal rank. This can easily be seen from the 
fact that the even subgroup SO (2n + 1) X Sp (2m,R) has a 
Jordan structure with respect to its subgroup SO(2n - 1) 
XSO(2) xV(m). However, OSp(2n + 112m,R) does not, 
in general, have a subsupergroup whose even subgroup is 
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SO(2n - 1) xSO(2) XV(m) except for some special val­
ues of nand m. Therefore to be able to construct the VIR's of 
the lowest weight type of all the noncompact Lie superaIge­
bras of the classical type the oscillator method must be gen­
eralized to Lie superalgebras that have a Kantor structure 
with respect to a compact subsuperalgebra. 

v. THE UNITARY REPRESENTATIONS OF THE LOWEST 
WEIGHT TYPE OF NONCOMPACT LIE SUPERGROUPS 
WITH A KANTOR STRUCTURE 

Consider a noncom pact Lie superalgebra L with a Kan­
tor decomposition with respect to a suitable compact subal­
gebra Lo of maximal rank: 

L =L_ I G7L_1I2G7LoG7L+I/2G7L+I' (5.1) 

The subalgebra Lo contains the generator N of an Abelian 
V ( 1) subgroup that gives the grading, i.e., 

[N,Lr]=rLr' r=O,+!,+1. (5.2) 

Assume that L is realized in terms of bosonic and fermionic 
oscillators. Now choose a set of states In.) in the super-Fock 
space of these oscillators that transforms in a definite repre­
sentation of the subsuperalgebra Lo and is annihilated by all 
the operators belonging to the L _ 1/2 space 

L_Idn.) = 0 (5.3) 

(which implies thatL_11 n.) = 0). Then the set of states gen­
erated by the repeated application of the operators belonging 
to the L + 1/2 space on the state In.) forms the basis of a repre­
sentation of L. This representation will be a unitary one for a 
certain real form of L. The easiest way to determine the real 
form for which the above representation is unitary is to go to 
a super-Hermitian basis of L.6 In the super-Hermitian basis 
the even generators are Hermitian operators and the odd 
generators are anti-Hermitian. Furthermore the structure 
constants are pure imaginary for commutator products and 
pure real for anti commutators. For details on this point we 
refer the reader to Ref. 6. The Kantor decomposition of L 
corresponds to a split basis, in general, and to go to a super­
Hermitian basis one needs to take definite linear combina­
tions of the operator belonging to the subs paces L o, 
L += 1/2' and L += I' We shall implicitly assume that we are 
dealing with that real form of the supergroup in question for 
which the oscillator method as outlined above yields unitary 
representations. 

If the lowest weight state In.) transforms in an irreduci­
ble representation of Lo then the unitary representation of L 
obtained by repeated application of the operators belonging 
to the L + 1/2 space will also be irreducible. To prove this we 
need to show that all the Casimir operators of L are diago­
nalized by all the states that form the basis of the representa­
tion. Now the Casimir operators are polynomial functions of 
the generators of L. Each term of the Casimir operator has a 
vanishing V (1) charge generated by N. Therefore by (su­
per) commutation of the generators one can bring all the 
Casimir operators to a form such that the operators belong­
ing to L _ 1/2 and L _ I spaces are to the right of the operators 
belonging to Lo, L+1/2' and L+1 spaces in each term. For 
example, symbolically, a term of the form L-ILo£1/2L1/2 
can be brought to the form (Lo£1/2LI/2L-1 + Lo£1/2L-1/2 
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+ Lo2 + LII2L_II2 + LII2LII2L_I). Then acting on the 
lowest weight state In) with the Casimir operators we find 
that only those terms involving the generators of Lo alone 
give a nonvanishing contribution. Since In) transforms irre­
ducibly under Lo all the Casimir operators will simulta­
neously be diagonalized by it. Similarly, the states generated 
by the action of the operators in L + 1/2 space on In) will 
diagonalize all the Casimir operators since the operators in 
L + 1/2 and L + I spaces commute with the Casimir operators 
of L. This proves that if the lowest weight vector In) is an 
irreducible representation of Lo then the states generated by 
the action of L I /2 on In) will form the basis of a VIR of L. In 
some very special cases the eigenvalues of the Casimir opera­
tors of L do not uniquely label the VIR's. In such cases one 
can use the Lo labels of In) to uniquely label the VIR's of L. 

VI. THE LOWEST WEIGHT UNITARY IRREDUCIBLE 
REPRESENTATIONS OF OSp(2n+1/2m,R) 

In this section we shall apply the method outlined above 
to construct VIR's of the lowest weight type of the noncom­
pact Lie supergroup OSp(2n + l/2m,R) whose even sub­
group is SO(2n + 1) xSp(2m,R). The group SO(2n + 1) 
has a Kantor structure with respect to its subgroup V (n). 

We can decompose the generators of SO(2n + 1) in a split 
basis as 

L = L_I ffJL_ I / 2 ffJLoffJL+ 1/2 ffJL+1> 
(6.1 ) 

L =A/Lv ffJK/L ffJI~ ffJK/LffJA/L\ 

where the operators belonging to various subspaces satisfy 
the commutation relations 

[I~,I~] = lY'J~ -lY;I~, [K/L,Kv] = A/Lv, 

[Kp,KV] = - I;, [K/L,A VA] = ~;KA - ~~KV, 

[I~,KA] = -lY;.Kv' [I~,KA] =~~K/L, 

[I~,AAp] = lY;.Apv - ~AAV' 

[I~,A AP] = ~A A/L _ ~~A P/L, 

[A/Lv,A AP] = -lY:J~ + ~~I~ - ~~I~ + 8';,l~, 
[K/L ,AAp] = lY;.Kp - ~KA· 

(6.2) 

One can realize the generator of SO (2n + 1) in terms of a 
single set of fermionic annihilation and creation operators 
transforming covariantly and contravariantly, respectively, 
under the V(n) subgroup: 

{S/L'Sv} = ~;, {S/L'Sv} = {Sv,S/L} = 0, 

/-L,v, ... = 1,2, ... ,n. (6.3) 

The generators of SO(2n + 1) in a Kantor basis are then 
given as 

A/Lv = S/LSV' K/L = (lI{2)S/L' 
I~ = ~(S/LSv - SvS/L), 

K/L= (lI{2)S/L, A/Lv=S/LS
v. 

(6.4 ) 

The only state in the fermionic Fock space that is annihilated 
by the operators K/L belonging to the L _ 1/2 space and trans­
forms irreducibly under V(n) generated by Iv/L is the Fock 
vacuum 10): 

K/L 10) = S/L 10) = 0. (6.5) 
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Choosing the vacuum 10) as the lowest weight state and act­
ing on it by the operators K /L belonging to the L + 1/2 space we 
generate the basis of a VIR of SO (2n + 1): 

1°), 
K/LIO) = s/LIO), 

K/LKVI9) = s/LsVIO) 

K/LK V .. ·K A 10) = S/LS
v .. ·SA 10). 

~ 

n times 

(6.6) 

The resulting representation is simply the spinor representa­
tion of SO (2n + 1). Since it is constructed out of a single set 
of oscillators we refer to it as the singleton representation 7-10 

ofSO(2n + 1). 
One can also realize the SO(2n + 1) Lie algebra using a 

pair of fermionic oscillators a /L ,/3 /L carrying the V (n) index 
and a single fermionic oscillator t/J, 

{a/L,av} =~; = {f3/L,/3 v}, 

{a/L,av} = {f3/L,/3v} = {a/L,/3v} = {a/L,/3 v} = 0, 

{t/J,t/Jt} = 1, 

{a/L,t/J} = {a/L,t/Jt } = {f3/L,t/J} = {f3/L,t/Jt } = 0. 

(6.7) 

The generators of SO(2n + 1) in a Kantor basis are then 
given by 

A/Lv = a/L/3v - a v/3/L' K/L = t/J/3/L + aIL t/Jt. 
I~ = alLay - /3v/3/L, ( 6.8) 

K /L = t/Ja/L + /3/Lt/Jt, A /LV = a/L/3 V - aV/3/L. 

The vacuum state 10) in the Fock space of all the fermionic 
oscillators is annihilated by all the annihilation operators 

Any set of states of the form 

or of the form 

t/Jta/Lav .• ·aA 10) 

(6.9) 

( 6.10) 

is annihilated by the operators K/L belonging to the L_I/2 
space. Any subset of these states that transforms irreducibly 
under the V(n) subgroup generated by Lo can be used as a 
lowest weight state for the construction of a VIR of 
SO (2n + 1). The set of states of the form (6.9) and of the 
form (6.10) lead to the same set of VIR's of SO (2n + 1) 
since they have identical V (n) transformation properties. 
With one set of the oscillators a/L' /3 /L' and t/J one can con­
struct (n + 1) inequivalent irreducible lowest weight states, 
thus leading to (n + 1) inequivalent representations of 
SO(2n + 1). One can construct all the VIR's ofSO(2n + 1) 
by the oscillator method. In the general case, one realizes the 
generators of SO (2n + 1) in terms of an arbitrary number of 
oscillators as follows: 

p 

== I (a/L(r)/3v(r) -aV(r)/3/L(r») + ES/LSV' 
r= 1 

Murat GOnaydin 1278 



                                                                                                                                    

KIl = ",oPIl + Ullo",t + (d..fi)SIl 

p € 
== L (rp(r){31l (r) + all (r)rpt(r») + - Sll' 

k=1 ..fi 

p 

== L (all(r)av(r) - {3v(r){3Il(r») 
r= 1 

p 

== L (all (r){3V(r) - a V(r){3Il(r») + ESIlSV, 
r= 1 

where €=0,1 and the oscillators all (r),{31l(r), and rp(r) 
satisfy the canonical anticommutation relations (CAR's) 

{all (r),aV(s)} = tJ;tJrs , r,s = 1, ... ,p, 

{Pll (r),{3 V(s)} = tJ;tJrs> /-l,v = 1, ... ,n, 

{all (r) ,av (s)} = {Pll (r) ,{3v (s)} = {all (r),{3 V(s)} = 0, 

{rp(r),rpt(s)} = tJrs ' (6.12) 

{rp(r),rp(s)} = {rp(r),all (s)} = {rp(r),{31l (s)} 

= {rp(r),all(s)} = {rp(r),{3Il(s)} = o. 

Interestingly enough, for € = 0 the oscillator method yields 
vectorial or tensorial type representations of SO (2n + 1). 
While for € = 1 we obtain in general spinorial representa­
tions of SO (2n + 1). In the general case the possible lowest 
weight states ofSO(2n + 1) are oftheform 

[s Il] srpt (1) [all ( 1) ] n'rpt (2) [aV(2)] n, 

x" .rpt(p) [aA(p) PIO) 
or of the form 

(6.13 ) 

(6.14 ) 

where s = 0,1 and [all(k)] nklO) stands for a state of the 

form all, (k)a/l2 (k)" 'allnk(k) 10) and similarly for 
[{3 Il(k) rklO) (nk,n). Every irreducible representation of 
SO(2n + 1) can be constructed by choosing a suitable low­
est weight state ofthe form (6.13) or (6.14) that transforms 
irreducibly under U(n) generated by I~ and acting on it by 
the operators K Il repeatedly. 

The noncompact subgroup Sp(2m,R) ofOSp(2n + 1/ 
2m,R) has a Jordan structure with respect to its maximal 
compact subgroup U(m).5.8 The simplest realization of the 
Lie algebra of Sp(2m,R) is in terms of a single set of m 
bosonic annihilation and creation operators satisfying 

(6.15 ) 

Then the generators ofSp(2m,R) in a Jordan basis read as 

( 6.16) 
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where 

Sij = cicj ' Sij = cici, M; = ~(CiCj + cjci ). (6.17) 

In the corresponding bosonic Fock space there exist two in­
equivalent lowest weight states ofSp(2m,R) annihilated by 
the operators Sij belonging to the L_I space and that trans­
forms irreducibly under the maximal compact subgroup 
U(m) generated by MJ. They are the vacuum 10) which is 
an SU (m) singlet and the one-particle state cilO) that trans­
forms in the fundamental (contravariant) representation of 
U(m). Acting on 10) or on cilO) repeatedly by the operators 
S ij we generate an infinite set of states that form the basis of a 
UIR ofSp (2m,R). These two UIR's are referred to as single­
ton representations.8 Again the oscillator method yields all 
the UIR's ofthe lowest weight type ofSp(2m,R). To con­
struct these UIR's we need to realize the generators of 
Sp(2m,R) in terms of an arbitrary set of bosonic oscillators: 

Sij = aiobj + ajObi + ECiCj 

p 

== L(ai(r)bj(r) +aj(r)bi(r»)+€cicj , 
r= 1 

p 

== L (ai(r)bj(r) + aj(r)b i(r») + €CiC j, 
r= 1 

p . . 

== L (a'(r)aj (r) + bj (r)b '(r») 
r= 1 

where the bosonic oscillators satisfy 

[a i (r),aj(s)] = tJ{tJrs , 

(6.18 ) 

[bi(r),bj(s)] =tJ{tJrs , (6.19) 

[a i (r),bj (s)] = [a i (r),bj(s)] = [ai (r),aj (s)] 

= [bi (r),bj (s)] = O. 

The parameter € takes on the values 0 or 1, depending on 
whether we have an even (2p) or odd (2p + 1) number of 
bosonic oscillators carrying U(m) indices. The representa­
tions ofSp(2m,R) with € = 1 are the noncompact analog of 
the spinorial representations of the orthogonal group 
SO(n). The lowest weight states for the construction of a 
unitary representation of Sp(2m,R) are, in general, tensor 
products of the states of the form 

a[i(r)b j ] (r) 10) ==(ai(r)bj(r) - aj(r)b i(r) )10) (6.20) 

tensored with those of the form 

[ci]'[a j ( 1)] n, •.. [ak(r)] n, 

x[bl(r+ l)r'+''''[b m (p)r p IO), 
(6.21) 

where s = 0,1 and n1, ... ,np are arbitrary non-negative inte­
gers. Here it is important to make sure that family indices 
(r,s, ... ) ofthe states of the form (6.20) do not coincide with 
each other or with those of (6.21). Again the expression 
[aj(k) r k represents 
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aj'(k)ai'(k)" ·aj"k(k). 

Choosing a subset of these states that transforms irreducibly 
under V (m) and acting on it with S ij repeatedly we generate 
the basis ofa VIR ofSp(2m,R). These VIR's are uniquely 
labeled by their lowest weight states. 

The Kantor decomposition ofSO(2n + I) and the Jor­
dan decomposition of Sp (2m,R) can be embedded in a Kan­
tor decomposition of the noncompact Lie superalgebra 
OSp(2n + 1!2m,R). To do this supercovariantly we com­
bine the bosonic and fermionic oscillators used in the con­
struction of Sp (2m,R) and SO (2n + I) into superoscilla­
tors whose first m components are bosonic and remaining n 
components are fermionic, i.e., 

bA = (;J, ~A = (;J ' 
bA=(;~), ~A=(;~). 

(6.22) 

The Lie superalgebra L of OSp (2n + 1!2m,R) can be real­
ized as bilinears of these superoscillators in a Kantor basis as 

L = L_I ffiL_1I2 ffiLo ffiL+ 1/2 ffiL+ I' 

L = LAB ffi LA ffi L ~ ffi L A ffi LAB, 

where 

P 

(6.23 ) 

LA = "'·1)A - ",t·~A == L (t/J(r)~A (r) - t/Jt(r)bA (r»), 
r= 1 

P 

LAB = ~A·1)B + ~B·1)A == L (bA (r)~B (r) + bB (r)~A (r»), 
r= I 

(6.24) 
p 

== L (bA(r)bB(r) + (- l)degAdegB~A (r)~B(r»), 
r= I 

P 
LA = 1)A.",t - ~A.",== L (~A(r)t/Jt(r) - bA(r)t/J(r»), 

r= I 

P 
LAB = ~A.1)B + ~B"1)A== L (bA(r)~B(r) + bB(r)~A(r»), 

r= I 

where deg A is zero or unity depending on whether the index 
A refers to a bosonic or fermionic oscillator, respectively. 
The operators LA and L A belonging to the L_I/2 and L+ 1/2 
subspaces transform in the covariant and contravariant fun­
damental representation of the compact subsuperalgebra 
V(mln) generated by LBA. The states in the super-Fock 
space that are annihilated by operators belonging to L _ 1/2 

space are, in general, linear combinations of the states of the 
form 

[b 0(l)]" [b B(2) ]', ... [b c(p) ]'Pt/Jt (l) ... t/Jt (p) 10) 
(6.25 ) 

or of the form 

(6.26 ) 

Choosing a subset In) of these states that transforms irredu­
cibly under the compact subsuperalgebra V(mln) and act­
ing on it repeatedly with the operators K A belonging to the 
KII2 space we generate an infinite set of states that forms the 
basis of a VIR or OSp (2n + 1!2m,R). Since the method as 
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explained above yields all the irreducible representations of 
SO(2n + I) and all the lowest weight VIR's ofSp(2m,R) 
we believe that the VIR's obtained by this method exhausts 
the list of all lowest weight VIR's ofOSp(2n + 1!2m,R). 

To illustrate how the method works let us consider the 
example ofOSp(7 14,R) which is simply the N = 7 extended 
anti-de Sitter superalgebra in four space-time dimensions. 
[Recall that Sp ( 4,R) is the twofold covering group of 
SO (3,2).J For reasons that will become clear shortly we 
shall take one set of the oscillators bA' ~A' and t/J (i.e.,p = I) 
and choose as our lowest weight state the Fock vacuum 10), 
which is a singlet of the compact subsuperalgebra SV (2/3 ) 
with a definite V ( 1 ) charge. By acting on 10) with the opera­
tors L A we generate states that transform in a definite repre­
sentation of V (2/3). V sing supertableaux techniques 7,8.20 

we can designate the transformation properties of these 
states under V (2/3) : 

10), 

LA 10) = 1121), 

L AL BIO)=II2I2J)ffil ~), 
LALBLCIO) = IIaaa)ffil ~), 

:, 

(6.27) 

where the supertableaux occurring on the RHS have at most 
two rows. 

The above decomposition of the VIR of OSp (71 4,R) is 
with respect to its compact subsupergroup V (2/3). For 
most physical applications, such as to supergravity, it turns 
out to be more useful to decompose the VIR of a noncom­
pact supergroup with respect to its even subgroup. In our 
example, the even subgroup is SO(7) XSp(4,R). The infi­
nite set of states in (6.27) forming a VIRofOSp(7/4,R) can 
be combined into certain VIR's ofSp(4,R) that have defi­
nite SO(7) transformation properties. Since the VIR's of 
Sp ( 4,R) that occur are of the lowest weight type they can be 
labeled by the quantum numbers of the maximal compact 
subgroup SV(2) xV(l) of Sp(4,R) which are spin sand 
anti-de Sitter energy EO•

8
•
21 Therefore our task is simply to 

determine all the states in (6.27) that are simultaneously 
lowest weight states for both SO(7) and Sp(4,R). These 
lowest states are transformed into each other by the action of 
the odd supersymmetry generators K i and S ill. The 
SO (7) X Sp ( 4,R) content of the VIR of OSp (71 4,R) with 
lowest weight vector 10) and p = 1 is given in Table II. 

The VIR's ofSp( 4,R) can be identified with the Fourier 
modes of fields defined in four-dimensional anti-de Sitter 
space.8

•
22 The fields associated with the VIR listed in Table 

II are all massless8
•
22 and the full unitary supermultiplet has 

the same field content as the massless N = 8 anti-de Sitter 
supermultiplet in d = 4 whose highest spin field is the gravi­
ton. This is simply an extension to anti-de Sitter space of the 
well-known result from Poincare supersymmetry. 

Before concluding this section we should point out that 
the Lie superalgebra OSp ( 1!2m,R) has a special realization 
in terms of bosonic oscillators alone. The generators of 
OSp ( 1!2m,R) in a Kantor basis take the simple form 

L L L i i i 
ij = aiaj , i = ai' j = a aj - aja, 

L i = ai, L '1 = aiai, i,j = I, ... ,m, 
(6.28) 
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TABLE II. We give the SO( 7) X Sp ( 4,R) decomposition ofthe unitary ir­
reducible supermultiplet of OSp( 7/ 4,R) with lowest weight vector 10) and 
p = I. The first column lists the states that contain simultaneous lowest 
weight states of both SO(7) and Sp(4,R). The second and third columns 
give the spin [SU (2) I and anti-de Sitter energy Eo(U ( I») of these lowest 
weight states. The last column gives the SO(7) representations of these 
states with definite spin and energy Eo. 

Lowest states Spin 

10) 0 
KiKJIO) 0 

KilO) ! 
Sil'IO) ! 

Sil'SP'IQ) 
Sil'K ]10) 

Sjl'SkVKiIO) 

Sil'S]VSkpIO) 

S]I'SkvSipK iIO) 2 

Eo SO (7) 

I 35 
2 35 
~ 35 

~ 21 
2 7 
2 21 

~ 7 

~ 
3 

where the bosonic oscillators satisfy the usual canonical 
commutation relations 

(6.29) 

The only state in the bosonic Fock space annihilated by the 
operator a i belonging to the L_1/2 space that transforms 
irreducibly under the U(m) subgroup generated by L ~ is 
the Fock vacuum 10). Acting on 10) repeatedly by the opera­
tors L i we generate the basis of a UIR of OSp( 1I2m,R). 
This shows that the full spectrum of states in the Fock space 
of m bosonic oscillators forms a single UIR of OSp( 11 
2m,R). Note that the even subgroup Sp(2m,R) transforms 
states with even (or odd) number of bosonic excitations into 
states with even (or odd) numbers of bosonic excitations. 
The odd generators belonging to the L _ 1/2 and L + 1/2 spaces 
mix states having an even number of excitations with states 
having an odd number of excitations. In other words, the 
odd supersymmetry generators of OSp( 1I2m,R) interpo­
late between the two singleton representations ofSp( 2m,R). 

VII. SUPERCOHERENT STATES FOR THE UNITARY 
HIGHEST WEIGHT REPRESENTATIONS 

In Ref. 6 the concept of supercoherent states was first 
introduced and the coherent state basis for the highest 
weight UIR's of the noncompact supergroup SU(m,p/n) 
was studied. The definition of supercoherent states given for 
SU(m,p/n) extends in a straightforward manner to all non­
compact supergroups with a Jordan structure with respect to 
a maximal compact subsupergroup. The coherent states of 
such a noncom pact supergroup g with a maximal compact 
subsupergroup K can be labeled by the complex supercoor­
dinates of the quotient space G / K. More specifically if the 
Lie superalgebra L of G has a Jordan decomposition with 
respect to the Lie superalgebra Lo of K, i.e., 

L = L_II:fJLoI:fJL+I' 

then the coherent state associated with the UIR of lowest 
weight In) is defined as 

In;Z) = eL+,zln), (7.1) 
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where L + I' Z represents the operators in the L + I space mul­
tiplied with their corresponding complex parameters. For 
even generators these parameters are complex numbers and 
for odd genrators they are complex anticommuting Grass­
mann numbers. Under the unitary action U (g) of the super­
group corresponding to the element geG, the coherent states 
with label Z undergo transformations of the form 

U(g)ln;Z) = I (yZ + 8)-ln;(aZ + P)(yZ + 8)-1), 
(7.2) 

where 

(; ~) =geG 

and I (yZ + 8) -In) represents the state obtained from the 
lowest weight state In) by the induced action of the maximal 
compact subsupergroup. The matrices a, p, y, and 8 involve 
ordinary as well as Grassmann parameters. For further de­
tails we refer the reader to Ref. 6. 

Our aim here is to generalize the concept of supercoher­
ent states to those noncom pact supergroups G that have a 
Kantor structure with respect to a compact subsupergroup 
K of maximal rank. Now the Lie superalgebra L of G decom­
poses with respect to the Lie superalgebra Lo of K as 

L = L_II:fJL_1I2I:fJLoI:fJL+1/2I:fJL+I' 

Given a lowest weight UIR with the lowest weight state In) 
we define the corresponding coherent state In; Y,Z) as 

In;Y,Z)=eL
+ II"Y+L+"zln), (7.3) 

where Y and Z are the superparameters associated with the 
generators belonging to the L+ 1/2 and L+ I space and 
L + 1/2' Y and L + I • Z represent the generators multiplied 
with their parameters. Since the subsupergroup generated by 
L_I' L o, and L+ I has a Jordan structure with respect to the 
compact subsupergroup K the label Z will be the coherent 
state label of this subsupergroup as discussed above. 

For the noncom pact supergroup OSp(2n + 1I2m,R) 
the supercoherent states defined by the lowest weight vector 
In) of a UIR has the form 

eLAYA+LARZABln) = In;Y,Z). (7.4) 

To illustrate the structure of these supercoherent states con­
sider the supergroup OSp( 1I2m,R). The supercoherent 
state associated with the singleton UIR of OSp( 1I2m,R) 
has a very simple decomposition 

10;Oi,Zij) =e°,ci + Zij cicjl 0) = (1 + Oici)eZijCicjIO) 

= 10;Zij) + OkCk 10;Zij)' (7.5) 

where the 0i are complex anticommuting parameters and 
the Zij are the complex parameters labeling the usual coher­
ent states of Sp(2m,R). The coherent states 10;Zij) and 
ck 10;Zij) are the coherent states associated with the two sin­
gleton UIR's ofSp(2m,R) with lowest weight states 10) and 
ciIO). Under the action of the odd generators of OSp( 11 
2m,R) these two coherent states get transformed into each 
other. 

As mentioned above the labels of the super coherent 
states can be identified with the complex (super) coordi­
nates of the (super) coset space G /K. ForOSp( 1I2m,R) the 
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complex coordinates OJ and Zij can be chosen as the coordi­
nates of the quotient space OSp(1/2m,R)/U(m). For the 
simplest case of m = 1, the OSp( 1I2,R) invariant volume 
element dJi- on the quotient space OSp(1I2,R)/U(1) with 
coordinates 0 and Z can be obtained simply using the results 
of Ref. 23: 

dJi- = [(1- !OO)/(l-ZZ)2]dzdzdOdO. (7.6) 

This can be generalized in a straightforward manner to gen­
eral m. The study of the coherent states of OSp(2n + 11 
2m,R) as defined above requires a detailed knowledge of the 
quotient space SO (2n + 1) IV (n). We hope to return to this 
and related issues in a separate study. 

VIII. CONCLUSION 

In this paper we gave a generalization of the oscillator 
method so as to be able to construct lowest weight VIR's of 
noncompact Lie superalgebras that have a Kantor structure 
with respect to a compact subsuperalgebra of maximal rank. 
With this generalization the oscillator method can be used to 
construct the lowest weight unitary representations of cer­
tain real forms of all the classical simple Lie superalgebras, 19 

which include the exceptional and strange superalgebras. 
The relevant real form of the classical supergroups are those 
for which the even subgroup is a direct product of a compact 
group with a simple noncompact (or compact) group. As 
mentioned above in certain cases the oscillator method does 
not lead directly to irreducible unitary representations. A 
simple algorithm for projecting out the irreducible represen­
tations in these instances is yet to be developed. We have also 
given a definition of generalized supercoherent states asso­
ciated with the lowest weight VIR's of noncompact super­
groups with a Kantor structure with respect to a compact 
subsupergroup of maximal rank. The extension of the meth­
od to construct unitary representations of noncompact su­
pergroups whose even subgroups contain direct products of 
two simple noncom pact groups will be the subject of a sepa­
rate study. 
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The correlation functions of the two-dimensional Ising model satisfy nonlinear equations both 
on the lattice (discovered by McCoy and Wu [Nucl. Phys. B 180, 89 (1981)] and Perk [Phys. 
Lett. Al 79, 3 (1980)]) and in a continuum limit (discovered by Wu, McCoy, Tracy, and 
Barouch and generalized by Sato, Miwa, and Jimbo [Publ. RIMS 14, 223 (1978)]). In this 
paper results are presented for infinite spin groups that extend results of Sato, Miwa, and 
Jimbo [Publ. RIMS 14, 223 (1978)] and lead to normal ordered product formulas for the 
difference of adjacent Ising spin fields. These product formulas are shown to lead directly to 
the lattice difference equations for the correlations and are also a key ingredient in the scaling 
limit analysis. 

I. INTRODUCTION 

Let W denote an infinite-dimensional Hilbert space with 
a distinguished conjugation and associated bilinear form. In 
this paper we generalize some of the results proved in Ref. 1 
for the finite-dimensional spin groups to the infinite-dimen­
sional complex spin groups, SpinQ ( W), introduced in Ref. 
2. In Ref. 3 some such infinite-dimensional generalizations 
were already given. In that paper, however, the structure of 

-" 
the group SpinQ ( W) was incompletely understood and the 
results in Ref. 3 are consequently limited to a sUbsemigroup 

A 

ofSpinQ (W). A 

The group SpinQ ( W) acts by linear transformation on a 
dense invariant subspace Pfl of an appropriate Fock space. 
Let L (Pfl) denote the space of linear maps from Pfl into Pfl. 

'" The Fock representation of SpinQ ( W) is a homomorphism r: SpinQ (W) -+L(Pfl) the image of which consists oftrans­
formations that implement automorphisms of the Clifford 
algebra Crt (W) associated with elements of the restricted 
orthogonal group SOres ( W). 2 As is explained in Sec. II one 
may extend the action of Spina ( W)", by the invertible ele­
mentsin W~ Crt (W) to get the group PinQ (W). One obtains 
in this fashion the largest group of transformations imple­
menting automorphisms of Crt (W) induced by complex 
orthogonals on W that can be defined on a domain contain­
ing the vacuum vector in Fock space. The association of 
PinQ ( W) with a "maximal" family of Bogoliubov transfor­
mations is one of the principal motivations for the study of 
this group. 

Let Ao ( W) denote the algebraic alternating tensor alge­
bra over W consisting of finite sums of finite products from 
W. In Sec. III of this paper we introduce a map N: Ao( W) 
XSpinQ (W) -+L(Pfl) that extends the notion of "normal" 
ordering familiar in the physics literature. One of the princi­
pal results of this section is a "structure" theorem (Theorem 
3.0) for the image ofPinQ ( W) under t [this result has im­
plications for a cell decomposition of PinQ (W) but this is 
not pursued here]. A second application of the normal or­
dering map is a "perturbation" result (Theorem 3.3) that 

'" '" expresses r (g2) in terms of r (g I) when the elements gland 
g2 in SpinQ ( W) have induced rotations that differ by a finite 
rank operator. 

In Sec. IV we prove a generalized version of Wick's 

theorem for SpinQ (W) (Theorem 4.2). The proof we give is 
a simplification (and generalization) of the proof in Ref. 3 
and is based on an idea in Ref. 1. It avoids the rather heavy 
product deformation formalism of Sato, Miwa, and Jimbo 
(SMJ) that was used in the proof in Ref. 3. If one combines 
Theorem 3.0 with Theorem 4.2 one obtains a generic "reduc­
tion" formula for the vacuum expectation of a product of 

'" elements from PinQ ( W). Formulas for the vacuum expecta-
tions of the "elementary types" to which the reduction for­
mula leads are not given here but see Refs. 1 and 3. 

In the final section of this paper we give an application of 
the results of Secs. III and IV to the correlations of the two­
dimensional Ising model. The results of Sec. III lead to "per­
turbation formulas" for the Ising field u( a + u) increment­
ed by a unit lattice vector u in terms of u(a) (Theorem 5.1). 
A much less elegant version of these local difference identi­
ties can be found in Theorem 2.1 of Ref. 4. There they were a 
principal ingredient in the SMJ analysis of the scaled corre­
lations. The derivation of the local difference identities pre­
sented in Sec. V of this paper is not only more direct than that 
given in Ref. 4 but it has the virtue of suggesting the role of 
the "disorder variables"s that arise as a matter of course in 
the analysis. This is very useful when considering generaliza­
tions to monodromy fields6 where there is not yet an inde­
pendent indentification of the appropriate disorder vari­
ables. In a sequel to this paper we will derive analogs of the 
local difference identities for monodromy fields. These are 
used in the thesis of Davey to establish the SMJ anaysis of the 
scaled monodromy correlations. We conclude this paper by 
showing that the difference identitites of Theorem 5.1 also 
lead directly to the McCoy, Wu, and Perk (MWP) 7,8 differ­
ence relations for the Ising correlations. The connection is 
via the generalized version of Wick's theorem and no doubt 
must be closely related to Perk's original derivation ofthese 
identities9 which also relies on the "thermodynamic" ver­
sion of Wick's theorem. That the local difference identities 
(5.15) lead to the MWP difference identities and are a cru­
cial ingredient in the SMJ analysis ofthe scaled correlations 
reveals their significance for the "deeper" analysis of the 
Ising correlations. 

What is new in this paper is mostly the formulation and 
calculation with Ising model correlations directly in the infi­
nite volume limit. The Ising fields are, in this limit, elements 
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of an infinite-dimensional spin group that in general consists 
of unbounded operators acting on Fock space. The approxi­
mation of these group elements by algebraic elements in the 
Clifford algebra is somewhat subtle but one of the main 
points of this paper is that in spite of the fact that the repre­
sentation of the complex spin group does not respect the 
Hilbert space structure of Fock space many useful tools from 
the algebraic finite-dimensional setting carry over to infinite 
spin groups if they are properly formulated. There is, for 
example, no useful normal ordered product formula for the 
Ising field operators themselves but the notion of "relative 
normal ordered products" introduced in Sec. III leads to a 
fruitful generalization, Theorem 3.3, of an obvious finite­
dimensional result that may then be applied to the Ising field 
to get the new result (5.15). This result may then be used as 
the cornerstone of both the McCoy, Wu, and Perk analysis 
and the Sato, Miwa, and limbo analysis of the Ising model 
correlations. It is the author's hope that the additional com­
plications of the infinite volume analysis will eventually be 
compensated by conceptual simplicity. If one recalls that the 
study of phase transitions is framed in the infinite volume 
limit precisely to obtain the conceptual simplicity of sharp 
discontinuities this hope may not seem completely mis­
placed. 

II. THE GROUP SplnQ(W) 

In this section we first review the setting and some of the 
results for infinite spin groups that we will need. More de­
tails and proofs can be found in Ref. 2. Let W denote an 
infinite-dimensional complex Hilbert space with a distin­
guished congugation P. We write (.,.) for the Hermitian 
inner product on Wand (',.) = (. ,p.) for the associated 
symmetric bilinear form. The algebraic Clifford algebra 
CG' 0 ( W) is an associative algebra with identity e generated by 
the elements of W (and e) subject to the relations 

xy + yx = (x,y)e, x,yEw. 

The algebra CG' o( W) consists of finite sums of finite products 
from Wand multiples of e. A subspace Vof Wis said to be 
isotropic if the bilinear form (',.) vanishes identically on V. 
Each splitting of W = W + Ell W _ into subspaces W ± that 
are isotropic and orthogonal to one another with respect to 
the Hermitian inner product gives rise to a representation of 
Ctf o( W) on the complex alternating tensor algebra A ( W + ) 

that we will now describe. The space 
00 

A(W+) = CEIl I Ak(W+), 
k=1 

where A k ( W + ) is the Hilbert space completion of the alter­
nating k tensors over W +. We write 1 = 1 Ell 0 Ell o· .. for the 
"vacuum" vector in A ( W + ). For each XE W + one may de­
fine a creation operator a*(x) and its Hermitian adjoint 
a(x) acting on A ( W +) so that (i) a(x) 1 = 0, for all XEW +; 
(ii) a*(x)a(y) + a(y)a*(x) = (x,y)I; (iii) a*(x)a*(y) 
+ a*(y)a*(x) = O. This construction is described in more 

detail in Ref. 2. In terms of these annihilation and creation 
operators one constructs a representation of Ctf o( W) as fol­
lows. The identity e is mapped to I acting on A ( W + ) and the 
generator XEWk Ctf o( W) is mapped to 

def 

F(x) =a*(x+) +a(x_), 
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where x = x+ + x_, x ± EW ± and x_ = Px_. This repre­
sentation is called a Fock representation of Ctf o( W). 

There are many isotropic splittings of Wand it is con­
venient to parametrize them by the involution Q that is Id on 
vectors in W + and - Id on vectors in W _. Let * denote the 
Hermitian adjoint for operators on Wand let T denote the 
transpose for operators on W relative to the symmetric bilin­
ear form on W. Then a linear involution Q will have ± 1 
eigenspaces which are isotropic iff QT = - Q and these ei­
genspaces will be Hermitian orthogonal iff Q * = Q. Unless 
otherwise indicated the involutions we consider will satisfy 
both these conditions. We write Q ± = (l ± Q)/2 for the 
projections on W ± . When we wish to emphasize the choice 
of Q we will write F Q ( .) for the Fock representation of 
CG' 0 (W) based on the decomposition W = Q + WEll Q _ W. 
The vacuum vector in A ( W + ) ( W + = Q + W) will be de­
noted by 1 Q and we let 

def 

Ctf o(W)3X->(X)Q = (FQ(X)IQ,IQ) 

denote the associated state on the Clifford algebra. 
Let Go( W) denote the group of invertible elements 

gECG' o( W) such thatgxg- I = Gxfor XEWk CG' o( W) and Ga 
complex orthogonal on W. We will say that a map G on Wis 
complex orthogonal if G is invertible and G preserves the 
symmetric bilinear form ( . , . ) on W. Thus G is complex or­
thogonal if and only if GT G = 1. The elements gEGo ( W) are 
either even or odd in the Clifford algebra2 and we define 

X 
-I _ {T(g)x, for g even in Ctf o( W), 

g g (2.1) 
- - T(g)x, for g odd in CG' o( W). 

The map T: Go( W) ->Oo( W) is a surjective homomorphism 
onto the group of complex orthogonals, O( W), which con­
sists of finite rank perturbations of the identity on W. The 
sign change in (2.1) is introduced precisely so this last state­
ment is true. We will next describe the subgroup Spino ( W) of 
Go ( W). The identity on Wextends uniquely to a linear invo­
lution Ton Ctf o( W) such that (XYV = yT XT for X,Y 
ECG' o( W). The map Go( W) 3g->gTg is a homomorphism 
from Go( W) into C* known as the spinor norm. We write 
nr(g) = gT g. The kernel for the homomorphism nr is a sub­
group of Go ( W) we denote by Pino ( W). The group 

Spino( W) = {gEPino( W) I T(g)ESOo( W)}, 

where SOo( W) is the connected component of the identity in 
0 0 ( W). An element GEOo (W) is in SOo (W) if and only if 
det G = 1. One has the exact sequence 

T 

Z/2Z-> Spino ( W) ->SOo( W)->O 

(see Ref. 2). 
For G a linear transformation on W we write 

G = [A(G) 
C(G) 

B(G)] 
D(G) 

(2.2) 

for the matrix of G relative to the W + Ell W _ decomposition 
of W [or perhaps AQ (G), etc., if we wish to identify the 
dependence on the choice of isotropic splitting for W]. If 
gEGo( W) and G = T(g) then we also write 

G = [A(g) B(g)] 
C(g) D(g) 
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for this same matrix to avoid the clumsy notation A (T(g»), 
etc. We now define a metric dQ on Spino( W) as follows: 

dQ(gl,g2) = IIA(gl) - A(g2)111 + IID(gl) - D(g2)111 

+ IIB(gl) - B(g2)112 + IIC(gl) - C(g2)112 

+ IIFQ (gl)I Q -FQ(g2)1QII, 

where 11·111 is the trace norm, 11·112 is the Schmidt norm, and 
11·11 is the Hilbert space norm onA( W +). We have also writ­
ten A (gj) = AQ (gj), etc., for brevity. One of the principal 
results of Ref. 2 is that the sequential closure ofSpino( W) in 
the metric d Q is a continuous topological group SpinQ ( W) in 
the induced metric topology. Let OQ (W) denote the group 
of invertible complex orthogonals on W that have a diagonal 
element [~ ~] that is a trace class perturbation of the identi­
ty on Wand an off diagonal element [~ g] that is a Schmidt 
class operator. Let SOQ (W) denote the connected compo­
nent of the identity in OQ (W). The exact sequence (2.2) 
survives under completion to give an exact sequence: 

T 

Z/2Z ..... SpinQ (W) ..... SOQ (W) ..... 0. (2.3 ) 

Furthermore, there is a dense domain I» ~A ( W + ) that 
contains 1 Q and is invariant under the Fock representation 
of C(f o( W) such that the Fock representation of Spino ( W) 
extends to a strongly continuous representation r Q: 
SpinQ ( W) ..... L (I» ). Here L (I») denotes the collection of 
the linear maps from I» into I». What we mean by strong 
continuity is that the map SpinQ (W) 3g ..... r Q (g)UEI» de­
fined for each VEI» is continuous from SpinQ (W) into 
A ( W + ). The representation r Q acts on the Fock representa­
tion of CtJ o( W) as follows: 

(2.4 ) 

for gESpinQ ( W), XE W, and both sides are understood as 
elements of L(I»). 

The elements of the group of invertible complex orthog­
onals on W that commute with Q have diagonal matrices 
A ES D with D = A - T. We may thus identify this group with 
GL(W+). ForAEGL(W+) the map W3x ..... AESA-T ex­
tends to an automorphism of CtJ o( W). It is shown in Ref. 2 
that this induces a continuous automorphism a(A) acting 
on SpinQ ( W). The map A ..... a (A) is a homomorphism and 

T(a(A)g) = (AESA -T)T(g)(AESA -T)-I. 

There is a representation r: GL( W +) ..... L(I») that fits to­
gether with r Q in the following manner. Let SpinQ ( W) 
X a GL ( W +) denote the semidirect product with composi­
tion rule: gIXAI·g2XA2=gla(AI)g2XAIA2. Then rQ 
Xr(gxA) = r Q(g)r(A) gives a representation of 
SpinQ (W) XaGL( W+) on L(I»). Let ker denote the ker­
nel of this representation and define 

A def 

SpinQ( W) = SpinQ( W) XaGL( W+ )lker. 
A A 

The map r Q X r induces a representation r Q: SpinQ ( W) 
..... L(I»). If we let T(gXA) = T(g)·(AESA -T) then this 
map induces a homomorphism T: SpinQ ( W) ..... SOres ( W), 
where SOres ( W) is the connected component of the identity 
in the group Ores (W) of complex orthogonals on W that 
have Schmidt class commutators with Q. We have 
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r Q(g)FQ(x)r Q(g)-I = FQ(T(g)x), 

gESpinQ ( W), XE W, 

J..egarded as an equality of maps in L (I» ). The group 
SpinQ (W) is not a twofold cover of SOres ( W). Instead one 
has the exact sequence 

(2.5) 

so that SpinQ ( W) is an extension of SOres ( W) by C·. Inter­
esting central extensions of loop groups (associated with 
Kac-Moody algebras) and central extensions of the diffeo­
morphism group of the circle (associated with Virosoro al­
gebras) lie buried in (2.5) for special choices of Wand Q.1O 

If we combine the action ofSpinQ ( W) with the action of 
C(f o( W) on I» then we may "cover" the action (by automor­
phisms) of the restricted orthogonal group Ores (W) on 
C(f o( W) in the following sense. Recall that a linear map on a 
Hilbert space is said to be Fredholm if its kernel and cokernel 
are finite dimensional. The difference of the dimensions of 
these two finite-dimensional spaces is called the index. If 
GEOres ( W) then A (G) and D( G) are Fredholm maps with 
index 0.2 The map 

def 
G ..... €( G) = ( _ I )dim ker D(G) 

is a homomorphism from Ores (W) to { ± IF The kernel of 
this homomorphism is SOres. Given GEOres (W) we will 
show how to construct an invertible linear transformation 
gEL (I») so that 

(2.6) 

is an equality on I». When (2.6) is satisfied for gEL (I» ) we 
will say that g implements G in the Fock representation. The 
sign €( G) is introduced in (2.6) to make the extension of 
(2.1) natural. However, the reader should note thatthe map 
- I commutes with Qon Wand r( - I)FQ(x)r( _1)-1 

= - F Q (x). Thus if one can implement the automorphism 
FQ(x) ..... - FQ(Gx) as in (2.6) then one can also implement 
the automorphism F Q (x) ..... F Q (Gx). 

If GESOres ( W) then G is ~plemented in the Fock rep­
resentation by an element of SpinQ ( W). Thus in order to 
prove that agsatisfying (2.6) exists it suffices to consider the 
case in which D( G) has an odd-dimensional kernel. In this 
event €( G) = - 1. We will reduce this to the SOres ( W) case 
by finding a complex orthogonal reflection O(w) so that 
O(w)GESOres (W). Let wEWbe such that (w,w) ;l0. Then 
the complex orthogonal reflection in the hyperplane perpen­
dicular to w is given by 

O(w)x = x - 2[ (x,w)/(w,w) ]w. 

It is straightforward to check that 

FQ(w)FQ(x)FQ(w)-1 = -FQ(O(w)x), XEW. 

S~ppose now that
A 

O(w)GESOres (W) and choose g' 
ESpinQ( W) so that reg') implements O(w)G in the Fock 
representation. Then F Q (w) r(g') implements - 0 (w) 
·O(w)G = - G = €(G)G in the Fock representation. 

It remains to determine WEW so that O(w)G 
ESOres ( W). Let G = [~ ~] denote the matrix of G relative 
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to the W + EI) W _ decomposition of W Choose W so that 
(w,w) = 2. Then, for XEW, 

D(O(w)G)x = Dx - (Gx,w)w_, (2.7) 

where w_ = Q_w. We want to choose W so that the null 
space of D(O(w)G) is smaller than the null space of D 
= D( G). Equation (2.7) suggests that one ought to choose 

W _ in a complement to the range D. If this is done the right­
hand side of (2.7) will vanish only if Dx = 0 and 
(Gx,w) = 0 separately. For such a choice it is clear that 
ker D(O(w)G)~ker D(G). Now suppose uEker D. SinceG 
is orthogonal we have D T'B + B TD = O. It follows that B 
maps ker D into ker DT. Note that the restriction of B to 
ker D does not have a null space since G is invertible. Let 
W = e(Bu + Bu), where the constant e is chosen so that 
(w,w) = 2e2 (Bu, Bu) = 2 (we write x = Px as above). Ob­

serve now that Q _ W = e BUE ker D T = ker D· = orthog­
onal complement of the range of D. Thus the kernel of 
D (0 (w) G) is contained in the kernel of D( G). Furthermore, 

D(O(w)G)u = Du - (Gu,w)w_ 

- e(Bu,Bu + Bu)w_ 

- e-lw_#O. 

Thus the kernel of D(O(w)G) is strictly contained in the 
kernel of D( G). By choosing a basis for ker D that contains u 
and is orthogonal with respect to the inner product 
(U,V)B = (Bu, Bu) (u,VEker D) one sees immediately that 
dim ker D(O(w)G) = dim ker D(G) - 1. It follows that 
O(W)GESOres (W). We have finished the proof that 
Or .. ( W) is implementable in the Fock representation. 

We may summarize these developments in a slightly 
more abstract fashion as follows. Let Wnr denote the ele­
ments of Wwith spinor norm 1 (i.e., WEWnr iff w2 = 1) then 
Pino( W) is an "extension" of Spino ( W) by Wnr in the fol­
lowing sense. Each element g' in Pino( W) is either in 
Spino( W) or there is a WEWnr and gESpino( W) such that 
g' = wg. We may thus think of Pino( W) as the union of 
Spillo( W) with Wnr X Spillo( W)/ -, where the equivalence 
relation - on Wnr X Spino ( W) is w X g - w' X g' if and only if 
W,-I W = g'g-I in Spino( W). The multiplication rules in 
Pino( W) are 

WI Xgl 'g2 = WI Xglg2, 

gl'W2Xg2 = TCgl)W2Xglg2, 

(WIXgl)'(W2Xg2) = wITCgl)W~lg2' 

(2.8) 

where WjE Wnr ' gjESpinO (W) (j = 1,2) and we used the fact 
that w I T(gl)W2 is in Spino ( W) when WjEW Themultiplica­
tion rules (2.8) extend to the union of SpinQ (W) with 
Wnr X SpinQ ( W) / - and makes this union a group we de­
note by PinQ ( W). The map T: PinQ (W) -OQ ( W) defined 
by 

T(g) = TCg), gESpinQ (W), 

T(wxg) = O(w)T(g), WEWnrJ gESpinQ( W), 

is easily seen to extend the homomorphism Ton Pino( W) 
defined in (2.1). One has the exact sequence: 

T 

Z/2Z-PinQ( W) -OQ( W) -0. 
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We may extend the homomorphism r Q: SpinQ( W) 
-L(D) to PinQ( W) by defining 

r Q(g) = r Q(g), gESpinQ( W), 

rQ(wxg) =FQ(w)rQ(g), WEWnn gESpinQ(W). 

The group GL( W +) acts on PinQ ( W) via the automor-
phism a defined by 

a(G)g = a(G)g, gESpinQ( W), 

a(G)wxg = (GEl) G -T)wXa(G)g, 

WE Wnr ' gESpinQ ( W) 

[this obviously extends the action of a on Pino ( W) ]. We 
may thus form the semidirect product PinQ ( W) 
X a GL( W +). The map r Q X r is a homomorphism from 
PinQ(W)X a GL(W+) intoL(D). Define 

PinQ(W) =PinQ(W)X a GL(W+)/ker(rQxn 

~nd let r Q denote the induced homomorphism from 
PinQ(W) to L(D). Then T(gXG) = TCg)G El)G -T in­
duces a homomorphism from PinQ (W) to Ores (W) for 
which there is the exact sequence 

III. A GRASSMANN CALCULUS FOR SplnQ(W) 
In this section we introduce a "relative" Grassmann cal­

culus for SpinQ (W) inspired by the finite-dimensional cal­
culus in Ref. 1 and the somewhat limited infinite-dimension­
al extensions presented in Ref. 3. For comparison with Ref. 3 
the reader should note that the results in Ref. 3 were estab­
lished for those gESpinQ (W) with the property that r Q (g) 
extends to a bo~nded linear transformation on A ( W + ). 

Suppose gESpinQ ( W) and WjEW (j = 1, ... ,n), then we 
inductively define a linear map NQ(wn "'wlg)EL(liI) as 
follows: 

A 

NQ(g) = reg), 

NQ(wn" 'wlg) = FQ(wn+ )NQ(wn_ 1 •• 'wlg) 

+ ( - l)n- IN Q(wn_ 1 • "wig) 

XFQ(wn-), (3.1) 

where w! = Q ± wn • The motivation for this definition of 
normal ordering comes from the finite-dimensional situa­
tion where every gESpiIlc (W) can be expressed as an even 
normal ordered product.2 Such an even element does not 
contribute to the sign change needed to move F Q ( W n- ) all 
the way to the right in a normal ordered product. 

We now wish to show that the map 

A k (W)3wn A'" Awl-NQ(wn"'wlg) 

is well defined. To show that NQ(wn" 'wlg) is antisymmet­
ric in the arguments W I'W2' ... ,wn , it is enough to show that it 
changes sign when two adjacent Wj are interchanged. By 
using the reduction formula (3.1) this immediately reduces 
to the case where Wn and Wn _ I are interchanged. Two 
further applications of (3.1) show 

NQ(wnwn_ 1 Wn_ 2 " 'wlg) 

- NQ(wn_ I WnWn _ 2" ·wlg)· 
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Let Ao ( W) denote the algebraic Grassmann algebra over W. 
The algebra Ao( W) consists of finite sums of products 
WI 1\ "'1\ Wk and multiples of lEAo( W) =:::C. Then N Q ('g) 
extends by linearity to a map 

Ao( W) 3X -+NQ(Xg)EL(f»). 

It is not reasonable to expect to extend this map to a closure 
of Ao( W) since the domain f» is not closed under infinite 
sums. 

As an illustration of the significance of this notion of 
normal ordered product we will prove a structure theorem 
for the maps on f» that implement transformations 
GEO r .. ( W) in the Fock representation. 

Theorem 3.1: Suppose that GEOres (W) and that 
dim ker D(G) = n. Then there exist vectors ZI, ... ,znEW 

A 

[given by (3.4) below] andgoESpinQ(W) with (go)Q#O 
such that 

def 

g = N Q (zn" 'zlgo) 

implements G in the Fock representation. 

Proof Let G = [1: ~] be the matrix of G relative to the 
W + $ W _ decomposition of W. Choose a basis UI,,,,,Un for 
ker D that is orthonormal with respect to the inner product 

(U,V)B = (Bu, Bv), u,vEker D. Then let Wi =Bui + Bui . 
Define GO=O(wl)"·O(wn)G. Then a straightforward 
calculation shows that, for XEW_, 

n 

D(Go)x = D(G)x - L (Gx,w) Buj , (3.2) 
j= I 

since Q_Wj = Buj . The null space of D( Go) is contained in 

the null space of D( G) since the vectors BUj all live in the 
orthogonal complement of the range of D( G). However, the 
vectors 

n 

D(GO)uk = - L (Buk,Buj + Buj ) BUj = - BUk 
j= I 

are linearly independent since the restriction of B to ker D 
does not have a kernel. Thus D( Go) does not have a kernel. 
Since it is Fredholm of index 0 it follows that D( Go) is in­
vertible and hence that GOESOres ( W). Thus there exists 

A A 

goESpinQ (W) such that r Q (go) implements Go in the Fock 
representation. The condition that D( Go) is invertible is 
equivalent to (go) Q # 0.3 In the remainder of the groof it will 
be c~nvenient to unburden the notation writing r, F, and N 
for r Q' FQ , andNQ. 

Since G = O(wn )" 'O(wl)GO it follows that 
F(wn)" 'F(wl)r(go) implements the automorphism of 
C6 o( W) induced by G. We will show that F(wn )'" 

F(wI)r(go) can be expressed as a normal ordered product 
A 

N(zn" 'zlgo)' We begin by showing that F(wl)r(go) is a 
normal ordered product N(zlgo)' Suppose zlEWand write 
ZI± = Q ± ZI' Then 

N(zlgo) = F(zl+ )r(go) + r(go)F(zl-) 

= F(zt + GoZl- )r(go)' 

Thus F(wl)r(go) = N(zlgo) if (GoQ_ + Q+)ZI = WI' In 
W + $ W _ coordinates this becomes 

(3.3 ) 
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whereBo = B(Go) and Do = D(Go). But (3.2) implies that 

Dou l = - BUI' Thus ZI = (- u l ) + (B +Bo)u l solves 
(3.4). Now let GI = O(WI)' "O(wl)GO and supposeforthe 
sake of an inductive argument that 

is a normal ordered productN(z," 'zlgo)' We will show that 
g,+ I is a normal ordered product N(z,+ IZ," 'zlgo)' Con­
sider the normal ordered product 

N(z, + I Z, ... Z Igo) = F(z,~ I )g, + ( - 1) 'gIF(z,~ I ) 

= F«G,Q_ + Q+)z/+ dg" 
where z/ + 1 = Z/~ I + ( - 1) IZ,~ I' Thus it will be possible 
to write F( WI + I )gl in normal ordered form if one can solve 

(GIQ_ + Q+ )z/+ I = WI+ I' Let [~ ~] denote the matrix 
of GJ relative to the W + $ W _ decomposition of W. 

In W+ $ W_ components the equation (G,Q_ 

+ Q+ )z/+ I = w,+ I becomes 

[
I B,] [ Z'~I ] [BU,+I] 
o D, (-1)'Z'~1 = BU'+I . 

But the analog of (3.2) for D, is 
n 

D,x=Dx- ") (Glx,wj ) Buj . 
j="r+1 

Thus D,u,+ I = - Bu,+ I and it follows that we may 
choose z,~ I = ( - 1)'+ IU,+ I with z,~ 1 = (B + B, )u,+ I' 
Hence 

Z'+I = (_1)'+IU '+1 + (B+B,)u'+1 (3.4) 

solves (G,Q_ + Q+ )z/ + I = W, + I' for 1= O, ... ,n - 1. This 
finishes the proof that given GEOres ( W) there exists 
g = N(zn" 'zlgo) that implements Gin the Fock representa­
tion. Q.E.D. 

We next want to review some of the finite-dimensional 
results for the Grassmann calculus of the Clifford group de­
veloped by Sato, Miwa, and limbo in Ref. 1. Suppose Wis a 
finite-dimensional complex vector space with nondegener­
ate symmetric bilinear form ( ., . ) and distinguished isotrop­
ic splitting W = W + $ W _. Then there is a linear map 0 
from the Grassmann algebra A (W) onto the Clifford alge­
bra C6 ( W) determined by the conditions 

(1) 0(1) = 1, O(x) = X, XEW, 

(2) O(X 1\ y) = O(X)O( Y), if xEA (W +) 

or YEA(W_). (3.5) 

It is not hard to see that 0 is surjective and a dimension 
argument then shows that 0 is injective. This map may be 
used to give a calculus for the Clifford group G( W) that is 
nicely adapted to the Fock representation. To see how this 
works suppose that GESO( W) and that D( G) is invertible. 
DefineR(G) = (G-I)(Q_G+Q+)-I,whereQ± isthe 
pair of projections associated with the splitting W = W + 

$ W _ as usual. It is easy to check that R ( G) T = - R ( G) 
and that G = (1-RQ_)-I(1 +RQ+) where we have 
written R = R ( G). Furthermore, one may easily prove that 
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if R is a skew symmetric (RT = - R) map on W such that 
(1 - RQ_) is invertible, then 

def 

G= (1-RQ_)-I(1 +RQ+) 

is in SO( W) and D( G) is invertible. Let {wj } denote a basis 
for Wand let {wj} denote the dual basis defined by (wj,wt) 
= 8jk . If R is a linear map on Wwith RT = - R then the 

sum ~; = 1 RWj I\. wj is an element of the Grassmann algebra 
that does not depend on the choice of basis {wj }. To avoid 
introducing extra notation we will denote this element of 
A2( W) by R. The reader should have no difficulty with this 
abuse of notation since R will be regarded as an element of 
A 2 (W) only when it appears as an argument of (J or the 
normal ordering map NQ. For REA2( W) we define 

exp(~R)= i: (2nn!)-IRn, 
2 n=O 

where R n = R I\.R 1\." ·I\.R (n factors). When Wis finite 
dimensional the sum defining this exponential is of course a 
finite sum. We summarize the results we will need from Refs. 
2 and 3 in the following theorem. 

Theorem 3.2: Suppose R: W --+ W is skew symmetric 
(RT = - R). Then (J(exp !R)E'G' (W) is in the Clifford 
group G( W) if and only if (l - RQ_) is invertible. 
If (1-RQ_) is invertible then T((J(exp!R») 
= (1- RQ_)-I(1 + RQ+). Furthermore, every element 

in G( W) has a representation (J(zn I\. ... I\. ZII\. exp !R) for 
some choice of ZjE Wand skew symmetric R such that 
(1 - RQ_) is invertible. 

This is proved in Refs. 2 and 3. The reader should have 
no difficulty making the connection between the second part 
of this result and Theorem 3.1 above. 

We now return to the consideration of the infinite-di­
mensional situation. In the remainder of this section W will 
denote an infinite-dimensional Hilbert space as described at 
the beginning of Sec. II. We are interested ilJ... a relative ver­
sion of the map (J for the infinite spin group SpinQ ( W). Let 
ge:SpinQ (W) such that D(g) is invertible. Define 

R(g) = (T(g) -I)(Q-T(g) + Q+)-I. 

Let RQ ( W) denote the class oflinear maps Ron W such that 
RT = - R and such that 

= [ - D(R)T B(R)] 
R C(R) D(R) 

has matrix element D(R) in the trace class and matrix ele­
ments B(R) and C(R) in the Schmidt class. Note that 
RERQ (W) with (1 - RQ_) invertible gives rise to an ele­
ment G= (1-RQ_)-I(1 +RQ+) in SOQ(W)' The to­
pology on RQ ( W) is given by trace norm convergence on the 
diagonal and Schmidt norm convergence on the off diag-
onal. "'-

Definition 3.2: Supposege:SpinQ ( W) and (g) Q #0. Sup­
pose RERQ (W) and that (l- R 'Q_) is invertible where 
R' = R + R(g). Then we define (J(exp(!R)g) to be 
the element of SpinQ (W) with induced rotation G' 
= (l-R'Q_)-I(l+R'Q+) and vacuum expectation 

equal to (g)Q. 
Remark: At the moment the notation (J (exp(!R )g) is 
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merely suggestive. However, we shall see that in certain cir­
cumstances it does make sense to expand the exponential 
exp(!R). 

It is instructive to consider the case where g = e = the 
"'-

identity in SpinQ (W). If RERQ (W) and (.~ - RQ_) is in-
vertible then (J (exp(!R )e) is the element in SpinQ ( W) with 
induced rotation (l- RQ_)-I(l + RQ_) and vacuum ex­
pectation 1. We would now like to make a connection be­
tween (3.5) and Definition 3.2. If RERQ (W) is finite rank 
(rank K, say) then by choosing a basis {wj } so that 
Wk + 1 ,Wk + 2 , ••• is a basis for the null space of R we may 
arrange that the sum 

00 K 

L RWj I\. wj = L RWj I\. wj 
j= 1 j= 1 

is a finite sum [here {wj} is the dual basis (wj,w k ) = 8jk .] 
Theorem 3.1 then implies that (J (exp(!R») has induced rota­
tion (1 - RQ_) -I (1 + RQ+) and it is clear that 
«(J(exp(!R»))Q = 1. Thus 

(J(exp(!R») = (J(exp<!R)e), 

where on the left (J is defined by (3.5) [REA~ ( W)] and on 
the right Definition 3.2 applies. 

We now consider making "finite-dimensional" approxi­
mations to elements ge:SpinQ ( W) with (g) Q # O. The condi­
tion (g) Q #0 is equivalent to D{g) being invertible which in 
turn implies (l- RQ_) is invertible whereR = R{g). Thus 
if we write G= T{g) we have G = (l- RQ_)-I 
X (l + R Q + ). We will now approximate G in SOo (W) by 
making finite rank approximations to R. Let Pn denote a 
sequence of finite rank orthogonal projections on W con­
verging strongly to the identity with the further property 
that the range of each Pn is a subspace of W invariant under 
both P and Q. Define Rn = PnRPn. It is shown in Ref. 2 at 
the end of the proof of Theorem 3.4 that RnERQ (W), Rn 
converges to R in RQ (W), for n sufficiently large 
(l - Rn Q_) is invertible, and finally that 

Gn = (l-RnQ_)-I(1 +RnQ+)ESOo{W) 

converges to G in SO Q ( W). By Theorem 2.1 the element 
(J(exp{!Rn») in Go{ W) has induced rotation Gn. It is not in 
Spino( W) in general but we have 

1 = «(J (exp(!R n »)t = nr«(J (exp(~Rn »))det D n, 

where Dn = D( Gn) (see Theorem 2.1 in Ref. 2). Thus since 
nr{ . ) is a "quadratic" homomorphism we can put 

(J (exp{!R n») in Spino { W) by multiplying it by a square root 
of (detDn). Let An denote a square root of (detDn). 
Choose the sequence An so that it converges to (g) Q 

= ~det D. Then let 

def 

gn = An (J{exp(!R n) )ESpino{ W). 

Since T(gn) = Gn converges to Gin SOQ{ W) and (gn)Q 
= An converges to (g) Q #0 it follows from Proposition 3.5 

in Ref. 2 that gn converges to g in SpinQ{ W). Note that 
An(J(exp{!Rn») gives a "formula" for gn that depends only 
on the induced rotation for g n and a choice of square root for 
det Dn. 

We are now prepared to state the principal result of this 
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section. As in the proof of Theorem 3.0 it is convenient to 
A A 

unburden the notation writing r, F, and N for r Q' FQ , and 
NQ • 

Th~orem 3.3: Suppose RERQ ( W) and R is rank K < 00. 

Let gESpinQ (W) with (g) Q =1= 0 and suppose I - R ' Q _ is 
invertible where R' = R + R(g). Then 

roo(exp(+R)g) = kto (2
k
k!)-IN(R

k
g). 

Proof We first prove this resul.1. for GESpinQ (W) and 
then show that the general result for SpinQ ( W) follows from 
this special case. Let gESpinQ ( W), and let R n (g) 
= PnR(g)Pn denote a sequence of finite rank approxima­
tions to R(g) as above. Choose An so that gn 
= AnO(exp !Rn (g»)ESpino( W) converges in SpinQ( W) to 

g. Suppose R is a rank K element of RQ ( W), and let R ' = R 
+ R(g). Suppose 1- R 'Q_ is invertible. Let R ~ = R 
+ Rn (g). Then since R ~ converges to R' in RQ( W), and 

hence in uniform norm, it follows that I - R ~ Q _ is invert­
ible for all sufficiently lar~e n. By Definition 3.2 the group 
element o (exp(!R n )gn)ESpinQ( W) has induced rotation 
(I-R~Q_)-I(I+R~Q+) and vaccum expectation 
(gn) Q = An· Since R ~ is finite rank, Theorem 3.1 applies 
and this same element of Go( W) may be written 
AnO(expqR ~ »). Thus 

O(expqR)gn) = AnO(exp(~R ~ »). (3.6) 

But 

o (expqR ~») = O(exp(!)(R + Rn (g))) 

= O(exp(!R)exp(~Rn (g))) 

since Rand Rn (g), regarded as elements of A~ (W), com­
mute with one another. Since R has rank K we choose a basis 
{wj } of W so that 

00 K 

I RWj 1\ wj = I RWj 1\ wj. 
j~ I j~ I 

Thus 

exp(~R)= i: (2kk!)-IR k = ± (2kk!)-IR k. 
2 k~O k~O 

Thus 

o (exp( ~ R )gn) 

=An kto (2kk!)-10(Rkexp(~Rn(g»)). (3.7) 

Suppose now that VjEW, j = 1, ... ,m, and consider 

O( Vrn 1\ ... 1\ VI 1\ exp(!Rn (g))) 

= v;:; O( Vrn _ I 1\ ... 1\ VI 1\ exp(!Rn (g))) 

+ (-l)rn-IO(vrn_II\···l\vll\exp(!Rn(g»))v,;;-, 
(3.8) 

where v;; = Q± Vrn ' and we used (3.5) and the fact that 
expBRn (g») is an even element of the Grassmann algebra. 
This reduction formula is the same as that which de­
fines the normal ordered products (3.1). Thus since 
AnFO(exp(!Rn (g»)) = r Q(gn) it follows that 

AnFO(Vrn 1\ ... 1\ VI 1\ exp(!Rn (g»)) = N(vrn ·· ·vlgn). 
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Hence AnFO(R k exp(!Rn (g»)) = N(R kgn ) and we have 
K 

FO(exp(!R)gn) = I (2kk!)-IN(R kgn )· (3.9) 
k~O 

To obtain the desired result we want to pass to the limit 
n- 00 in (3.9). To do this we regard each side of (3.9) as an 
element of L (!iJ ). Since gn converges to g in SpinQ (W) it 
follows that r Q (gn) converges to r Q (g) strongly on the 
dense domain D (Theorem 3.10 in Ref. 2). It is straightfor­
ward to use this fact and the reduction formula (3.1 ) to show 
that N(R kgn ) converges strongly on !iJ to N(R kg) as 
n - 00. The element 0 (exp(!R)gn)EGo( W) is not necessarily 
in Spino( W) but since TO (exp(!R)gn) converges in 
SOQ (W) as n - 00 and its vacuum expectation (gn) Q con­
verges to a nonzero limit it follows from Proposition 3.5 in 
Ref. 2 that 0 (exp(!R )gn) differs from a convergent sequence 
in SOQ (W) by a scalar that also converges. It follows from 
Theorem 3.10 inARef. 2 that FO(exp(!R)gn) converges 
strongly on!iJ to rO(exp<!R)g) as n- 00. Thus 

£'0 (exp( ~ R )g) = kto (2
k
k!) -IN(R kg). 

A 

We wish to extend this from gESpinQ ( W) to g' ESpinQ ( W). 
Suppose then A that g' = gX a (ker ) ESpinQ ( W) 
XaGL( W +)/ker = SpinQ( W) and that (g')Q = (g)Q =1=0. 
Let 

T(g) = [~ ;] 

so that 

T'(g) = [Ae B] [a 0] 
D 0 a- r • 

One easily calculates 

BD -I ] 

I-D-I 

and 

1 ~ ar] . 

(3.10) 

Ihe element o (expqR)g') is the unique element of 
SpinQ ( W) with R matrix R + R (g') and vacuum expecta­
tion (g') Q = (g) Q. Let e denote the ident!.ty in SpinQ ( W) 
and write eXa for the element eXa(ker)ESpinQ( W). Let 

Ra = [~ ~] - rR [~ ~r I 
Note that Ra ERQ (W) and Ra is finite rank. Consider the 
element 0 (exp(~Ra )g). (eXa)ESpinQ (W). A simple calcu­
lation using (3.10) shows that the R matrix of this element is 

[~~r(Ra+R(g»)[~ ~]+[a~1 l~ar] 
=R + R(g') 

and since r ( e X a) 1 = 1 the vacuum expectation is 
(0 (expqRa )g)Q = (g)Q. Thus 
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e(expqR)g') = e(exp(~Ra)g)·(eXa). (3.11) 

Ifwe apply the homomorphism r to both sides of (3.11 ) 
then 

re(exp(~R)g') = re(exp(~Ra )g)r(eXa). 

But we know that 

re(exp(+Ra)g) = kto (2kk!)-'N(R~g). 
Thus we will have the result we desire if we can show that 

N(R ~g)r(exa) = N(R kgxa ) = N(R kg'). 

To see this, first consider what happens when r(exa) is 
moved inside a normal ordered product N( Vn ••• V ,g). Using 
the reduction formula (3.1) one finds 

N(vn •• ·v,g)r(exa) = N(v~·· ·vigxa), 

where 

v; = [~ ~T] Vj 

(3.12) 

(remember T(eXa) = [~ a()T ]). Recall that, thought of as 
an element of A~ (W), we have 

K 

R = L RWj I\wj. 
j= , 

The basis 
def [a 0] 

wj(a) = 0 1 Wj 

is then the right sort of basis to use in calculating 
Ra EA~ ( W). The basis 

w.(a)*= [a O]-T W~= [1 0] 
J 0 1 J 0 a-T wj 

is dual to Wj (a). Thus 
K 

Ra = L R a wj (a)l\wj (a)* 
j=' 

=jt,[~ a~T]RWjl\[~ a~T]Wj. 
Comparing this with (3.12) one sees that N(R ~g)r(exa) 
= N (R \g X a») and we have finished the proof of Theorem 
3.3. Q.E.D. 

There is a slightly more symmetrical rephrasing of 
Theorem 3.3 that is useful. 

Corollary 3. 4: Suppose gj ESpinQ ( W) and (gj) Q =1= 0, for 
j = 1,2. Suppose T(g2) - T(g,) is finite rank and define 
t1R = R (g2) - R (g,). Then t1R is finite rank and one has 

r(g2) = (g2)Q ± (2kk!)-'N(t1R)kg ,), 
(g')Q k=0 

where K = rank t1R. 
Proof It is straightforward to show that T(g2) - T(g,) 

is finite rank if and only if R(g2) - R(g,) is finite rank [giv­
en that D(gj ),j = 1,2, is invertible]. The rest is just a trans­
lation of Theorem 3.3. 

IV. A GENERALIZED WICK THEOREM 

In this section we prove a generalization of Wick's 
theorem. The proof is based on an idea in Sato, Miwa, and 
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Jimbo' and requires the introduction of generalized Q func­
tionals on Ctf ° ( W). To a void technical complications we will 
introduce these Q functionals only in the case where W is 
finite dimensional. We will prove Wick's theorem directly in 
!!Ie finite-dimensional case and then extend the result to 
PinQ (W) in much the same way that Theorem 3.3 was 
proved. 

To begin, suppose that W is a finite-dimensional com­
plex vector space with nondegenerate bilinear form (.,.). 
Let Q denote an involution (Q 2 = I) on W that is skew sym­
metric (Q'" = - Q). In Ref. 2 it is shown that each such 
skew symmetric involution gives rise to a Fock representa­
tion F Q of the Clifford algebra on A ( W +) [where W ± 

= Q ± Wand Q ± = (/ ± Q)/2]. We have, for XEW, 

FQ(x) = c(x+) + cT(x_), 

x=x++x_, X±EW±, 

where c(x ± ) = x ± 1\. are creation operators on A (W ± ) 

and cT(x_) is the transpose of c(x_), with A (W + ) identi­
fied as the dual of A ( W _) via the bilinear form (.,.). The 
anticommutator 

c(x)cT(y) + cT(y)c(x) = (x,y), XEW+, yEW_. (4.1) 

More details can be found in Ref. 2, Sec. 2. 
The vacuum vectors lEA ( W +) and 1 *EA ( W _) 

"",A ( W + ) * give rise to a linear functional (.) Q on C(J ( W) 
defined by 

(X)Q = (FQ(X)l,l*), XEC(J(W), 

where (.,.) is the dual pairing between A ( W +) and 
A ( W _ ). We will refer to the linear functional ( . ) Q as the Q­
Fock state on C(J (W). We will now extend this notion by 
removing the condition that Q is an involution. Let WEB W 
denote the vector space direct sum of W with itself with the 
nondegenerate bilinear form 

(x, EBy"x2 EBY2) = (x"x2) - (Y"Yz) 

(note the minus sign here!).Let WEB W* denote the vector 
space direct sum of W with itself with the nondegenerate 
pairing 

(x, EBY"xz EBY2) = (x"Yz) + (y"xz)· 

Evidently this pairing identifies the second component with 
the dual of the first and this is the reason for the notation 
WEB W*. Now let Q be any skew symmetric map on Wand 
write Q ± = (/ ± Q) /2 (note that the maps Q ± are not, in 
general, projections). The matrix [~_ _ ~ + ] defines an or­
thogonal map from WEB W to WEB W* and hence extends to 
an algebra homomorphism from C(J ( WEB W) to 
C(J (WEB W*) which we denote by o(Q). The natural inclu­
sion W 3 W -+ W EB OE W EB W extends to an algebra homo­
morphism from C(J (W) into C(J ( WEB W). We will use this 
homomorphism to identify C(J (W) with a subalgebra of 
C(J ( WEB W) without introducing special notation. The map 
Qo = [~ _0/] on WEB W* is a skew-symmetric involution. 
Let (·)0 denote the Qo-Fock state on Ctf (W EB W*). We de­
fine the Q functional ( . ) Q on C(J ( W) by 

def 

(X)Q = (O(Q)X)o, XECtf(W)~Ctf(WEB W). (4.2) 

John Palmer 1290 



                                                                                                                                    

For this notation to be consistent we must check that 
when Q is an involution this reproduces the Fock state on 
~ ( W). It is enough to check this for X = WI' .. w" a mono­
mial. It is well known (and easy to prove) that 

(wI"'w,,)Q=PfA, (4.3) 

where A is the skew symmetric matrix with ij entry (i < j) 
given by (Q_wi,wj ). The Pfaffian of A, Pf A, is defined in­
ductively for an n X n skew symmetric matrix A = (aij) as 
follows: 

Pf[O] = 0, Pf[ ~ a ~] = a, 

n 

Pf A = L (- 1)k + la lk Pf(A)lxk' 
k=2 

where (A)IXk is the (n - 2) X (n - 2) skewsymmetricma­
trix obtained from A by deleting the columns 1 and k and the 
rows I and k. It is known that [Pf(A) f = det A. 

If we apply (4.3) to (o(Q)wl " ·wn)o then we find that 
this vacuum expectation is the Pfaffian of the skew symmet­
ric matrix B with ij entry 

(QoO(Q) [~i] ,0(Q) [~]) We W. 

= ([~ ~][Q:~J, [Q:~J) We W· 

= (Q_W;,Wj) (i<j). 

Thus B = A and we have (o(Q)wl " 'Wn)o = (WI" 'Wn )Q' 
where Q is a skew symmetric involution and on the right 
(')Q is the Q-Fock state on ~ (W). It is convenient for a 
later application to observe that the calculation we just did 
shows that (4.3) remains valid for general Q functionals 
with the skew symmetric matrix A that has entries 

aij = (Q_w;,Wj) = (wiwj)Q' for i<j. 

There is a Grassmann calculus for C(! (W) associated 
with these generalized Q functionals. la In general, however, 
the subspace W ± = Q ± W need not be isotropic (think of 
Q = 0) and so the "normal ordering" prescription we gave 
for {} earlier does not apply. It is in fact simpler to give a 
formula for the inverse of{} (which is denoted Nrin Ref. la). 
Suppose XEC(! (W) and Q is a skew-symmetric map on W. 
Define NrQ (X)EA( W) by 

NrQ(X) = Fo(o(Q)X)lo, (4.4) 

where Fo is the Qo-Fock representation and 10EA ( W) is the 
Qo-Fock vacuum vector. It is not hard to show that NrQ is 
surjective. Since ~ (W) and A (W) both have dimension 
2dim Wit follows that NrQ is bijective. Thus we may define {}Q 

= (NrQ)-I. Again, in order to see that this is consistent 
with previous usage we must check that it reproduces the 
normal ordering prescription for {} Q when Q is an involution. 
We will demonstrate this inductively. Suppose Q is a skew 
symmetric involution. Let {} denote the normal ordering 
map (3.5) and NrQ the map (4.4). We wish to show that 
(}(NrQ(w l " ·w,,») = WI" ·Wn , where WjEW This is trivially 
true when n = I and for the sake of an induction we suppose 
that it is true for products of length less than or equal to 
(n - 1). By (4.4) we have 
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NrQ(wl'''wn ) =(C(W1) +CT(wI-»)NrQ(w2'''Wn), 

where w I- = Q_WI' If we move the annihilation operator 
cT (w l- ) pastthe factors c(wj ) + cT(Wj-) in NrQ (w2' "w,,) 

until it hits the vacuum CT(WI-) 10 = 0 and make use ofthe 
anticommutators (4.1) then we find 

CT(WI- )NrQ(w2" ·wn ) 

= ± (_1)k(Wl-,wk)NrQ(w2"'Wk'''Wn), 
k=2 

A 

where the over Wk means that Wk is absent from the prod-
uct. It is clear from (4.4) that N r Q ( W2 •.• W n ) is the sum of 
elements in the Grassmann algebra with the same parity as 
(n -1). Thus 

c(wl- )NrQ(w2" ·wn ) = w 1- I\NrQ(w2" ·wn ) 

= ( - 1),,-1 NrQ(w2" ·w,,) 1\ WI- . 

Thus we find 

NrQ(wl"'wn ) 

= w 1+ 1\ NrQ (w2" ·wn ) 

+ (_1)n-1 NrQ(w2'''wn ) 1\ WI-

+ ± (-I)k(wI-,wk)NrQ(w2'''wk'''wn)' 
k=2 

If we apply {} to both sides of this equation and make use of 
(3.5) and the inductive hypothesis then we find 

(}NrQ(wl"'wn ) 

= w1+ w2" 'wn + ( - l)n-I W2 " ·wnwI-

n 

+ L (-I)k(w1-,wk)(w2'''wk''' wn)' 
k=2 

Making use of the Clifford relations one finds 

( - 1)n-IW2 " ·wnw1-

n 

= w1- W2" 'Wn - L (- I )k(WI- ,wk ) 

k=2 

X (w2 " 'Wk" ·wn )· 

Thus 

{}(NrQ(wl,· .. ,wn ») = (wt + w 1- )w2" 'Wn = W1W2" ·Wn· 

This completes the inductive step and shows that {} = N r Q I. 
Suppose Q is map on W with Q T = - Q. Suppose 

GEO( W) such that Q_G + Q+ is invertible. Define 

RQ(G) = (G - /)(Q_G + Q+)-I. 

Then RQ(G)T = - RQ(G) and we may identify RQ(G) 
with an element of A 2( W) as before. The following result 
will be of use to us. 

Theorem 4.0: Suppose geG( W) and (g) Q #0. Let G 
= T(g). Then Q_G + Q+ is invertible and 

g = (g) Q{}Q exp(!RQ (G»). 

Conversely, suppose R: W ...... W is skew symmetric and 
/ - RQ_ is invertible. Then g = (}Q(exp ~RQ (G) )eG( W) 
and 

Proof' This result is a consequence of Theorem 3.1 as the 
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reader can find worked out in the proof of Theorem 2.0 in 
Ref. 3. Q.E.D. 

We next introduce a slight extension of ( 4.4 ) that will be 
used in the proof of the generalized Wick theorem. 

Theorem 4.1: Suppose QT = - Q and that gEG( W) 
with (g)Q#O. Let WjEW (j= 1, ... ,n). Then 

(WI" 'wng)Q = (g)Q Pf(H), 

where H is the n X n skew symmetric matrix with ij entry 
(wiwjg)Q/(g)Q (i< j). 

Proof This is a special case of Theorem 2.1 in Ref. 3 so 
we only sketch the proof. It is convenient to first prove this 
result in the case that Q is an involution. Let G = T(g). Then 
(g) Q # 0 implies Q _ G + Q + is invertible. Since Q _ G + Q + 
is invertible we may factor G = UL, where UESO ( W) is up­
per triangular and LESO( W) is lower triangular with re­
spect to the decomposition W = W + E!) W _ (with W ± 

= Q ± W). There exist elements u,/EG( W) such that T( u) 
= U and T(I) = L (Sec. 2 in Ref. 2) and we may normalize 

U and Iso thatll Q = (g) Q lQ and uTl~ = 1~.1t follows that 
g = ul and hence that 

(wI"'wng)Q = (g)Q(wI"'wnu)Q = (g)Q(w; "'w~)Q' 

where w; = U-Iwj . Thus using (4.3) we find 

(WI" 'wng)Q = (g)Q Pf(H), 

where H is the skew-symmetric matrix with ij entry 

(w;w;)Q = (wiwju)Q = (wiwjg)Q/(g)Q. 

This finishes the proof when Q is an involution. If Q is not an 
involution then (X)Q = (o(Q)X)o expresses the Q func­
tional in terms of the Qo functional. But the map Qo is an 
involution and it is straightforward that the result for Qo 
implies the result for Q. Q.E.D. 

Before we state the principal results of this section we 
introduce some notation. Let M be a positive integer. For 
j = 1, ... ,M, let Ij denote a non-negative integer. For j such 
that Ij > 0 let ujk denote an element of W for 1 <,k::::)j' Let Q 
denote a skew symmetric map on Wand forj = 1, ... ,M letgj 
EG( W) with (gj)Q#O. Forj = 1, ... ,M define hjE~ (W) by 

{
Ujl /\ Uj2 ... /\ ujl/, Nr Q (gj)' iflj > 0 

NrQ(hj) = . 
NrQ(gj)' Iflj = O. 

Let Vi = ujk where i = II + 12 + ... + Ij_1 + k and 
10 = O. The Vi are the vectors ujk recorded as they appear in 
the product h lh2" ·hM. We will say that Vi belongs to thejth 
string of the set of vectors {ua/3} if Vi = ujk for some k. We 
write s(m) = II + 12 + ... + 1m' It might help the reader to 
recognize the familiar form of Wick's theorem as the special 
case of the following result obtained by setting all the group 
elements gj equal to the identity I. 

Theorem 4.2: (Generalized Wick Theorem): Suppose in 
addition to the conditions listed above that (g I' .. gM) Q # O. 
Then 

(hI" 'hM)Q = (gl" 'gM)Q Pf(H), 

where H is the s(M) Xs(M) skew symmetric matrix with ij 
entry (i< j) : 

Hij = (g;' "g~)/(gl"'gM)' 

where Nr(g,,) = Vi /\ Vj /\ Nr(gk) if both Vi and Vj belong to 
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the k th string in {ua/3}' Nr(g,,) = Vi /\ Nr(gk) if Vi is in the 
k th string but Vj is not, Nr(g,,) = Vj /\ Nr(gk) if Vj is in the 
k th string but Vi is not, and finally, Nr(g,,) = Nr(gk) if 
neither Vi nor Vj is in the k th string of {u a /3}' 

Proof For the proof we will construct a representation 
for (h I ... h M) Q that will permit a direct application of 
Theorem 4.1. For eachj with Ij > 0 let »j denote the vector 

space Cll with the standard basis ejl = (1,0, ... ,0), eJ2 

= (0,1,0, ... ,0), and ejl
j 

= (0,0, ... ,0,1). Let 

W= WE!) I E!) »j. 
j: Ij>O 

The space W is a complex vector space with a distinguished 
nondegenerate bilinear form given by the direct sum of the 
bilinear form on W with the standard bilinear forms on »j 
-C lj 
- • A A 

Let Q = Q E!) 0 denote the skew symmetric map on W 
equal to Q on Wand 0 on each »j. Let c denote a positive 
real nUjpber, with Nr = NrQ and Nr = NrQ and define 
gjE~( W) by 

A {exp(c ± ejk /\ Ujk ) /\ Nr(gj)' 
Nr(gj) = k= I 

Nr(gj)' 

iflj > 0 

if Ij = 0, 

where here a~ in what follows we regard Wand »j as 
subspaces of W. Let /; = 2C- I ej k with i = II + ... + Ij _ I 
+ k for i = 1 , ... ,s(M). The representation we are interested 
in for (hl"'hM)Q is 

(hI" 'hM)Q = (fl' "!s(M)gl" 'gM)Q . (4.5) 

In order to proAve this we first establish a formula for gj. 
Write {} = {}Q and {} = {}Q. Then for (Ii> 0), 

(4.6) 

Setting ei = eji , Ui = uji and 1= Ij to unburden the notation 
we have 

exp (c itl ei /\ Ui ) 

Thus to prove (4.6) it suffices to show that for i l < i2 ' •• < i k 

we have 

Ole. /\ .. ·/\e· /\u· /\. ··U· /\Nr(g.») 
'k '. 'I 'k J 

(4.7) 

To calculate 0 one may recast the definition of 0 as follows: 

O(w/\X) = w'O(X) + O(w/\X - Nr(w'O(X»)), 

where WE Wand xEA ( W>. Thus since 

Nr(w'O(X») = [c(w) + cT(w_)]X = w/\X + cT(w_)X 

it follows that 

(4.8) 

where w_ = (Lw. When X is a monomial w l /\·· '/\wm 

= c(w l )·· 'c(wm ) 1 of order m it is clear that cT(w_)X is a 
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sum of monomials of order m - 2 [see (4.1)]. Thus (4.5) 
gives an inductive means for calculating O. If we apply (4.8) 
to the left-hand side of (4.7) with w = ei then the term 
- O(cT(w_)X) vanishes since w_ = (Lei, = ~ei, and 

cT(ei ) anticommutes with c(ei ) (i=l=i l ) and with c(u) 

(UE in. Repeated application of this observation establishes 
~ 4. 7) with () on the ri~ht-hand side replaced by O. However, 
() = () on A ( W) ~ A ( W) and this finishes the proof of ( 4. 6 ) . 

In order to prove (4.5) observe that if we let ei = Eejk 
with i = II + .,. + Ij_1 + k then for i l < .. 'ik and 
jl < ... <jl we have 

<1;, ···J;.eit···ej)Q =ti1ktii,j, ···tii,i.· (4.9) 

It follows that the only term in (4.6) that survives after being 
substituted into (4.5) is 

iJej1j ' . 'ej , () (uj , /\ ... /\ Uj~ /\ Nr(gj»)' 

This and (4.9) prove (4.5) up to a possible sign difference. 
The sign change required to disentangle the factors ej~ ... ej , 
from the factors hk = (){uk, /\ ... /\ Ukl, /\ Nr(gk») is 

11/2 + (/1 + 12)/3 + ... + (/1 + ... + IM_I )IM = I I;lF 
i<j 

However, the groups of factors ejlJ /\ ... /\ ej , appears from 
left to right in increasing order with j. To put them in de­
creasing order requires 

(11+ ... + IM_I )IM + (/1 + .. , + IM_ 2 )IM_I 

+ ... + 11/2 = I I;lj 
i<j 

sign interchanges. These sign changes cancel out and ( 4. 5) is 
proved. 

Now we wish to show that Theorem 4.1 applies to the 
evaluation of the right-hand side of (4.5). We need to know 
thatgl " 'gMEG( ih and that (gl" 'gM)Q =1=0. We will show 
that both these conditions are ~atisfied for E sufficiently 
small. To show that gl" 'gMEG( W) it suffices to prove that 

A 

gjEG( W), for j = 1, ... ,M. But Nr(gj) is ,ia multiple of) the 
exponential of a quadratic element in A ( W). Theorem (4.0) 
implies that gjEG( ih provided the associated skew sym­
metric map R (gj ): W -> W determines an invertible map 
I - R (gj ) Q _. However R (gj) differs by order E from a map 

R(gj) for which I - R (gj )Q_ is invertible. TllUS by choos­
ing E small enough we may insure that gjEG( W). The vacu­
um expectation (gl"'gM)Q is polynomial in E. It is clear 
that 

lim (gl"'gM)Q = (gl"'gM)Q = (gl···gM)Q=I=O. 
E-O+ 

Thus by choosing E small enough we have (g I' .. gM ) Q =1= 0 
and it follows Theorem 4.1 applies to the evaluation of the 
right-hand side of (4.5), 

(h"'!s(MlgI"'gM)Q = (gl"'gM)Q Pf(H), (4.10) 

where H is the sCM) Xs(M) skew symmetric matrix with ij 
entry (i< j): 

Hy = (fJjgl"'gM)Q/(gl"'gM)Q' 

But (4.5) applies to the numerator of H ij' Thus 

(/;Jjgl"'gM)Q = (g; "'gM)Q' (4.11 ) 
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Because of (4.5) the left-hand side of (4.10) does not depend 
on E. Thus we may put E = 0 on the right-hand side and since 
(gl"'gm)QI€=o = (gl'''gM)Q the theorem follows from 
(4.10) and (4.11). Q.E.D. 

Theorem 4.2 has an immediate generalization to infinite 
dimensions. We tum now to this result. In the rest of this 
section W will denote a complex Hilbert space with a distin­
guished conjugation P. We will suppose that Q: W -> W is an 
involution with Q * = Q and QT = - Q as in Sec. I. We reit­
erate the notational conventions of Theorem 4.2. 

LetMbea positive integer. Forj = 1, ... ,M letlj denote a 
non-negative integer. For j such that Ij > 0 and k such that 
I ~k<lj let ujk denote an element of W. Forj = 1, ... ,M letgj 

ESpinQ (W) with (gj) Q =1=0. Forj = 1, ... ,M define hjEL(g;) 
by 

A 

where N = N Q and r = r Q' 
Let Vi=Ujk' where i=/I+"'+/j_1 +k, and as 

above we will say that Vi is in thejth string of{uaP}ifvi = ujk 
for some k. Recall that sCm) = 11 + 12 + ... + 1m , and to 
lighten the notation we write (h I' .. h M ) Q for 
(hi" 'hMIQ,lQ)' 

Theorem 4.3: Suppose in addition to the conditions list­
ed above that (gl" 'gM) Q =1=0. Then 

(hl"'hM)Q = (gl"'gM)Q Pf(H), 

where His the sCM) Xs(M) skew symmetric matrix with ij 
entry (i < j) given by 

Hy = (g;. "gM)Q/(gl" 'gM)Q' 

wheregk = N(vivjgk ) ifboth Vi and Vj are in the k th string, 
gk = N(vigd if Vi is in the kth string but Vj is not, gk 

= N(Vjgk) ifvj is in the k th string but Vi is not, gk = N(gk) 
if neither Vi nor Vj is in the k th string. 

Proof: We first prove this result assuming gjESpinQ ( W). 
As in the proof of Theorem 3.3 we can approximate gj 
ESpinQ ( W) by a sequence gjn ESpinQ ( W) converging to gj in 
SpinQ (W) as n ..... 00. Theorem 3.10 of Ref. 2 implies that 
r Q (gjn) converges strongly on the dense domain g; as 
n ..... 00 to r Q (gj)' Let hjn denote the approximation to hj 
obtained by replacing gj by gjn' Then hjn converges strongly 
to hj on g; as n ..... 00. Now approximate (hi" 'hM)Q by 
(h ln , .. 'hMnM)Q' EachhjnjEFQ{'G' o( W») so that Theorem 4.2 
applies provided that (gIn, . "gMnM) Q =1=0. Strong conver­
gence on g; guarantees that we can make (gin, .. 'gMnM)Q 

=1=0 by choosing nl, ... ,nM sufficiently large since (gl" 'gM) Q 
=1=0. Evaluate (h ln , .. 'hMnM)Q using Theorem 4.2 and then 
in reverse order pass to the limits n M ..... 00, n M _ I ..... 00, and 
finally nl ..... 00, making use of strong convergence on g; to 
evaluate the limits on both sides of the resulting equation. 
This establishes the desired result for gjESpinQ ( W) 
(j= 1, ... ,M). 

Suppose now that gj = g; X aj when g; ESpinQ ( W) and 
ajEGL( W +) A and we write g; X aj for ~e element g; 
xaj (ker) ofSpinQ (W). Use (3.12) to pull r(eXaj ) out of 
we normal ordered products defining hj • Then move each 
r (e X aj ) to the right until it hits the vacuum using 

John Palmer 1293 



                                                                                                                                    

r(exaj)FQ(w)r(exaj)-1 = FQ(aj EIlaj-Tw), 
A A 

r(exaj)r Q(g')r(eXa)-1 = r Q(a(aj)g'), 

and 

r ( e X aj ) 1 = 1. 

What results is a vacuum expectation of a product of normal 
ordered forms with elements gj from SpinQ ( W). Apply the 
result just established for SpinQ ( W) to evaluate this in terms 
of the Pfaffian of a matrix H. In the formulas for the matrix 

A 

elements of the matrix H put the operators r (e X aj ) back 
inside the normal ordered products by reversing the proce­
dure above. In this fashion one finds the theorem is true for 
gjESpinQ ( W). Q.E.D. 

V. DIFFERENCE IDENTITIES FOR THE ISING FIELD 

In this section we derive local difference identities for 
the Ising field using Corollary 3.4. Such identities provide 
the foundation for the SM] analysis of the scaled correla­
tions in the version of this analysis presented in Ref. 4. Here 
we will show that the quadratic identities for the Ising corre­
lations discovered by McCoy and Wu 7 and Perk9 are simple 
consequences of these identities coupled with the general­
ized version of Wick's theorem (Theorem 4.3). 

We review the representation established in Ref. 5 for 
the two-dimensional Ising correlations. The ingredients of 

I 

the description are a Hilbert space W; an isotropic splitting 
of W = W + Ell W _ associated with the indus.,ed rotation T of 
the transfer matrix; and the "spin field" oeSpinQ ( W). 

Let W denote the Hilbert space 12(ZI/2,C2), where 
ZI/2 = Z + ~ and [2(ZI/2,C2) has the inner product 

(f,g) = L f(k)· g(k), 
kEZI/2 

where X'Y=XIYI +X2 Y2' For fEI2(ZI/2,e2) let Pf(k) 

= f(k) denote the conjugation on W that acts by complex 
conjugation on each of the components of f The distin­
guished bilinear form on Wassociated with P is thus 

(f,g) = L f(k) ·g(k). 
kEZI/2 

We often identify W with L 2 (S I ,e2) via the Fourier se-
ries 

f(z) = L z"!(k), zES I. 
keZ II 2 

The multivalued functions Zk = ek 
log z, where log z = i() and 

O..;() < 21T. The branch cut is located at z = 1. 
Define the induced rotation T for the transfer matrix as 

the matrix multiplication operator on L 2(S l,e2) given by 

Tf(z) = T(z)f(z), 

where 

sin () - i(s l c2 - C I cos ()] 
CIC2 - SI cos () , 

(5.1 ) 

and Z= ei8
, cj = cosh(2Kj ), Sj = sinh(2Kj ), j= 1,2. The 

constants Kj are the interaction strengths for the horizontal 
(KI) and vertical (K2 ) bonds in the two-dimensional Ising 
model. The map Ton W is complex orthogonal on Wand 
when the constants KI and K2 are real Tis self-adjoint with 
respect to the Hermitian inner product on W. We will sup­
pose from now on that KI and K2 are real and positive. De­
fine y(z) > 0 and a(z)ES I by 

cosh y(z) = S2- I
(C IC2 - SI cos (), 

a(z)sinh y(z) = - S2- I(sin () - i(s l c2 - CI cos ()). 

These functions are of interest to us since 

T(z) = exp - y(z) [ 0_ 1 a(z) 
a(z)] 
o . 

L Q d h . I' I' . [ 0 a(z) 1 et enote t e matnx mu Ip lcatlOn operator a(z) ~ , 0 

on L 2(S J,e2). Then Q2 = I, Q* = Q, and QT = - Q. Let 
Q ± = (l ± Q)/2. The subspaces W ± = Q ± W give an 
isotropic splitting of W = W + Ell W _. The subspace W + is 
the spectral subspace for T associated with the interval 
[0,1] . 

sf(k) = - E(k)f(k), kEZ1/2, 

where 

{
I, k>O, 

E(k) = _ 1, k<O. 
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Let u denote the element in SpinQ (W) with the induced 
rotation T(u) = S and such that u 2 = l. Such an element 
exists if SIS2# 1 (SIS2 = 1) is the critical point for the Ising 
field. The conditions T( u) = S and ~ = I determine u up to 
an ambiguity in sign. The condition SIS2 > 1 corresponds to 
the Ising model below the critical temperature. In this case 
we normalize u so that (u) Q > O. Now suppose aEZ2 and let 
v(a) = ~ITa" where z = multiplication by z = ei8 on 
L2(SI,e2)=w. Writev+(a) for the restriction ofv(a) to 
W + [note that v + (a) is multiplication by ~Ie - a,r(z) on 

W +]. Then v+ (a)EGL( W+) ~SpinQ( W) and we define 

u(a) = v+(a)uv+(a)-IESpinQ(W) (SIS2#1) 

[note that T(v+(a») = v(a)]. In Ref. 5 it is proved that the 
+ state infinite volume correlations at sites ai' a2" 'an EZ2 

for the two-dimensional Ising model below the critical tem­
perature is given by (..7 u(a l )" 'u(an » Q' where the "time 
ordering"..7 arranges the factors u(ai ) in order ofincreas­
ing second coordinates from left to right. The fields u( a) and 
u( b) commute when a and b have coincident second coordi­
nates so there is no ambiguity in this circumstance. 

The result we are interested in is a formula expressing 
u(a + u) in terms of u(a) where u = ± el , ± e2, and 
e l = [b], e2 = [n· We will first consider the case T < Tc 
and then use the representation derived in Ref. 5 to obtain 
results for T> Tc. It will suffice to consider the case 
a = (0,0). The general result will follow from an application 
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of the translation operator v(a). Let R = R (u(O») and 
R(u) = R (u(u») where u = ± el , ± e2. Define aR(u) by 
R(u) -R. Then since (u(u»Q = (u)Q#O (T<Tc) and 
since (as we shall see in a moment) aR(u) is finite rank it 
follows that 

U(u) = OQ(exp[~aR(u)]u(O»). (5.2) 

Much of the work in this section will be devoted to calculat­
ing aR (u) regarded as an element of the algebraic Grass­
mann algebraAo( W). 

Let [X,Yl =XY - yx. Then using the fact that v(u) 
commutes with Q ± and the derivation property for 
[ v ( u),-] one finds that 

aR(u) = v(u)(s - I)(Q_s + Q+) -IV(U)-I 

- (s-I)(Q_s+Q+)-' 

= [v(u),(s - I)(Q_s + Q+) -I ]V(U)-I 

= {[v(u),s] (Q_s + Q+)-I 

+ (s - I) [v(u),(Q_s + Q+)-I]}V(U)-I 

= {[v(u),s] - (s - I)(Q_s + Q+)-IQ_ [v(u),s]) 

X (Q_s + Q+)-IV(U)-I 

= (I - (s - I)(Q_s + Q+) -IQ_)[V(U),s] 

X (Q_s + Q+)-IV(U)-I. 

But I-(s-I)(Q_s+Q+)-'Q_=(Q++sQ_)-' so 
that 

aR(u) = (Q+ + sQ_) -I [v(u),s](Q_s + Q+) -IV(U) -I. 
(5.3 ) 

The commutator [v( u) ,s] is finite rank for each choice of u. 
A closer examination of [v(u),s] will suggest a basis for 
calculating aR(u)EAo( W). Let Pk (keZ,/2) denote the or­
thogonal projection in [2(ZI/2,C2) on the two-dimensional 
subspace spanned by 15(' - k)ej (j = 1,2). One calculates 

[z,s] = 2PI/~ = 2zP -1/2' 

[Z-I,s] = - 2P -l/~-I = - 2Z- IPI/2. 
(5.4) 

Since v( ± el ) = z± I this gives two of the desired commu­
tators. From (5.1) and cosO = (z+z-')/2, sinO 
= (z - Z-I )/2i one finds 

T(z) = T+z+ To+ T_Z-', (5.5) 

where 

T_=-(2s2)-I[ .Sl i(C , +1)]. 
- I(C I - 1) Sl 

Using (5.4), (5.5), and T(Z)-' = T(Z-I)T one finds that 

[T(z),s] = 2(T+zP_ 1/2 - T_Z- IPI/2 ), 
(5.6) 

[T(Z)-I,S] = 2(TT_ zp -1/2 - TT+ Z- IPI/2 ). 

Let ej (k) = 15(' - k)ej e[2(ZI/2,C2) denote the standard 
basis for [2. Recalling (5.3) one sees the basis 
v(u)(Q_s+ Q+)-'ej(k) is appropriate to calculate 
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aR(u)EA( W) since it extends a basis for the null space of 
aR (u). We will not use this basis but a modification of it on 
the complement of the null space of aR (u) that takes advan­
tage of the fact that the 2 X 2 matrices T ± are both singular. 
Observe that 

[ 
sinhK ] [sinhK ] . h'K eker(T+), . h I eker(TT_), 

- I cos I I cos K, 

[
cosh K ] [ - cosh K ] 
.. hK' eker(T':r), ., hK I eker(T_). 
I sm I I sm I 

Consulting (5.3) and (5.6) one is lead to introduce the fol­
lowing basis for PI/2 WEBP -1/2W: 

[
sinh K] ( 1 ) u(-,+)=(!iSI)-1 . h'K ®t5 .+- , 

-ICOS I 2 
(5.7) 

u ( + , + ) = (!is I) - I [ ~ s~::hK~ I] ® 15 (. - +) . 
The reason for notation u ( ± , ± ) and the choice of norma­
lization will be apparent only after we have done some 
further calculations. The basis B we use to calculate aR ( u ) 
is the union of 

{v(u)(Q_s + Q+)U(EI,E2) lEI = ±, E2 = ±} 
with 

{v(u) (Q_s + Q+ )ej (k) IkeZl/2,j = 1,2 and k # ±!}. 
We also require the basis B * dual to B with respect to the 
distinguished bilinear form on W. Let 

{U*(EI,E2) lEI = ±, E2 = ±} 
denote the basis of PI/2 WEB P _ 1/2 W dual to 

{U(EI,E2) lEI = ±, E2 = ±} 
with respect to the bilinear form on W. Then 

u*( - -) =V2 [ coshK, ] 15(' J.-) , .. hK ® + , -Ism I 2 

u*( - ) = V2 [COSh K, ] 15 (. J.-) ,+ .. hK ® + , Ism I 2 

u*(+,-)=V2[ s~nhK, ] ®t5(.- 2
1 ), 

-I coshK, 

u*(+,+)=V2[ -.sinhK
,

] ®t5(.- 2
1 ). 

-I coshK, 

(5.8) 

Making use of v( u) T = v( u) - I, Q ~ = Q,+ ,and ST = S we 
find that B * is the union of 

{v(u)(sQ+ + Q_) -IU*(EI,E2) I, EI = ±, E2 = ±} 
with 

{v(u) (sQ+ + Q_) -Iej (k) IkeZI/2' j = 1,2 and k # ± ~}. 
Using (5.3)-(5.5) one finds 

aR(u) = L (Q+ +SQ_)-I[V(U),S]U(E\,E2) 
£1 = ±.E2= ± 
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where the basis U(EI.E2) has been chosen so that only two 
terms of the sum defining 6.R (u) survive in each case 
(u = ± el • ± e2 ). Without difficulty one may verify that 

and 

T+zu( -. -) = (2s2)-IU*( +. + ). 
T +zu ( - • + ) = O. 

T_z-Iu( +. -) = - (2s2)-IU*( -. +). 
T_z-I(+.+)=O. 

TT_ zu( -. - ) = O. 

TT_ zu( -. +) = - (2s2)-IU*( +. - ). 
TT+ Z-IU( + . - ) = O. 

TT+ Z-IU( +. +) = - (2s2)-IU*( _. _). 

Making use of these identities and 

(Q_ +SQ+)-IU*(EI.E2) 

= (sQ_ + Q+)-ISU*(EI>E2) 

= - EI(SQ_ + Q+)-IU*(EI.E2) 

one finds 

6.R(e,) = SI-I(W( +. - ) II.zw( -. + ) 
- w( +. + ) II.zw( -. - »). 

6.R( - el ) = SI-I(W( -. + ) II.z-IW( +. - ) 
- w( -. - ) II.z-IW( +. + »). 

6.R(e2) = S2- I(W( +. + ) II. T(z)w( -. - ) 

- w( -. + ) II. T(z)w( +. - »). 

(5.9) 

6.R( - e2) =S2- I(W( -. - ) II. T(Z)-IW( +. + ) 
- w( + . - ) II. T(z) -IW ( - • + »). 

where 
def 

W(EI.E2) = (Q+ + sQ_ )-IU*(EI>E2). 

We will now calculate the vectors W(EI.E2) in coordi­
nates that are natural for the transfer matrix. This calcula­
tion will simplify (5.9) and will also show that the vectors 
W(EI.E2) "cry out" to be located on the half-integer lattice 
ZI/2XZI/2' We begin by using the Weiner-Hopfmethod to 
calculate (Q+ + sQ_) -I. Let E ± = (1 ± E)/2 so that 
s= L - E+. Then (Q+ +sQ_) = (L + LQ). 

Now suppose that Q(z) = A_ (z)A+ (z). where A_ (z) 
has an analytic (invertible) continuation into the exterior of 
the circle Izl = 1 and A + (z) has an analytic (invertible) 
continuation into the interior of the circle. Standard 
Weiner-Hopf arguments show that 

For T < Tc the matrix 

[ 
0 a(z)] 

Q(z) = a(z)-I 0 

does have a Weiner-Hopf factorization as we now demon­
strate. Going back to the definition of a(z) one finds 
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a(z)2 = a(z) = sin 0 - i(SIC2 - CI cos 0) 
a(z) sin 0 + i(SIC2 - CI cos 0) 

1 - a 2z- 1 1 - alz 

l-a l z- I l-a2z' 

- 2K* 2K 2K* 2K where a l = e 'e-' and a 2 = e 'e- '. Here the 
"dual" interaction strengths K! are defined by 
sinh 2K! sinh 2Kj = 1. 

The condition T < Tc is equivalent to a l <a2 < 1. We 
define 

tP_(z) = (1 - a 2z=:)II2. tP+(z) = i (I - a lz)1I2 • 
1- alz 1- a 2z 

where the square roots are normalized so that they are posi­
tive for z = - 1. It is clear then that a(z) = tP_(z)tP+(z). 
where tP _ (z) has an analytic continuation into the exterior 
of Izl = 1 and tP+ (z) has an analytic continuation into the 
interior of Izl = 1. We define 

A (Z)=(tP-(Z) 0) 
- 0 tP_(Z)-I' 

A+(z) = (tP+(~)-1 tP+~Z»). 
so that Q(z) =A_(z)A+(z). We now calculate 
(Q+ +sQ_)-lej ( ±!) using (5.10). Since E+A+ejq) 

= A+ej(p we have 

(I+A :;:IE+(A =I-A+»)ejq) 

= A+E+A_ (z) -Iejq) 

= A + (z)A _ ( 00 ) -Iej q) 
=A+(z)ejq). 

Since 

E+(A+ej ( - ~») = A+ej ( -!) - A+ (O)ej ( - p 
we have 

(I+A :;:IE+(A =I-A+»)ej (-!) 

= ej ( -!) -A :;: IE+A+ej ( - p 
= A :;: l(z)A+ (O)ej ( - p. 

Thus 

(Q+ +SQ_)-Iel <!) = [tP:;:I~Z)~]' 
(Q+ +SQ_)-le2 (!) = [tP+~)~]. 

(Q+ +SQ_)-le2 ( -p = LtP:;:I(:)~-I]' 
Recall that the square root ~ is calculated with O<arg z 
<21T. With this choice note that (z-I)1/2 = _ (zI/2)-I. 
Next we calculate the vectors in (5.11) in a spectral repre­
sentation for T(z). A more complete rationale for the trans­
formation to this representation is given in Ref. 11. Let M(z) 
= (a (z)sinh y(z) )1/2 where the square root is normalized so 

that M( - 1) = [(1 + i)/~] X (positive number). Since 
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a(z)sinh r(z) does not wind around 0 for T < Tc a unique 
continuous square root is picked out by this normalization. 
Now define 

f+(z) = [(1 + i)/2](M(z)h(z) +M(z).t;(z»), 

f_(z) = [(1-i)/2](M(z-I)11(z-l) -M(Z-I)];(Z-I»). 
(5.12) 

Then 

i - dz 
fez) . g(z) -. 

s' 2mz 

= f+ (z) g+ (z)(sinh r(z»)-l_-. i - dz 
s' 2mz 

+ f_(z)g_(z)(sinh r(z»)-I_. , i - dz 
S' 2ffU 

and the map 

[ 
h(Z)] __ [ f+(z)] 
.t;(z) f_(z) 

is a spectral representation for T(z) in the sense that T(z) is 
given by the diagonal matrix mUltiplication operator 
[ g - r(z) ~r(z) ] in the [ ~~ ] coordinates. 

It is straightforward to calculate the [ ~~ ] coordinates 
for (Q+ +sQ_)-lej ( ±!) from (5.11) and (5.12). One 
finds 

(Q++sQ_)-lel(~)= l+i [F(Z).[z] , 
2 ..Ji iF(z).[z 

(Q+ +sQ_)-le2 (~) = 1 + i [G(Z).[z] , 
2 ..Ji iG(z).[z 

(Q+ + sQ_)-lel (_1-) = 1 + i [- iG(Z).[z-I] , 
2 ..Ji - G(Z).[z-1 

where F(z) = [~_(z)sinhr(z)/~+(z)p/2 is the contin­
uous square root normalized so that F( - 1) 

= [(1 - i)1..Ji] X (positive number), and G(z) 
= [~+ (z)sinh r(z)/~_ (z) p/2 is the continuous square 

root normalized so that G( - 1) = [( 1 + i)l..Jil X (posi­
tive number). We also used the fact that 

i[;:] = [!;jJ. 
We can simplify F(z) and G(z) by making the following 

observations: 

sinh2( r12) = (cos r - 1 )/2 

= (sI/4sP2) (l - a2z- l ) (l - a~), 

cosh2(r/2) = (cosh r - 1)/2 

= (sI/4s2a l )(1- a lz- I )(1- alz) 

[since cosh r = S2-
I
(CIC2 - Sl cosh (J)] from which it fol­

lows that 
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~ _ (z)sinh r(z) _ a(z)sinh r(z) 

~+ (z) - ~+ (Z)2 

= - 2i ~ sinh2(rI2), "a l 

~+ (z)sinh r(z) _ a(z)sinh r(z) 

Thus 

~_(z) - ~_(Z)2 

= 2i g cosh2(rI2). 

" a2 

F(z) = (l_i)eKT sinh(rI2) , 

G(z) = (1 + i)e- KT cosh (rI2) , 

so that 

(Q+ + sQ_)-lel (~) = ..JieKT [sinh(r(Z)/2).[z] , 
2 sinh(r(z)/2WZ 

(Q+ + sQ_ )-le2 (~) = ..Jie-KT[i COSh(r(Z)/2).[z] , 
2 i cosh(r(z)/2).[z 

(Q++sQ_)-lel (_ ~) 

=..Jie - KT [ cosh(r(z)/2)~-1 ], 
- cosh(r(z)/2).[z-1 

(Q+ +SQ_)-le2 ( - ~) 

= ..JieKT [ isinh(r(z)/2).[z-1 ], 

- isinh(r(z)/2WZ- 1 

(5.13) 

where the terms on the right are the [~~ ] coordinates of the 
vectors on the left. Finally we may use (5.13) to calculate the 
[ f +, f _] representation for the vectors 

W(E I,E2) = (Q+ +SQ_)-IU*(EI,E2)· 

One finds 

[ 
ey(z)/2.[z -I ] 

w( -, - ) =.Js; _ e- Y(Z)/2.[z-1 ' 

[ 
e- Y(Z)12.[z-1 ] 

w( -, + ) =.Js; _ eY(Z)12.[z-1 ' 

[ 
eY(Z)12~ ] 

w( + , - ) = .Js; _ e - Y(Z)/2.[z , 

[ 
e - Y(Z)12.[z ] 

w( + , + ) = .Js; . _ eY(Z)/2.[z 

(5.14 ) 

Since T(z) is multiplication by [e~r(z) )z)] and z is multipli­

cation by [~ n in the spectral representation (5.12) it fol­
lows from (5.14) that T(Z)W(E, - ) = WeE, +) and 
zw( - ,E) = w( + ,E). Making use ofthese results in (5.8) 
we find 

aR(e l ) = 151-
l w( +, -) I\.w( +, + ), 

aRC - ell = 151-
I
W( -, + ) I\. w( -, - ), 

aR(e2 ) = 152- lW( +, + ) I\. w( -, + ), 
aRC - e2 ) = 15;-lw( -, - ) I\. W( +, - ). 

John Palmer 
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We have established the following theorem. 
Theorem 5.1: Let u = ± el , ± e2• Then 

O'(u) = OQ exp[!AR(u) ]0'(0), (5.16 ) 

where AR(u) is given by (5.15) and the vectors W(EI,E2) 
have spectral representations given by (5.14). 

Remark: Since zw( - ,E) = w( + ,E) and 
T(Z)W(E, - ) = W(E, + ) it is quite natural to "locate" the 
vector W(EI,E2) at the point (EI Q),E2Q») on the half-integer 
lattice ZI/2 XZI/2. If this is done then (5.15) maybe remem­
bered with the following graphical device: 

W( -1 ' + ) • w( + , + ) 
(0,0) t 

w( - , - ) • w( + , - ) 
(1,0). 

To get from (0,0) to (1,0) one crosses the directed bond 
joining w( + , - ) to w( + , + ) in the picture. The factor 
w( + , - ) /\ w( + , + ) with weight sT is just what is need­
ed to obtain O'(e l ) from 0'(0) via (5.16). The other cases are 
precisely analogous. 

The vectors W(EI,E2) have another significance that we 
now describe. It is easy to check that 

w( -, + ) = /i(Q+ + sQ_) -I(cosh Kle l ( -!) 
+ i sinh K l e2 ( - !») 

so that 

N(w( -, + )0') = /i[cosh KIF(e l ( -!)) 

+ isinh K IF(e2 ( - !»)]r(O'). (5.17) 

In Ref. 5 the operator on the right-hand side of (5.17) was 
denoted by p, -I /2' Here it is more appropriate to write 
p,( - !,!) for this operator. Let V(m) = r(v+ (m») and de­
fine 

p,(kl ,k2) = V(k l + !,k2 - !)p,( - !,!) V(k l + !,k2 -!)-I, 
( 5.18) 

for (k l ,k2)EZi/2' The significance of the disorder variables 
p,(k l ,k2) was established in Ref. 5. Suppose one has interac­
tion strengths K j (j = 1,2) given for T < Tc (sinh 2KI 

X sinh 2K2 > 1). The dual interaction strengths K j then de­
fine a model with T> Tc (recall sinh 2Kj sinh 2Kj = 1). 
Let 7xo (kl, ... ,kn ) denote the infinite volume correlations 
for the Ising model with interaction strengths K r, K r at 
sites kjEZi/2 on the half-integer lattice. Then it is proved in 
Ref. 5 (Sec. 3) that 

( 5.19) 

where the time ordering Y puts the operators p, (kj ) in order 
of increasing second coordinates from left to right. The oper­
ators,u(k) and,u(/) commute when the second coordinates 
of k and I agree so the time ordering prescription does not 
lead to ambiguity in (5.19). The notation Q(K) means that 
the vacuum expectation on the right of (5.19) should be 
calculated at interaction strengthsKI andK2 (below Tc ).We 
may summarize (5.19) by saying that the correlations above 
the critical temperature are given by vacuum expectations of 
disorder variables below the critical temperature with inter­
action strengths related by the duality 
sinh 2Kj sinh 2K j = 1. 
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We are almost ready to derive the McCoy, Wu, and Perk 
difference equations. Before we do this we will show that all 
the W(EI,E2) occur on an equal footing in the sense that 

N(W(EI,E2)0') = ,u(EI/2,E2/2). 

It will be enough to prove this for w ( + , + ), the other cases 
are analogous. We have by definition N(w( -, + )0') 
= P, ( - !,!). Making a similarity transformation of both 

sides by V( e I) one finds 

,u(!,!) = N(w( + , + )O'( 1,0») 

since zw( -, + ) = w( +, + ). But Theorems 3.3 and 5.1 
imply that 

N(O'(1,O») = N((1 + Sl-I W ( +, - )w( +, + )]0'(0»). 

Thus 

N(w( +, + )0'(1,0») 

=N(w( +,+) 
X (1 + s 1- I w( + , - ) w( + , + ) ] 0'( 0) ) 

= N(w( +, + )0'(0») 

since w( +, + )2 = 0 in the Grassmann algebra. 
We are now prepared to use Theorem 5.1 to derive quad­

ratic difference identities for the Ising correlations. It will be 
useful to simplify notational matters by concentrating on the 
two point functions. For aEZ2 define 

7(a) = (Y O'(O)O'(a» Q(K» 

7*(a) = (Yp,(k),u(k+a»Q(K» kEZi/2, 

where Q(K) is Qevaluated atKI, K2 with sinh 2KI sinh 2K2 

>1. 
Let u = ± e l , ± e2 and define 

Fu (a) = 7(a + u)h(a), F:(a) = 7*(a + u)h*(a). 

We shall derive the MWP difference identities by seek­
ing a relation for Fu (a + u'), where u' = ± el , ± e2• But 

Fu (a + u') = 7(a + u + u')h(a + u') 

= 7(a + u + u')h(a)Fu' (a)-I. 

Thus 

Fu' (a)Fu (a + u') = 7(a + u + u')h(a). 

It is convenient to suppose that the second coordinate of 
a( 17'2 (a») is sufficiently large so that 17'2 (a) >0, 17'2 (a + u) >0, 
17'2 (a + u'»O, and 17'2(a + u + u'»O. Then we have 

7(a + u + u') = (O'(O)O'(a + u + u'» 

= (O'( - u)O'(a + u» 

= «(O'( - u) - O'(O»)(O'(a + u') - O'(a))) 

+ (O'(O)O'(a + u'» 

+ (O'( - u)O'(a» - (O'(O)O'(a», 

from which it follows that 

7(a + u + u') 

7(a) 

=Fu(a) +Fu·(a)-1 

+ «(O'( - u) - O'(O»)(O'(a + u') - O'(a»)). (5.20) 
7(a) 
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The rest of the calculation is the use of Theorem 3.3, 
Theorem 5.1, and the generalized Wick theorem to evaluate 
the last term in (5.20). In order to keep track of the points on 
the half-integer lattice that arise in the application of 
Theorem 5.1 it is useful to introduce complex notation for 
points in Z2 and Zi12 writing (a l ,a2) = al + ia2. We may 
summarize Theorem 5.1 as follows: 
A A 

qo-(a + u») - qo-(a») 

= s(u) -IN(w(a + [(1 - i)12]u)w 

X(a + [(1 + i)/2]u)0-(a», 

where s( ± ej ) = Sj (j = 1,2). Now substitute this in the 
last term in (5.20) and use Theorem 4.3 to get 

«(o-( - u) - o-(O»)(o-(a + u') - o-(a»))Ir(a) = Pf(G), 

where G is a 4 X 4 skew symmetric matrix with entries above 
the diagonal: 

1299 

G = «(o-( - u) - o-(O»)o-(a» = F (a) - 1 
12 1"(a) u' 

G _ (1l([(i-l)/2]u)ll(a+ [(1-i)/2]u') 
13 - r(a) 

= r*(a + (u + u')/2 - i(u + u')/2) 

r(a) 

G - (Ill[ (i - 1 )/2] u)ll(a + [(1 - i)12] u') 
14 - r(a) 

_ r*(a + (u + u')/2 + i(u - u')/2) 

r(a) 

G - (Il( - [(1 + i)12]u)ll(a + [(1 - i)12]u') 
23 - r(a) 

= r*(a + (u + u')/2 + i[ (u - u')/2]) 
r(a) 

G - (Il( - [(1 + i)/2]u)ll(a + [(1 - i)/2]u') 
24- r(a) 

_ r*(a + (u + u')/2 + i[ (u - u')/2]) 

r(a) 

(o-(O)(o-(a + u') - o-(a»)) = Fu. (a) _ l. 
r(a) 
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Since Pf( G) = G12G34 - G13G24 + GI4G23 one finds after 
substitution in (5.20) 

Fu· (a)(Fu (a + u') - Fu (a») 

= - (s(u)s(u'»)-l r (a)-2(r*(a*)r*(a* + iu + iu') 

- r*(a* + iu')r*(a* + iu»), 

where 
def 

a* = a + (u + u')/2 - i[ (u + u')/2]. 

Clearing the denominator r( a) 2 one finds the more symmet­
rical 

r(a)r(a + u + u') - r(a + u')r(a + u) 

= - (s(u)s(u'»)-I(r*(a*)r*(a* + iu + iu') 

- r*(a* + iu')r*(a* + iu»), 

which is a slight variant of the MWP difference identities. 
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A Lie-Poisson isomorphism for Lie algebras 9 and q = fXf is derived in a closed form, where 
9 is complex and simple, and f is the maximal compact subalgebra in g. This isomorphism 
enables one to find a generalized Gell-Mann formula relating unitary irreducible 
representations of the corresponding Lie groups G and Q. The case 9 = sl(n,C), f = su(n) is 
considered in detail. A simple relation between characters is obtained. 

I. INTRODUCTION 

The Gell-Mann formula sets up a correspondence be­
tween unitary representations of two Lie groups that have 
algebraically different structures but are related by their 
physical or geometrical meaning. The typical example is that 
of the de Sitter group and the Poincare group. This corre­
spondence is stated in an infinitesimal form, it represents a 
polynomial dependence between generators of the corre­
sponding Lie algebras. Validity of the "standard" Gell­
Mann formula in the case of a semisimple Lie group was 
investigated by Hermann. I The "standard" Gell-Mann for­
mula means a correspondence of the form Pj = Tj + c 
[fj,.!2),Tj]. Weimar proved2 that the validity in this case is 
restricted to the pseudo-orthogonal algebras only. The only 
attempt to generalize the Gell-Mann formula, to the auth­
or's knowledge, was made by Mukunda3 for the groups 
SL(3,C) and SU(3) <2<su(3). Mackey4 investigated the rela­
tionship between unitary representations of a semisimple Lie 
group G, on one hand, and the semidirect product Q = K<2< T 
of the maximal compact subgroup KeG with the additive 
group T of the vector space To ( G I K), on the other hand. He 
did not take care for the Gell-Mann formula but compared 
the constructions of unitary representations for both groups 
and looked for an analogy, which in some cases is quite strik­
ing. 

The main motivation for considering the Gell-Mann 
formula is the observation that unitary representations of 
semidirect product groups are comparatively simpler in 
their construction than those of semisimple groups. In the 
former case there exists a systematic approach based on a 
general theorem due to Mackey.5 Another meaning of the 
formula arises when one is dealing with the enveloping alge­
bras and fields. 6 

In this paper we exploit the idea suggested by one of the 
authors of Ref. 6 (Havlicek), who insists on comparing 
coadjoint orbits for both groups. This procedure is based on 
the method of orbits and geometric quantization.7

•
8 Suppose 

we are given a symplectomorphism which, moreover, pre­
serves the polarizations on the corresponding orbits. Then 
we can identify in a distinguished way the underlying Hilbert 
spaces and compare both representations. We confine our­
selves to the case where G is a complex simple Lie group, 

a) Permanent address: Department of Mathematics, Faculty of Nuclear 
Science, Czech Technical University, Prague, Czechoslovakia. 

connected and simply connected, Q = K<2<f. In this case we 
are able to describe in a closed form a Poisson isomorphism 
J: q* .... g* defined on an open dense subset. Further, we shall 
show that there exists a generalized Gell-Mann formula; a 
more detailed description for the group G = SL(n,C) is 
postponed to the Appendix. The obtained correspondence 
between unitary representations coincides with that pro­
posed by Mackey. Moreover, there a simple relation between 
characters is found. 

II. NOTATION 

Let G be a complex simple Lie group, connected and 
simply connected, n = dime G, I = rank G, G = KAN (the 
Iwasawa decomposition), M the maximal torus in K, 
H = MA the Cartan subgroup, and B = MAN the Borel sub­
group. Let g,f,a,n,m,1),o be the corresponding Lie algebras, 
B(',,) the complex Killing form in g, (-,.) = Re B(''') 
( ( . , . ) restricted to f is the negative definite real Killing form 
in 0. Let.6._ =.6.+ U.6._ be the set of roots, 8 = ~ ~a>oa, 
{Ha,Ea}aEl!o. the Weyl generators norme~ by [Ea,E_a] 
= -Ha,B(Ea,E_a) = -1. LetX~Xbethecomplex 
conjugatio~.in 9 with respect to f ( 9 = f + if over reals), Ii a 

= - Ha, Ea = E _ a' Let n_ = nand u be the orthogonal 
complement of m in f. 

We identify the dual space g* with 9 by the bilinear form 
(-, . ). Consequently, the coadjoint representation is re­
placed by the adjoint one. Let C + C a be the dominant Weyl 
chamber, m+ = ;C+, 1)+ = a + m+, 'lr the Weyl group 
identified with the normalizer factorized by the centralizer 
of A in K. Let Eh ••• ,EI be the fundamental weights in C+, 
A = lEI + ... + lEI' 

We denote by Q = KCxf the semidirect product, where 
the second term f means the additive group of the underlying 
vector space, the action of K in f coincides with the adjoint 
representation, q = f<2<f. We identify q* with q by the bilinear 
form (XI,YI ), (X2,Y2) ~ (XI,x2) - (YI,Y2). Then 

Ad* (k,Z) (X, Y) = (Ad k(X - [Z, y] ),Ad k( Y») , 

kEK, X, Y,ZEf . 

The images of the above specified embeddings of K into G 
and Q are identified; the same is true for the Lie algebras. 
The identification of m X me q with 1) C 9 by the mapping 
(X, Y) ~ X + iY will also tum out to be useful. 
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III. POISSON STRUCTURES 

In this section we summarize some necessary facts on 
Poisson structures and refer to Weinstein's paper9 where the 
subject is studied in detail. 

Let Pbe a smooth manifold, and { , } designate a Pois­
son structure on P. Let S be the Lie algebra homomorphism 
from Coo (P) into the Lie algebra of vector fields X(P) de­
fined by St"g = {J,g}. Vector fields SI span a smooth involu­
tive distribution D, which is integrable. '0 The integrability of 
D is an immediate consequence of the generalized Frobenius 
theorem due to Sussmann and Stefan": A smooth distribu­
tion D is integrable if and only if it is involutive and the 
dimension of D remains constant on all integral curves of 
vector fields belonging to D. 

Consequently, there exists a foliation with singularities 
on P. Each leaf becomes a symplectic manifold, the symplec­
tic form is defined by lU( S/,Sg) = - {J,g}. Weinstein's 
splitting theorem gives more information. To each point pEP 
there belongs a canonically defined transversal tangent Lie 
algebra. 

AmappingJ:P,,{, },--P2,{, hissaidtobePoisson 
if the pullbackJ*: C 00 (P2 ) --C 00 (P,) is a homomorphism. 
In this case J. (p) maps D, (p) onto D 2(J(p)), J", ( SJ'/) (p) 
= S/(J(P)). We shall need the following criterion and its 

corollary. We denote by lUj the symplectic forms living on 
leaves offoliations on Pj,j = 1,2, and by Vp the subspace of 
D I (p) [ the lU ,-orthogonal complement of the kernel 
ker J", (p), i.e., Vp = ker(J", ID)~]' ThenJis a Poisson map­
ping if and only if J *lU2 1 v = lU II v' 

Corollary: Suppose, moreover, that the derivative 
J", ( p) restricted to the vector space Dp is injective. Then the 
Poisson mapping J induces a local symplectomorphism at 
the point p ofleaves passing through the points p and J( p). 

Let 9 be any Lie algebra. The Lie-Poisson structure is 
defined on g* by {J,g}(F) = (F, [dfF,dgF p. We identify 
g""" with g. Leaves in g* are exactly the coadjoint orbits with 
their standard symplectic structure. Let P be another Pois­
son manifold, J: P -- g* a smooth mapping, A x = J * X for 
XEg""" = g. Then J is a Poisson mapping if and only if A: 
9 -- C 00 (P) is a homomorphism. Then J is called a momen­
tum mapping. The Poisson action A determines an action of 
9 on Pby the homomorphism 'T/: g .... x(P), 'T/x = S).(X)· 

Remark about polarization: Let (S,lU,Y) be a polarized 
symplectic manifold and we suppose the polarization Y to 
be accessible. For open subsets UCS we put (kEN) 

Af (U) = {fEC 00 (U); sf = 0 on U if S belongs to Y}, 

A (k)( U) = {fEC 00 ( U); {g),{g2, ... ,{gk+ I ,f} ... } = 0, 

for all vcu open, gjEAf (V)}. 

All these spaces can be considered over complex numbers as 
well as over reals. It holds that A (1) is a subsheaf of the sheaf 
of Poisson-Lie algebras on S and a real smooth function 
defined on Ubelongs to A (1) ( U) if and only if the flow of the 
vector field SI preserves the polarization. )2 

Let us consider, in addition, a symplectomorphism J: 
S .... g* of S onto a co-orbit L = J(S) in g*. The polarization is 
mapped onto a polarization J", (Y) on L. The polarization 
J", (.'7) will be invariant with respect to the coadjoint action 
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(supposing G to be connected) if and only if it is invariant 
with respect to flows of vector fields 77x, 77x (F) = ad* X(F), 
XEg. This is equivalent to the requirement Ax = J*XEA (I), 

i.e., values of the homomorphism A belong to the subalgebra 
A (I), A: g .... A (1). 

Summary: In the case of interest, i.e., for our Lie alge­
bras g, q, we are given the following problem. Let (fl,Y) be 
a polarized coadjoint orbit in q*. We look for a homomor­
phismA: g-+A (1) = A w(fl,R) such that the differentialJ", of 
the corresponding momentum mapping is injective. Then J 
induces a local symplectomorphism between orbits in q* and 
g* that, moreover, maps the Q-invariant polarization onto a 
G-invariant polarization. Global aspects must be solved in 
the concrete case. 

IV. THE POISSON ISOMORPHISM 

Coadjoint orbits in g"'=g: We consider only orbits of 
maximal dimension containing regular elements. Any such 
orbit intersects g exactly in I JP"I points. Let FI = (l/21Ti) 
X (v + ia), V,OEa. The orbit flF, satisfies the integrality 
condition if and only if veA. The orbits fl F, with vea, OEC + 

fill up an open dense subset go C 9 and are parametrized in a 
unique way by the set aX C+. On flF, there exist I rrl real 
invariant polarizations and they are in one-to-one corre­
spondence with Borel subalgebras containing g. All these 
polarizations lead to equivalent representations. In what fol­
lows we fix the subalgebra b. Let & = K / M,o = ME& be the 
origin. There exists a projection PI: flF, .... &: g'F,~k'o, 
whereg = kan is the Iwasawa decomposition. The polariza­
tion satisfies the Pukanszky condition 18 since the mapping 
N .... n: n~Ad n (FI ) - FI is a diffeomorphism. 13 Conse­
quently, the fiber of the projection Plover the origin is 
FI+n. 

Denote by X I: B .... T I: man~m va iu the character of the 
Borel subgroup, veA, OEC+. Here we denote by mV 
= exp(B( v,X)), m = exp X, XEm, and aiu = exp(BCia, Y)), 

a = exp Y, YEa, the characters of MandA, respectively. The 
unitary representation corresponding to the orbit flF is 
Yvu = Ind~ XI' The representations Y vu , l'EA, OEC+, 'are 
irreducible and mutually nonequivalent, they belong to the 
principal series. The complement of the set A X C+ eGis of 
Plancherel measure zero. [The Plancherel measure is 
111 (v,a)dv dO', 

I1I(v,a) = II la(v+ia)1 2, 
a>O 

dv is the discrete counting measure on A, dais the Lebesgue 
measure on C +.J 

Coadjoint orbits in q"'=q: A more general case was in­
vestigated by Lipsman. 14 Orbits flF, passing through points 
F2 = (l/21Ti) (v,a), vea, OEC+, fill up an open dense subset 
qu C q and are parametrized in a unique way by the set 
a X C +. The orbit fl F, satisfies the integrality condition if 
and only if veA. The subalgebra mC?<f induces a real invariant 
polarization on fl F, . Again, there exists a projection P2: fl F, 

.... &: (k,x) ·F2~k·o. The polarization satisfies the Pu~ 
kanszky condition since the linear operator ad( (l/21Ti)a) on 
u is bijective. Consequently, the fiber of the projection over 
the origin is F2 + u X O. 
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Denote by 

1'2: MCxf-+TI: (m,Y)f---+mvexp( -B(CT,Y») 

the character, VEA, OEC +. The unitary representation corre­
sponding to the orbit OF, is ~ V" = Ind~cxf 1'2' The repre­
sentations ~ V", vEA, OEC+, are irreducible and mutually 
nonequivalent. The complement of the set A X C + C Q is of 
Plancherel measure zero. [The Plancherel measure is 
J-l2 (v,CT)dv dCT, 

J-l2(V,CT) = IT la(CT)1 2 .J 
a>O 

Let y: f -+ x ( O') [resp. x ( T * & ) J be the infinitesimal 
action of K on & (resp. T * & ); T * & is the cotangent bundle 
over O'. Using y we identify tangent spaces Tk-o & with f! 
Ad kern). Using the metric we identify cotangent spaces 
Tk .o *O' with Ad k(u). There exists an unambiguously de­
fined Q-equivariant diffeomorphism between the Q-homo­
geneous spaces OF, and T*O' such that F2 is mapped on 
OETo*O'· Denote by PI: & -+ & (I/21ri)v'PZ: & -+ & (IIZ1ri),,' the 
K-equivariant mappings determined in a unique way by the 
condition (PI (0),P2(0») = F2· ThenK acts on T*O' by tan­
gent mappings; Ox f acts on the fiber Tx * & as the group of 
translations by vectors --'- 1]y (x): = ad pz(x)( Y), YEt 

Let 7: T * & -+ & be the projection, iJ be the canonical 
form on T*O', iJx ( t) = (X,7. t). The K-orbit O'(I/21ri)V 
C f* = f is integral; let U) I be the corresponding symplectic 
form. For the symplectic form U) on T * & = OF, the follow­
ing expression is valid: 

U) = - diJ + (P I07)*U)1 . (1) 

Both sides are Q-invariant, hence we can check the equality 
in one point only. Since & is embedded into T * & as the null 
section and since 7. 1] y = ° and integral curves of the vector 
field y x do not leave the submanifold & C T * O', iJ It, = 0, 
we have (all expressions are evaluated at the origin, t is 
arbitrary) 

(PI07)*U)1(t,1]y) =diJ(yx,yy) =diJ(1]x,1]y) =0, 

U)(Yx,yy) = - (Fz,([X,y],O» = - «1!21Ti)V,[X,Y]) 

U)(Yx,1]y) = - (Fz,(O,[X,Y]) 

= «(1/21Ti)CT,[X,y]) 

= (PI07)*U)1(yx,yy) , 

= - (ad( (1/21Ti)CTj( Y ),X) 

= 1]y·iJ(yx) = - diJ(yx,1]y) . 

The real polarization on T * & is a foliation whose leaves 
are exactly fibers of the projection 7. The subalgebra A (1) of 
the Poisson algebra C "" ( T * &) consists of those functions 
that, when restricted to Tx * &, are polynomials of at most 
first order for all XEO'. We can identify 

A(1)=C"'(&)EIlx(O') (2) 

using the embed dings 

C '" (&) 3 f f---+ 7*fEC '" (T * &) , 

xed) 3 tf---+qJ~(x) = (x,tr(x»EC""(T*&). 

The Poisson bracket then reads 

(3b) 

Let U)(e) = - diJ be the standard symplectic structure on 
T*&; the corresponding Poisson algebra is well known: 5 

Denote by S (resp. s(e»: C"'(T*&)-+x(T*O') the Lie 
algebra homomorphism corresponding to U) (resp. U) (e) ). 

Then (3a) follows from the equality Sf = s/e) for fEA. (0) 

= C '" (O'). In general, it holds that 7. Sg = 7. Sg (e) for all 
gEC 00 (T* &) since 

(Sg (e) - Sg) J diJ + Sg J (PI 07)*U)1 = dg - dg = ° 
and hence for fEC '" ( O') we have 7. Sf = 0, 

0= - diJ(Sf'Sg (e) - Sg) = (df,7. (Sg (e) - Sg» . 

Let tjEX( &), qJj = qJ ~j, Sj = S<PJ' j = 1,2. Since 7. (S<p,) 

= t, iJ(s {;) = qJ ~, we have 
<P 

- {qJl,qJ2} = - diJ(Sl,S2) + (PI07)*U)1(Sl'SZ) 

= - Sl'qJZ + SZ'qJl + qJ [~.,s,l 

+ (PI*U)I)(tl,t2) . 

Using SI'qJZ = - S2'qJl = {qJl,qJZ} we obtain (3b). 
Let A: q-+A(1), A": f-+Coo(O'(IIZ1ri)v)' ,.1,2: f 

-+ Coo ( & (112";),,) be the canonical Poisson actions. Then 
(XEf) 

Weare now going to describe all homomorphisms A: 
9 -+ A (1) that fulfill the a priori assumption (respecting the 
identification of KeG and K C Q) 

(5) 

We putAix =fx + tx, XEf,fxEC'" (O'), txEX(O'). We re­
quire (X,YEf) 

{Ax,A iy } = Ai[X,y I' 

{Aix,A iy } = - A[X,y J • 

It follows that 

[Yx,ty] =t[X,Yl' 

[tx,ty] = - y[X,Yl' 

(6a) 

(6b) 

(7a) 

(7b) 

Equation (7a) implies tx(k'x) = k.tAdk'(X) (x), 
kEK, Since K acts transitively on O', it is sufficient to know 
the value of tx only in the origin. Using the decomposition 
we identify ToO' = f!rn=u. We define a mapping [: u -+ u 
by 

tx (0) = YIX (0) . 

This definition is consistent if 

(Ad m)o[ = [o(Ad m), mEM, 

or equivalently 

(adH)o[=lo(adH), HEm. 

(8) 

(9a) 

(9b) 

Further, we define [ on rn trivially, [1m = 0, and put, for 
X= k·o, kEK, 

lex) = (Adk)o[o(Adk- I ). (10) 

Thentx(x) = YI(x)X(X).Sinceyx.I(x) = - [adX,l(x»), 
(3a) (7b) means that 
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[I(x)X,l(x) y] - [ad(I(x)X),I(x)]' Y 

+ [ad(I(x) Y),I(x)]'X + [X,Y]E Ad k(m), 

x=k·o. 

Regarding the K equivariance, this is equivalent to 

[IX,IY] - [X,Y] -/[X,lY] -/[IX,Y]Em. (11) 

If HEm then IH = 0 and hence (ad H)o( 1 + 12) = O. If H 
is regular then ad H restricted to U is an isomorphism and we 
have 

(12) 

Linear mappings I with properties (9a) and (11) are in 
one-t~one correspondence with invariant complex struc­
tures Ion &.16 By linearity we define I on 9 = f ® C. There 
exist 111"'1 different K-invariant complex structures on & 
that are in one-to-one correspondence with Borel subalge­
bras in 9 containing £), I f--+ (1 + iI)g. Moreover, it holds that 
the eigenspaces for the eigenvalues + i, - i are maximal 
nilpotent subalgebras in g, the left-hand side in ( 11) is equal 
to zero for all X, YEg and the mapping I is skew-Hermitian 
with respect to the bilinear form (','). All these assertions 
follow immediately from the fact that the root spaces ga' 
aEIl, are one dimensional and hence, according to (9b) and 
(12), Ha,Ea are the eigenvectors of I, where the only possi­
ble eigenvalues are 0, + i, - i. 

We conclude that (XEf) 

A;x(X) =A1(x)x(x) +Ix(x), IxECOO(&). (13) 

It remains to determine Ix. Inserting in to (6a) and (6b) we 
have Yx fy = f[x,y J and;x fy - ; y 'Ix = O. The first equa­
lity meanslx (k'x) = lAd k -'(X) (x), i.e.,/x is determined by 
the value Ix (0) = «1I21Ti)E,X), where EEif is unambigu­
ously defined. This definition is consistent if Ad m(E) = E 

for all mEM, i.e., EEO. The second condition means 
(iE, [IX, Y] - [IY,X]) = 0, but from the above-mentioned 
properties of I it follows that [IX, Y] - [IY,X] E£)l for all X, 
YEg. 

Let J be the momentum mapping corresponding to A. 
Then 21TiJ(0) = v - iE. By differentiating the relation 
( J(x) ,X + iY) = A x + ;y at the origin we obtain 

21TiJ. (o)(Yu + 1/v) 

= (adv-iadE)U- (1 +iI)oadO'(V) , (14) 

where U, VEU. Since ad 0'111 is injective, ker J (0) is isomor­
phic to ker(ad v - load E). The mapping (~d v - load E) 
d.efined by linearity on £)1 = U ® C has eigenvectors Ea and 
eIgenvalues a(v) + ia(E), aEIl. Hence J. (0) is injective if 
and only if (v - iE) is regular. 

Since J. (o)(To·&) = (1 + iI)u, the polarization on 
T*& is mapped onto the polarization on 0F"F; = (1I21Ti) 

1 

( v - iE), which corresponds to the Borel subalgebra 
(1 + iI) g. In what follows we fix the Borel subalgebra o. 
Then n, n_ are the eigenspaces for the eigenvalues - i, i. If 
HEC+, then I = - i sgn(ad H). In general, we put for YEf, 
Yregular, 

I y = - i sgn (i ad Y) . (15 ) 

The just chosen complex structure is distinguished by 
the fact that it converts, together with the standard symplec-
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tic structure, the orbit & = & (1/2,,;)a into a Kiihlerian mani­
fold, i.e., the positivity condition «(1/21Ti)O', [IX,x]) > 0, 
XEU nonzero, is fulfilled. Moreover, this complex structure 
coincides with the complex structure gained by the Iwasawa 
decomposition & = KIM = G lB. 

We use again OF, instead of T * & and get the following 
expression for the momentum mapping: 

J(X,Y)=X+i(-/(Y)+IyX), (16) 

where! & (l121Ti) 0'--> & (I 12"i) £ is the K-equivariant mapping 
determined by 1( 1I21Ti) 0') = (1I21Ti)E. Here J maps OF 
into OF" F; = (1/21Ti)(v- iE). Both orbits are fibered 

1 

spaces over the same basis-the K-homogeneous space 
& = KIM. This J is K-equivariant, preserves the fibers and 
maps them one onto another diffeomorphically (since 
1 + iI: U --> n is an isomorphism), and projects onto the basis 
as the identity. Hence J is a symplectomorphism that, more­
over, preserves the polarization. 

In what follows we choose E = - 0'. The reasons are the 
following: ( 1 ) the simplicity, (2) the character formula stat­
ed in Sec. VI, and (3) with this choice, 

J(X,Y) =X+i(Y+lyX). (17) 

Clearly, J(X, Y) = X + iY, XEO, YEC+; hence J is a diffeo­
morphism mapping qo onto go' The transversal tangent Lie 
algebra in the case of Lie-Poisson structures coincides with 
the Lie algebra of the isotropy group. We shall show that 
J* = (dJF2 )* induces the previously fixed isomorphism 
between £) C g** and mXm C q**. It holds that 

(J. ) (X,¥) (U,V) = (1 + iI)U + iV 

- i(ad X)o(ad Y) -IOI( V) , 
(18) 

where XEm, YEm+, and hence (ad Y) -I: U-->U is well de­
fined. This equality can be obtained from (14) using Y u 
(X,Y) = (adX( U),ad Y( U»), 1/v(X,Y) = (- ad Y( V), 
0). Another calculation of the differential JI y vlJV will be 

. . + 
gIven In Sec. VI. From (18) it follows that 
(U+iV,J.(Z,W» = (U,Z) - (V,W), for U,VEm, and 
hence J. ( U + iV) = (U, V ). 

Theorem 4.1: The mapping 

J: q* = q-->g. = g: (X,Y) f--+X + i( Y + Iy X), 

I y = - i sgn (i ad Y) , 

is defined and smooth on the open dense subset qo C q and 
maps qo diffeomorphically onto the open dense subset 
go C g. Then J is a Poisson mapping that, moreover, maps 
the real Q-invariant polarization on the orbits OF, C qo cor­
responding to the subalgebra m<?<f onto the real G-invariant 
polarization on the orbits OF, C go corresponding to the 
Borel subalgebra o. Clearly, J(F2 ) = F I, FI = (1I21Ti) 
(v + iO'), F2 = (1I21Ti)( V,O') , VEO, lTEC+. 

v. THE GELL-MANN FORMULA 

Let 'IlEA, lTEC+, and Y, ~ be the differentiated repre­
sentations Y va' ~ va' Hilbert spaces for both representa­
tions can be identified with help of the momentum mapping 
J. Then & = KIM is connected and simply connected and 
hence there exists a unique up to isomorphism complex line 
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bundle with connection (2' v'V) over tJ such that the cur­
vaturesatisfies curv V = PI*W

I
. There exists a unique up to a 

multiplicative constant Hermitian metric in (2' v,v). We 
choose on the manifold tJ a smooth measure J-l from the 
Lebesgue measure class, the standard choice is the measure 
induced by the Haar measure on K normed to unity. Then 
the underlying Hilbert space for both representations is JY'v 
= L 2 ( 2' v ,dJ-l) consisting of measurable sections in 2' v 

with finite L 2 -norms. The method of geometric quantization 
and the results of the preceding section enable us to write 
down the formulas (XEf, j is the complex structure on tJ) 

Y(X) = ~(X,O) =V(Yx) +~divl' Yx + 21Ti(p,*Al) , 
(l9a) 

Y(iX) = v(iyx) + !divl' (iyx) - 21Ti(P2*A i) , 
~ (O,X) = - 21Ti(P2*A i) . 

(I9b) 

(l9c) 

Choose {L" ... ,Ln} to be a basis in f and put Pj = iLj . 
Then {Lj,P) is a basis in g. We identify Lj = (Lj,Q) and put 
1j = (O,Lj ). Then {Lj ,1j} is a basis in q. Let {L ', ... ,L n} be 
the basis in f determined by (L j,L k) = - 8i. The operators 
( l/21Ti) ~ ( T, ) , ... , ( l/21Ti) ~ ( Tn) mutually commute and 
their common spectrum consists exactly of those points 
t = (tl, ... ,tn )ElRn such that t·L = tiL 1+ ... + tnL n 
EtJ (I/2,,;)a' Denote by (I(t)i) the matrix function defined by 

(20) 

The representations Y, ~ are related by (j = 1 ,2, ... ,n) 

Y(Lj)=~(Lj)' (2Ia) 

Y(Pj ) = ~(1j) + ~{I(l/21Ti)~(T,), ... ,(l/21Ti) 

X~(Tn»)i,~(Lk)}+' (2Ib) 

Equation (21 b) follows from the equalities 

and 

V(IrL) = 1« l/21Ti) ~ (T»)iV(YLk) 

V(;) + !divl';= !(V(;) - V(;)+), ;EX(tJ). 

We shall prove 
r 

Ix: = - i sgn(i ad X) = L (- 1)s+ las (ad X)2s- I, 

s= I 

(22) 

whereXEf is regular, r = ILl+ I = !(dim f - rank f) and the 
as are K-invariant smooth functions defined on the open 
dense subset of regular elements fr C f. Hence for a given 
representation, the as are constants determined by the value 
on tJ (l/2,,;)a' Regarding the K invariance, it is sufficient to 
check the equality (22) for X = iH, HEC+. Both sides are 
thought to be defined by linearity on g = f ® C, both sides 
vanish on 1) and, acting on the root vectors Ea, aELl, we have 

r 

sgn a(H) = L asa(H)2S-1 . 
s= 1 

Clearly, it is sufficient to check only aELl+. Put f3 j 
= aj(H) >0, where Ll+ = {al, ... ,aJ. Then the numbers 

al, ... ,ar are required to solve the system of linear equations 
with matrix C = (cjk ), cjk = f3/(k - I), and the right-hand 
side (l/f3l, ... ,l/f3 r)' The matrix Cis regular if and only iff3j 
=l=f3k for j=l=k. This condition is satisfied for almost all 
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HEC+. Since the system is invariant with respect to the per­
mutations of 131, ... ,13 r and from the Cramer rule, it follows 
that 

as ( f3l, .. ·,f3r) = [II f3j II (f3j + 13k)] - Ips ( f3l, .. ·,f3r) , 
J J< k 

where Ps is a symmetric polynomial of order 
~r(r + 1) + 1 - 2s. Regarding the continuity, the as are 
well defined for all HEC +' with the condition 13 j =1= 13k' j =1= k, 
omitted. 

It follows from (22) that the functions I( t) i coincide on 
tJ (I/2"i) a with some polynomials. Let A (t) be the matrix of 
the linear operator ad(t'L) expressed in the basis 
{L" ... ,Ln }. Then 

r 

I(t)i = L (- 1)s+ lasA(t)2s-1 . (23) 
s= I 

Inserting (23) into (21 b) we obtain a polynomial depen­
dence of the generators Y(Lj ), Y(Pj ) on ~ (Lj ), ~ (1j), 
i.e., a generalized Gell-Mann formula. The Appendix is de­
voted to some concrete calculations for K = SU (n). 

VI. CHARACTERS 

Let VEA, (TEC +' F, = (l/21Ti)( v + io-)Eg, F2 
= (l/21Ti)(v,o-)Eq. Both representations Y va ' ~ va fulfill 
the Kirillov character formula 

1T(rp) = L rp(X)1T(expX) j(X)dX, rpE!iJ(D), 

tr1T(rp) = In {Lj(X)1/2rp(X)e2";(F,X)dX }df3(F) , 

where 1T = Y va (resp. ~ va), D is the set containing those 
XEg [resp. those (X,Y)Eq] for which eigenvalues A of the 
operator ad X satisfy 11m A I < 1T, !iJ (D) is the test-function 
space,j(X) is the Haar measure density in canonical coordi­
nates normed by j(O) = 1, j(X) = det(sinh(ad 
XI2)/(adXI2»), O=OF, (resp. OF,)' df3=(d!)-' 
X IwA'" Awl is the canonical measure on 0, 
d = ~dim 0 = n - I. The formula was proved for semisim­
pIe Lie groups by Duflo and Gutkin, 17 its validity for Q fol­
lows from Kirillov's reduction theorem. 18 

We specify the normalization of Lebesgue measures on 
some subalgebras. The decomposition g = n _ + 1) + n in­
duces the Fubini decomposition of the measure on g, 
dZ = dX _ dH dX +. The measures dX _, dX + are normed by 
the conditions 

r au - 4li du=1, u=kuaunu' du=d(expX_), IN 
i {i rp(X)e2m(Y.X) dX }dY = rp(O), rpE!iJ (n) . 

The decomposition q = (m + u) X (m + u) induces the Fu­
bini decomposition on q, dZ = dX dY = dS d , U dT d2 V. 
We require the isomorphism mxm-+1): S,Tf--+ H = S + iT 
to preserve the measure dH = dS dT, the isomorphism 
u -+ n: V f--+ X = (1 + if) V to preserve the measure 
dX = d2 V. The measure diU is normed by 

i {i rp( U)e2
,,;(u.V) d , U} d2V = rp(O), rpE!iJ (u) . 

P. Stovieek 1304 



                                                                                                                                    

By a simple calculation it can be shown that the isomor­
phism u -+ n _: U ~ Y = ~ (1 - il) U preserves the measure, 
dY=d,U. 

In what foHows we shall need the following result. 19 The 
mapping u,X ~ Ad U (F I + X) maps N _ X n ditfeomorphi­
cally onto a subset offuU measure in 0 F,' the canonical mea­
sure in these coordinates reads d(3 = du dX. 

Here OF, is the fibered space, the fiber over F, is F, + n. 
On this fiber we choose the Lebesgue measure dF induced by 
the measure on n and we transfer this measure on the other 
fibers using mappings Ad k, kEK. The Gauss decomposition 
N _HN C G induces the embedding of N _ onto a subset of 
full measure in tJ = G lB. The standard measure on tJ is 
then a - 45 du, U = kanEN _. Denote by niX) the fiber over 
XEtJ; then 

(f(F)d(3(F) = t{ (f(F)dF}a- 45 dU. (24) 
In J" In(X) 

In the case of the orbit n F2 we can exploit the symplectomor­
phism J from Sec. IV. We obtain parametrization 
N _ Xu-+ 0F2: u,U r---+ Ad ku (F2 + (0,0»), u = kuau nu' 
The measure on OF, now reads d(3 = au - 45 du d2 U. 

The value oftr ;"(q:;) does not change if we replace q:; by 

q:;K' 

q:;K(X) = 1 q:;(Adk(x»)dk; (25) 

the Haar measure on K is normed to unity. Supposing q:; to be 
K-invariant we can further simplify the expression in Kiril­
lov's formula since we integrate over 0 a K-invariant func­
tion in variable F. Hence the integral over n can be reduced 
to the integral over one fiber only and the inverse Fourier 
transform can be used. In the case of 11' = Y v", using (24) 
we have 

tr Y"" (q:;) = ( jg (Z) I {2q:;(Z)e'21ri(F"H) dH dX, 
J~+II 
Z =H +X. (26) 

A further simplification is possible according to the follow­
ing lemma. 

Lemma: Let 'ljJEIiJ (g), ¢ be K-invariant, C C a be a 
Weyl chamber, WE:Jr, FEl). Put l)c = a + iC C 1); then 

( ¢(Z)ei(F,Z) dZ = ( ¢(Z)ei(w'F,Z)dZ. (27) 
Jk+n Jl}w.c+ n 

Proof: It is sufficient to check (27) only for reflections 
Wj corresponding to simple roots a I, ... ,a l , since wl' ... ,w/ gen­
erate :Jr. Let a be a simple root, W = Wa , 1), C 1) be the 
subset of regular elements. Put Da = !'13>O,f3#a CEf3. Then n 
= CEa + Da and na is invariant with respect to ad Ea , 

ad E _ ex' We define a function 

l),xCX -+ K: H,ar---+k(H,a) =exp(zEa +zE_ a ), 

CX= C \{O}, 

where 
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Ci[H)a ~ 
z = - la(H)al \/ (a,a) 

X arctan (~ 2 la(H) I). 
(a,a) a 

By a straightforward calculation it can be verified that for 
REQ" aECx

, XEna , it holds that 

Ad k(H,a)(H+ aEa +X) =w'R+aEa + 9/(H,a)X, 

where 9/ (B,a) is a nonspecified isomorphism Da -Da de­
pending smoothly on Hand o. Since the operators 
Ad k,kEK, preserve the metric (X, Y) = Re B(X, Y) on g, 
the isomorphism 9/ (H,a) preserves the Lebesgue measure 
on nn' In this way we get the diffeomorphism 

l)c + CXEa + na -+ l)w'c + C"En + na: H + aEa + X 

~ Ad k(H,o) (H + aEa + X) , 

which preserves the Lebesgue measure. Now, to prove (27) 
it is enough to use this special substitution in the integral. 

Noting that the Weyl group acts simply transitively on 
the Weyl chambers and using the above lemma we obtain the 
final expression 

trY vu(q:;) = L ( jg(Z)1/2 
WE7/')l)++1l 

Xq:;(Z)e21Ti(W'F"H) dH dX, Z = H + X. 
(28) 

A similar and even simpler procedure can be used in the 
case of 11' = 9/ "0" The integration over OF, is reduced to the 
integration over one fiber only, the fiber over F2 is F2 
+ u X O. Since the action on rn of each WE:Jr can be realized 

as Ad k 1m for some kEK, we have directly 

tr Uk vu(q:;) = L r jq (S) l!2q:;(S,T + V) 
we7/" J1l1+Xf 

Xe21Ti(W'F2.(S,n>dSdTd2V, (29) 

We note thatjq (X,y) = j, (X)2. 
Theorem 6.1: The mapping 

<I>:fXf-g:X,Yf-l>X - IxY + iY 

is defined and smooth on the open dense subsetf, X f C q (f, 
C l is the subset of regular elements) and maps it diffeo­

morphicaUy onto the open dense subset igo C g. Let VEA, 
oeC+, rpEIiJ (igo); then 

tr Y"q(q:;) = tr 9/ vu«<I>"'jg/jq) 1/2<1>"'q:;). (30) 

Remark: If X,YEf, Xf, Z = <I>(X,y), then the imagi­
nary parts of eigenvalues of the operator ad Z in 9 coincide 
with the eigenvalues of the operator ad X in lc = g. To show 
this, regarding the K invariance, we can confine ourselves to 
X = SEm+. Putting Y = T + VErn + u, we have 
Z = H + WEQ + n, where H = S + iT, W = i( 1 + l1) V. 
Since H is regular there exists uEN such that Ad u (H) = Z. 
Hence ad Z has the same eigenvalues as ad (S + iT), namely 
o and (a(S) + ia( T»), aEA.; a(S), a( T) are imaginary. 

Proof: The first part follows from the relation 
<I>(X,y) = - iJ( - y,x> and Theorem 4.1. In the second 
part we can confine ourselves to the case where q:; is X-invar­
iant since <I> is K-equivariant and both sides in (30) do not 
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change if we replace rp by rpK' Now, regarding the formulas 
(28) and (29), we only add that the diffeomorphism 

m+x(m+u)--+~+ +n: S,T+ VI--+H+X 

=et>(S,T+V), H=S+iT, X=i(1+if)V, 

preserves the measure, dH dX = dS dT d2 V. 
The generalized function rp 1--+ tr !T vu (rp) is represent­

ed by a locally integrable function tvu ' 

tr !Tvu (rp) = L rp(Z)tvu (Z)jg (Z)dZ . (31) 

Moreover,20 tvu is analytic on the subset of regular elements 
9, n D, it is G-invariant, and, for HE~" 

tvu(H) = L e21Ti(W'F"H> 
1LE7r 

x (n lea (H)/2 - e - a(H)/21 2) - 1 (32) 
a>O 

This expression can be, in principle, derived by inserting into 
(28) a sequence rp k of test functions converging to /j tl H -the 
Dirac-type generalized function supported on the K orbit 
() H' 

A similar assertion holds for the representation ~ vu' 

tr ~vu(rp) = L rp(X,Y)uvu(X,Y)jq(X)dXdY. (33) 

We find explicitly the function uvu using Theorem 6.1 and 
(32). Regarding the Q invariance we evaluate the function 
in points (So,To)Em+ xm. PutHo = So + iToE~+. Inserting 
into (31) and (32) a sequence rpk converging to the Dirac­
type generalized function /j (i' () = () H,,' we have 

jg (Ho)tvu (Ho) vol( ()) = (jq (So) jg (Ho»)1/2u vu (So, To) 

X IdX dY let> * (dZ) I vol( ()) , 

uvu (So,To) = (jg (Ho)ljq (So, To) )1/2 

X IdX dY 1et>*(dZ)I-ltvu(Ho) . (34) 

Calculation of the differential det> at the point (So,To) is 
clear except of a (f s.. + u To) I a U. But this term can be calcu-
1ated using the identity (22), 

d 
ds (Is.. + suTo)s=o 

= ± (-1)J+laj(adSo)2(j-lladU(To) 
j=1 

= - (adSo)-lo(ad To)of(U) , 

where (ad So) -I is well defined on u. Hence we obtain the 
linear mapping 

det>:(m + u) X (m + u) --+ n_ + ~ + n: (S + U,T + V) 

I--+Y+H+X, 

where 

H=S+ iT, 

X = iO + iI) V + ~(1 + if) 

X(l + (ad To)(adSo)-lfjU, 

Y = ~(l - iI)(1 + (ad To) (ad So) -II)U. 

Regarding the measure normalization, we find 
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_ n 1 a(So) 12 
a>O a(Ho) 

Inserting the last term into (34) we obtain the desired 
expression [S,TE(m+ Xm) nD] 

uvu(s,n = L e21Ti(W·F,,(s.n> 
1LE7f' 

X(n lea (Sl/2_e- a (Sl/212)-1 (35) 
a>O 

Clearly, the converse procedure is also possible, i.e., to derive 
(32) starting from (35). 

VII. CONCLUSION 

The case described with G being simple and complex 
and K being its maximal subgroup, suggests some obvious 
generalizations interesting from the point of view of physical 
interpretation. This G can be replaced by an arbitrary semi­
simple real Lie group; K need not be compact. Clearly, in the 
more general case new difficulties arise. We point out one of 
them in connection with the recent result due to Bohm and 
Moylan.21 They realized unitary irreducible representations 
from the principal series of the de Sitter group in the direct 
sum of two Hilbert spaces, each of them with a definite uni­
tary irreducible representation of the Poincare group. This 
result can be overlooked using the Gell-Mann formula since 
it yields a Lie-Poisson isomorphism that maps two orbits in 
the Poincare algebra onto one orbit in the de Sitter algebra 
(up to a subset of measure zero) and the images do not inter­
sect. But we emphasize that a general formulation is lacking. 
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APPENDIX: THE CASE G=SL(n,q 

Let G = SL(n,C), K = SU(n) (of course, now dime 9 
= n2 

- 1), and let E~ be the standard basis in gl(n,C), L ~ 
= E~ - (1/n)~ 1. The matrices L:: generate sl(n,C) be­
ing constrained by one linear equation L ~ = 0 and satisfy 
the commutation relation 

[L::,L~] =/j1L~ -~L1. 

We identify sl(n,C)* with sl(n,C) using now the bilinear 
form (".) = Re tr ( . ). The fundamental weights are €j 
=L: + ... +Lj, j= l, ... ,n -1. Put v=ql€1 + ... 
+qn-I€n-I' U=tJ1€1 + ... +tJn_l€n_l, qjEZ, tJj>O. 

The representation belongs to the Gelfand-Naimark princi­
pal series and is induced from the subgroup B of upper trian­
gular matrices by the character usually given in the form22 

X(h) = IT Ihkk I - mk + iTk(hkk mk) , 
2 

where 

-m2=q. + ... +qn-.,· .. ,-mn =qn-I' 

-72=tJ. + ... +tJn_ I, .. ·,-7n =tJn_ l · 
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A closed form can be derived if we extend by linearity 
the representations Y, ~ on the complexified Lie algebras 
ge = su(n)e + isu(n)~, qc = su(n)eQ<su(n)e, su(n)c 
= sl(n,C), respectively. We put P~ = iL t, T~ = (O,L t), 

and identify L t = (L ~,O). WewriteL ~ instead of Y(L t) 
= ~ (L ~), etc. The skew-Hermiticity of the representa­

tions Y, ~ now reads 
A A A A A A 

(T~)+=Tp, (P~)+=Pp, (L~)+=Lp. 

Let X = (Xp)Esu(n), i.e., X = xpL~. By induction we 
can verify (sEN) 

(ad X)SL P = [A S(X)p;1' ]L;' 
a a;...l fJ.' 

where 

[AS(X)~;~] = ± (~)( -l)j(Xj)1(XS-j)~. 
j=O J 

Then according to Sec. V, 

I LP - [I P;I']L;' 
X a - X a;;' I' ' 

where 
r 

[Ix~;&] = L (-l)s+las[AS(X)~~], 
s= I 

r = ~n(n - I) , 

the as are constants depending on u. 
The common spectrum of the operator matrix 

'" ( 112'17-;) T~) is exactly the orbit & (1I2".i)0-. According to Sec. 
V and using 

[L~,(1'S)~] =01(1'S)~ -8:.(1'S)/ 

to simplify the final expression, we obtain [r = ~n (n - 1)] 

pP = "'TP _ . ~ as 2S~1 (2s- 1) 
a a I ~ 2s- I ~ • s= I (21T) j=O J 

X( -1)j(1'jL1'2S-I-j)~. 

The commutation relations 
"'p'" '" "'P [La'P~] =01P~ -8:.p;., 
'" P '" I' _ p'" I' '" P [Pa,p;.] - -8;.La +8:.L;., 

can be also verified directly, by a tedious but straightforward 
calculation. The fact that the spectrum of ((l/21Ti) 1'~) lies 
in su (n), is utilized and at the end the identity 

- [X,Y] = I[IX,Y] - [IX,IY] + I [X,lY], 

X,YEsu(n) , 

is again met. 
Mukunda described a generalized Gell-Mann formula 

for SL(3,C)? Although his formula is similar in nature to 
the one above there is a substantial difference. In our for­
mula the operators 1'~ are allowed to appear only in odd 
powers, namely 1,3,5 for n = 3. On the contrary, the powers 
in the paper3 are 1,2,3. 

In this case (n = 3) we add the determination of the 
constants as in terms of the Casimir polynomials. Let c; (X) 
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= (i)j tr X j, j = 2,3, be the independent invariant polyno­
mials on su(3), r= 3, A+ = {a l,a2,a3}, U= 1JI€1 + 1J2€2' 
Then 

Pj = laj( (1I21Ti)u)1 , 

PI=:~' P2=:;' P3=1JI;,1J2. 

Lets I,S2,S3 be the elementary symmetric functions in thep 's, 

SI = PI + /32 + /33' S2 = PI/32 + PIP3 + /3~3' 
S3 = PIP~3 . 

We have 

aj = Pjl(SIS2 - S3)S3' j = 1,2,3, 

where 

PI = sls/ - SI 2S3 - S2S3' - P2 = SI - 2SIS2 + S3' 

P3 = SI' SI = 2~2C2 cos </J, 

S2 = ~C2(l + 4 cos2</J), S3 = (l/Jj.)C/ 12 cos 3</J, 

</J = ~arcsin(M C3C2 -3/2) . 
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The connection between 7 functions and zero curvature equations for the homogeneous 
construction of the basic module L (Ao) over the simplest affine Kac-Moody algebra A \ 1) is 
studied. 

I. INTRODUCTION AND SUMMARY 

In the representation theoretic approach to soliton 
equations, initiated by Date et al., lone derives so-called Hir­
ota bilinear equations as defining equations for the orbit of 
an algebraic group associated with an affine Kac-Moody 
algebra in a representation space for this algebra; see, e.g., 
Kac. 2 The relation with the usual formulation of soliton 
equations is then given by a change of dependent variables 
exemplified by the famous formula 

a2 

u = 2 -2 log 7. ( 1.1 ) ax 
If 7 satisfies a certain set of Hirota equations, u will satisfy 
the KdV hierarchy. 

Formula (1.1) is a quite mysterious and unmotivated 
substitution; what one would like is an explanation of this 
formula and, more generally, of the older theory of soliton 
equations including zero curvature conditions, conservation 
laws, Miura transformations, etc. For a review of these mat­
ters we refer the reader to Drinfeld and Sokolov.3 

Wilson4
•5 has given a group theoretical explanation of 

the formula 
a r O 

v=-ln-(O)' (1.2) ax 7 

where 7(0) and 7(1) are the 7 functions associated with the 
principal realizations of the fundamental modules L (Ao) 

and L (A 1) over the simplest affine algebra A \ 1). This substi­
tution leads to the modified KdV hierarchy, which is related 
to the KdV hierarchy by a Miura transformation. A slight 
extension of Wilson's method also provides an explanation 
for ( 1.1 ), where one may choose for 7 either rO) or 7(1). 

In the homogeneous realization of the modules L (Ao) 
and L (A 1) the 7 functions are multicomponent objects 
7(i) = (7i i » IEZ' i = 0,1, and it is interesting to see what the 
Hirota bilinear equations look like in this case. These equa­
tions were constructed in Ref. 6. There we found that an­
other unmotivated substitution, namely, 

ql = - 7i~ Ihii), rl = 7i~ Ihii), i = 0,1, (1.3) 

leads to the first two equations (nonlinear Schrodinger and 
mod-KdV) of the AKNS hierarchy on a lattice L =1:, while 
the quantities ul 

: = In l satisfy the equations for the Toda 
lattice. It was, however, not clear to us whether the Hirota 
equations for 7(i) would really imply all AKNS equations 
for ql and rl. 

The AKNS equations are usually derived as integrabi-

lity conditions for an infinite set of linear differential equa­
tions for the so-called wave function. In this context one 
often speaks of zero curvature conditions. In view of the 
results obtained from representation theory it was natural to 
look for an extension of this zero curvature formalism to an 
AKNS system on a lattice. In Ref. 7 we have shown that 
such an extension of the AKNS system can be constructed in 
a natural way and that solutions in different lattice sites are 
indeed related by Toda equations. 

The main motivation for writing this paper was to ex­
plain the relation between the representation theoretic ap­
proach and the zero curvature construction of this Toda­
AKNS hierarchy in the spirit of Wilson. The key ingredient 
is the Birkhoff decomposition, which, together with some 
background material on Kac-Moody algebras, will be dis­
cussed in Sec. II. In the next sections we will, using the Birk­
hoff decomposition of the "dressed vacuum," derive differ­
ential difference zero curvature equations both on the affine 
algebra (i.e., including the center) and on the loop algebra 
lying underneath it. These equations turn out to be the 
Toda-AKNS equations for a pair of fundamental fields ql 
and rl. We will proceed to show that these fields are related 
to 7 functions via (1.3), thereby explaining this substitution 
and proving that the ql and rl from (1.3) do indeed satisfy 
all AKNS equations. 

In Sec. VI we will review two well-known constructions 
of the AKNS conservation laws and we will show how they 
are related. Moreover, we will supplement these "contin­
uous" conservation laws with conservation laws for the dis­
crete evolution. It is interesting to remark that the explicit 
form (6.8) of the AKNS conserved densities led Flaschka, 
Newell, and Ratiu8 to introduce the 7 function as a kind of 
potential. Another reason for writing this paper was to de­
rive their results in a pure Lie algebraic framework. 

From the construction of the Toda-AKNS equations in 
this paper it will be clear that the orbit of the algebraic Kac­
Moody group gives rise to a certain class of solutions to these 
equations. This then leads to the question of whether con­
versely every solution in this class comes from an element of 
the group orbit. In Sec. VII we will see that this is indeed 
true, showing that the Toda-AKNS equations describe the 
orbit of the algebraic group, just as the Hirota equations do. 
In order to give a group theoretical description of more gen­
eral solutions, one will have to consider orbits of various 
completions of this algebraic group. We will not discuss this 
here. 
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II. PRELIMINARIES 

A. Introduction 

In this section we will, mainly in order to fix notation, 
briefly recall some of the basic facts about affine Kac­
Moody algebras and the groups associated with them. For 
more details we refer to Kac.2 Following Goodman and 
Wallach9 we will also mention certain completions of these 
algebras and groups, which are needed to make some of the 
constructions of this paper rigorous. Finally we will describe 
the Birkhoff decomposition for affine Kac-Moody groups 
and their completions, which will be the main tool for deriv­
ing zero curvature equations in Sec. IV. 

B. Affine Kac-Moody algebras 

Let g be a finite-dimensional simple Lie algebra, 
g : = C [A), -I] ® g the polynomial loop algebra associated 
with g, and g : = gEe Cc the universal central extension of g. 
The degree derivation d: 8.-8. is given by -

d 
dlg:=A-, d(c) =0. (2.1) 

- dA 

The untwisted affine Kac-Moody algebra r (e = extend­
ed) associated to £ is then defined as the semidirect product 
algebra r : = 8. Gl Cd and one has 8. = [8.e ,r]· 

Fix a Cartan subalgebra h of g. Let 6. C h * be the corre­
sponding root system {al,a2,~.,a~} a system of simple roots 
and B = ~i ~ 1 aja j the highest root. Choose root vectors Ea, 
aE6., normed in such a way that the triple Ea, E _ a' and 
Ha : = [Ea,E _ a] has the standard sl(2,C) commutation 
relations. The vectors E j : = Eaj , F j : = E _ aj' i = 1,2, ... ,/, 

generate £ and one has ~ = Gl i~ 1 CHi> where H j : = Haj , 

the simple coroots. 
The algebra 8.e has a Cartan subalgebra 

he : = h Gl Cc Gl Cd and a corresponding root system 

!E(~e )*. The so-called imaginary root c5E~ is given by 

c51!! = 0, (c5,c) = 0, (c5,d) = 1, (2.2) 

and ~ is the disjoint union of a set of real roots 
~re : = {jc5 + aliEl, aE6.} and a set of imaginary roots 
~im = {jc5liEl'\ {On. Define root vectors e j : = 1 ® Ej , 

J: : = 1 ® F j , i = 1,2, ... ,/, associated with the roots ajE~ and 
eo: = A ® E _ 0, /0: = A -I ® Eo associated with the root 

a o : = c5 - BE~. The set {ao,al, ... ,a/} is then a simple sys­
tem for ~ and the vectors e j J;, i = 0,1, ... , generate 8.. The 
simple coroots are, as before, defined by a~: = [ej,J:], 
i=O,I, ... ,I. 

For all real roots aE~re one defines a reflection ra: 
(&e ) * _ (&e ) * as usual. The group W generated by the re­
flections rj : = raj' i=O,l, ... ,/, is called the affine Weyl 
group. It contains an Abelian normal subgroup T, called the 
translation group, which is defined as the group generated by 

T; : = r/j_ all' i = 1,2, ... ,/. (2.3 ) 

The quotient W / Tis easily seen to be isomorphic to the (fin­
ite) Weyl group Wof £ and therefore one has 

A 

W= WXT. (2.4) 
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C. Affine Kac-Moody groups 
In order to describe groups associated to 8. one uses the 

representation theory of this algebra. Let AEh * be a domi­
nant integral weight, i.e., (A,a~)El+ U{O}, i:: 0,1, ... ,/, and 
(L (A), 11" A) the unique irreducible highest weight module 
with highest weight A. We recall that such modules can be 
equipped with a Hermitian form H A : L(A) XL(A) -C, 
giving them the structure of a pre-Hilbert space. Such a form 
is-up to a constant factor-uniquely determined by the 
contra variance condition 

HA(v,11"A (x)(w») = - HA (WO(11"A (x»)(v),w), (2.5) 

where Wo: 8. -+ 8. denotes the antilinear involution defined 
by wo(e;) = - J:, wo( J:) = - ej> wo(aD = - a~, i 
= 0,1, ... ,1. 

Let G be the connected and simply connected group 
associated to £. By considering a faithful representation of G, 
it can always be realized as a subgroup of SLn (e). This 
enables us to define the polynomial loop group G by 

G = {gESLn(qA,A -1])lg(A)EG VAES 1
}. (2.6) 

Let 11": = Gl i = 011" A' where the fundamental weights Aj 
are defined by (Aj,a})' = c5ij, iJ = 0,1, ... ,/, and let G be the 
group generated by exp t11"(e;), exp t11"( J:), i = 0,1, ... ,/, tEe. 

This definition makes sense because 11" A (e i ) and 11" A (J: ) are 
locally nilpotent oper~ors for all dominant inte~ral weights 
A. One can show that G is a central extension of G by C*, i.e., 
there is an exact sequence 

(2.7) 

Instead o!.this "universal" group G, one often considers the 
groups GA generated by exp t11" A (e i ), exp t11" A (J: ), 

'" i = 0,1, ... ,/, tEC. These groups are quotients of G, i.e., there 
A A 

exist surjective homomorphisms/A: G-+ GA. The kernel ZA 
of/A can be shown to be a finite central subgroup of G (see 
Ref. 9). 

D. Completions 

Consider the matrix 

h=(Ao 0) I _ A E SI2(qA,A - ]). 

Exponentiating this matrix we obtain 

eXPh=(~ e~A)' (2.8) 

which is clearly not in the polynomial loop group 
Sl2 (C [A,A - I ] ). Still, we want to be able to exponentiate ele­
ments like this. The example shows that this only makes 
sense in suitable completions of the polynomial loop group 
G. _ A 

In Ref. 9 several completions of the groups G and G are 
constructed. For the reader's convenience we will give a 
short summary of the results relevant to this paper. 

A functionp: l- (0,00) is called a weight function if it 
satisfiesp(k + m)<p(k) ·p(m). (N.B.: we usep instead of 
the more obvious w to avoid confusion with elements of the 
Weyl group.) We will also require that p is symmetric, i.e., 
p (k) = p ( - k), and that p (0) = 1. In this case one has 
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P (k) = ~p (k) P ( - k) >~p (0) = 1, VkE'l. (2.9) 

Weight functions are used to define the so-called 
weighted Wiener algebra Ap as the Banach algebra of func­
tions f S I -+ C with norm 

+00 
Ii!li p : = L la k Ip (k), (2.10) 

k = - 00 

the ak's being the Fourier coefficients of f The ring 
C[A,A -I] is obviously a dense subset of Ap. 

We will also use the weight functions to construct com­
pletions of the algebrasg andg; let Xi' i = 1,2, ... ,n, be a basis 
of £ and define norms on g and g by 

Ilxllp : = L laijlp (i), 
ij 

Vx = L aijA i®XjEg, 
ij 

(2.11 ) 

lixllp : = L laij Ip (i) + lal, 
ij 

Vx = L aijA i ®xj + aceg. 
i} 

(N .B.: another choice of basis yields an equivalent norm.) 
Denote by (g) p and (g) p the completions of g and g with 
respect to these norms. For arbitrary weight P the algebra 
(g) p is a Banach Lie algebra, i.e., 

II [X,y]Iip.:;;M IixllpllYlip, Vx,ye(g)p' (2.12) 

The same holds for (g)p if P is chosen such that 
P (k) >C Ik 11/2 for some constant C. 

Define the Banach Lie group Gp by 

Gp: = {gEGin (Ap)lg(A)EG, VAeS l
}. (2.13) 

The exponential mapping carries the Lie algebra (g)p into 
G and one can show that it covers a neighborhood of the 

p -
identity in G. 

To construct a group associated with the algebra (g)p, 
we use again the integrable modules L(A). Since we aim to 
exponentiate elements that are not nilpotent, we will certain­
ly have to consider the Hilbert completion H(A) of L(A) 
with respect to the Hermitian form H /\. It can be shown 
that, if the weight P is chosen from the family 

p".,(k): = exp t Ik III", t>O, 1 <a<2, (2.14) 

there exists a dense subspace of H(A) on which the ~pera­
tors exp 1T/\ (x), XE(g)p are well defined. Therefore Gp can 
be defined as the group generated by these operators. 

One now proceeds along the ~me lines as in the preced­
ing section; the universal group Gp is the group associated 
with the representation 1T = Ell ~ ~ ° 1T /\. It is again a central 

A ' 

extensi~n of G; by the finite group Z/\ and a central exten-
sion of Gp by C*. 

E. The Birkhoff decomposition 

Let U + be the subgroup of G generated by exp t1T(Ea ), 

aEAr~, tEC, and H the Cartan subgroup generated by 
exp t1T(an, i = 0,1, ... ,1, tEc' Define for i = 0,1, ... ,1, 

rr : = exp 1T ( e i ) exp [ - 1T( /; ) ] exp 1T ( e i ) • (2.15 ) 

The group W1T generated by rr, i = 0,1, ... ,1, is then an exten­
sion ofthe affine Weyl group Wby an Abelian normal sub-
groupD 1TCH.1O A 

Kac and Peterson II have proved that G admits the Birk­
hoff decomposition 
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G = U U_wHU+. 
weW 1T 

(2.16) 

On the level of the completed group Gp one has an analogous 
formula, 

(2.17) 

Here (U ± ) P are the completions of U ± in Gp • 

For our purposes we need a slight modification of 
(2.17); let U + (U _) be the subgroup of G consisting of all 
upper (lower) triangular matrices with l's on the diagonal 
in G and denote by ( U ± ) p the projections of (U ± ) p in Gp. 
Then for all UE( U _) p and VE( U +) p we may write 

U = (1 + UIA + U~ 2 + ... ) Uo, 
V= Vo(1 + VIA + V~2 + ... ), (2.18 ) 

Using this and the projection of (2.17) on Gp we see that any 
geGp can be factorized as 

g=g- 'go'g+, 

where 

g _ = 1 + UIA + U2A 2 + ... , go = UowHVo, 

g + = 1 + VIA + V ~ 2 + ... , 
A 

and correspondingly any gEGp can be written 

g=g-g~+. 

III. THE or FUNCTION 

A. Introduction 

(2.19) 

(2.20) 

In this section we briefly describe the homogeneous re­
alization of the module L (Ao)' For more details we refer to 
Frenkel and Kac 10 and Segal. 12 Although most of the results 
of this paper can be derived for an arbitrary simply laced 
algebra g, we will restrict ourselves to the simplest affine 
algebra A ~I). We proceed to write the components 'TfO) of the 
'T function in the homogeneous realization as vacuum expec­
tation values of certain group elements ",I (dressed vacua), 
which will play an important role in the construction of zero 
curvature equations in Sec. IV. We will also study the rela­
tion between the Birkhoff factorization of these group ele­
ments and the zeros of the components 'TfO). 

B. The homogeneous realization of L(Ao) 

Let £ = sl(2,C) with standard basis 

EI = (~ ~). HI = (~ _ ~), FI = (~~). (3.1) 

In the sequel we will write e for E I, h for HI' and! for Fl' 
The homogeneous Heisenberg subalgebra ! of g is given by 

S: = Ell CPi EllICe Ell Cqj, 
- ;>0 {>O 

(3.2) 

where Pi : = ~i ® hand qi : = (l/i)A - i ® h satisfy the 
Heisenberg commutation relations 

[P;.qj] = oijc. (3.3 ) 

Let Tbe the operator 

(3.4 ) 
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and denote by Tfrl\" the group generated by T. It is well 

known that the elements of Tfrl\" centralize the action of 
1T/I." (!) and that the module L(Ao) is irreducible under the 

action of the pair (1T/I." (!),T"I\,,). Therefore L(Ao) has the 
following structure: 

(3.5 ) 

Here Q: = 'Za is the root lattice ofsl(2,C) and C[Q] is the 
group algebra of Q, i.e., the vector space spanned by formal 

exponentials eku , kEZ. The action of1T/I. (5) and Tfrl\" is given 
explicitly by " -

ap 
1T (p )(P®eku ) =_®eku 

Ao I a' 
X; 

1T/I..,(q;)(P®eku ) =x;P®eku, (3.6) 

T1(P®eku ) =P®e(k+/)a, VPEC[xd, k,/EZ, iEZ+. 

The action of the other algebra elements is given in terms of 
vertex operators. We will not need these operators in this 
paper. 

For future use we also mention the weight system P( Ao) 

of L(Ao); 

P(Ao) = {Ao + rna - (m 2 + k)8ImEZ, kEZ+ U{O)}. 
(3.7) 

Remark: Since we will only work with the module 
L(Ao) we will from now on leave out the symbol1T/I." and 
simply write X'V for 1T/I..,(X)(V) [xE£, vEL(Ao)]' We will 
also write H for H/l.o' the Hermitian form (2.5) on L(Ao), 
and Vo for the highest weight vector at L(Ao)' 

C. The T function as vacuum expectation value 
A 

Consider the Kac-Moody group G/l.o and the orbit 
0/1.

0 
: = {TJ0) = g.. Vo IgeG /l.o} passing through the highest 

weight vector. In the homogeneous realization (3.5) of 
L(Ao) the elements of the group orbit -,10) are of the form 

7(0) = L 7iO)(x) ®e1a. (3.8) 
feZ 

A 

Since we are working with the algebraic group G/l.o , the com-
ponents 7iO) (x) are identically zero for almost all IEZ, while 
the nonzero components are polynomials in the X; 'so 

We introduce an isomorphism of L(Ao), 

¢vac (t) : = exp(~1 (;p;). t;EC. (3.9) 

A 

This operator does not belong to the group G/I.", but if we 
take almost all t; 's to be zero, it does belong to an arbitrary 

A 

completion G ;", where p is a weight of the form (2.14). It 
acts on the group orbit as a shift operator 

¢vac (t) '7(0)(X) = 7(0)(X + t) = f 7iO) (x + t) ®e1a. 
feZ 

(3.10) 

Using the Hermitian form H on L(Ao) we can project 
( 3.10) on the vector e1a , thereby obtaining a useful expres­
sion for 7iO) (t); 

7iO)(t) = H(e1a,¢vac .-,10» 

= H( T"vo'¢vac ·g.·vo) 

= H(vo,T - t¢vac ·g.·vo)· (3.11) 
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Note that, since 7iO) is a polynomial, we may indeed take 
almost all t; to be zero in (3.9). 

We find that the components 7iO)(t) are the vacuum 
expectation value of 

¢I(t):= T-1¢vac(t)kEG;0. (3.12) 

Expressions for 7 functions in terms of vacuum expectation 
values were i~roduced by the Kyoto school, see, e.g., Ref. 1. 
The element VI will provide the connection between repre­
sentation theory and zero curvature equations in the follow­
ing sections. This connection was first explained by Wil­
son4

,5 for the modified KdV equation [using the principal 
realization of L ( Ao) ] . 

D. Birkhoff decomposition for ~I 

In this section we will study the Birkhoff decomposition 
of ¢I. Since ¢I (t) belongs to Gp/l.o for all I and t, it has a 

A A 

factorization (2.20). (We use here the projection Gp -G;" 
described in Sec. C.) Therefore we write 

¢'(t) = ¢I_ (t)¢b(t)¢'+ (t), (3.13) 

where 

¢b (t) = exp{al(t)j}. Tk'w'exp{A b (t)a~ + Al (t)ar} 

'exp{b l(t)e}. (3.14) 

Here WE{I,r~I\,,} and the integer k depends on I and t. 
Substituting (3.13) in (3.11) and using the fact that ¢I+ 

and exp{b' e} stabilize Vo as well as the contravariance of the 
form H, we obtain for the components of the 7 function 

7iO)(t) = H(vo,¢I_ ¢b¢'+ vo) 

= H(vo,Tk'w'exp{A bag + Al a~}vo)· 
Since a~' Vo = 8 iO , W· Vo = Vo this becomes 

(3.15 ) 

7iO)(t) = H(vo,Tkvo)lb(l) = 8kOeA.b(t). (3.16) 

This formula shows that 7iO) (t) vanishes if and only if 
k #= O. Remember that 7iO) (I) is a polynomial, say in the vari­
ables fl,IZ, ... ,ln • Therefore ifit does not vanish identically, its 
zero set is a closed, nowhere dense subset of cn . For all t 

outside this set k must be zero. In this case the factorization 
(3.13) has very nice properties; projecting on the loop group 
Gp one obtains [see (2.19) ] 

'¢I(t) = '¢/_ (t)'¢b(t),¢/+ (t), (3.17) 

where 

'¢/_ (t) = 1 +AIA -I +Az...t. -2+ ... , 

'¢b (t) = BoEG = SI2(C), 

'¢/+ (t) = 1 + CIA + Cz...t. 2 + .... 
Thus we have a factorization in strictly negative powers of A, 
powers zero, and strictly positive powers. Furthermore, the 
factors '¢/_ (t), '¢b (t), and '¢/+ (t) are differentiable with 
respect to t (see Pressley and Segal 13 ) • 

On the zero set of 7iO) (t) this is no longer true, giving 
rise to singularities in the solutions of the zero curvature 
equations to be derived in the following sections. For more 
information on the zeros of 7 functions we refer to Hel­
minck 14 and references therein. 
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IV. ZERO CURVATURE EQUATIONS 

A. Introduction 

In Sec. IV B we will derive linear differential equations 
for the operators ;//_ (t) and ¢b (t)¢I+ (t), which are valid 
for all toutside the zero set of the polynomialriO)(t). More­
over, we will show that, if t is such that ri~ 1 (t) is also non­
zero, these differential equations may be supplemented with 
a set of linear difference equations. Compatibility of the re­
sulting set of differential difference equations leads to the 
usual zero curvature conditions together with a set oflattice 
zero curvature conditions, both formulated on (8:) p • 

In the second section we will project out the center to 
obtain zero curvature equations on the algebra (8) p and see 
that no essential information is lost. 

B. Zero curvature equations on <i)p 

Using the definition (3.9) and (3.12) of the operator ¢I, 

we see that it satisfies the differential equations 

a AI AI . 4 
'iI/! =Pil/!, 1= 1,2,.... ( .1) 

Using the Birkhoffdecomposition (3.13), this can be rewrit­
ten as 

AI -I AI a '11 AI -I AI 4 
(I/!-) a,il/!- + ( 1,'1'0.+ }(I/!o.+) =R (Pi)' (.2) 

where we have introduced 
AI AI AI A I AI -I AI 
I/!o.+ : = I/!o I/! + ' R (Pi): = (I/!_) Pi (I/!- ). (4.3) 

Note that (4.2) is an equation on the algebra 1r A., ( (8:) p)=t,. 
Define subalgebras 8: + and 8: _ of 8: by 

g_: = $/t,i®~, 
- ;<0 

(4.4) 

and denote by (8:+) p' (8:-) p their closures with respect to 
II lip· One has 

(4.5) 

Since riO) (t) is assumed to be nonzero, the left-hand side of 
(4.2) is already decomposed according to (4.5); for the 
right-hand side we write 

AI AI AI 
R (Pi) =R _ (Pi) +R + (Pi)' (4.6) 

Now (4.2) is equivalent to the following linear equations: 

[a'i + R 1_ (Pi)] (¢I_ )-1 = 0, i= 1,2, ... , (4.7a) 
A[ A J [a,i-R + (Pi)]I/!O.+ =0. (4.7b) 

Define covariant derivatives by 
A I a AI· 4 D'i= li- R + (Pi)' 1=1,2,.... (.8) 

The compatibility conditions for (4. 7b) are the zero curva­
ture equations 

[

A I A I .. 
D li,D 'j] = 0, l,j = 1,2, .... (4.9) 

One easily checks that 

[
AlAI" 1 D li,R (Pj)] = 0, I,j = 1,2,... . (4. 0) 

Hence the elements RI (Pj), defined by (4.3), Il£e (up to 
multiplication by a power of A) resolvents for D ~i in the 
sense of Dickey. 15 
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Besides the differential equations (4.1 ), the operator ¢l 
also satisfies the difference equation 

¢I+I = T-I¢I. (4.11) 

Using the factorization (3.13) this may be rewritten as 

(¢I_ ) -I¢I~ l¢b~+1 (¢b. + ) -I = (¢I_ ) -IT-I¢I_ . 

Ifwe define 

Ul : = (¢l_ )-IT-I¢I_, 

Ul_ : = (¢;_ )-I¢I~ I, 

UI+ :=(¢I~I)-IT-I¢I_ =¢b~+I(¢b.+)-I, 
we have the factorization 

( 4.12) 

(4.13 ) 

(4.14 ) 

Note that, if ri~ 1 (t) # 0, the factorization (4.14) has again 
nice properties, i.e., on the level of the loop group we have 

-I -I - I 
U=U_U+, 

(4.15 ) 
(jl_ =1+A1A- 1+ ... , (jl+ =Bo+B1A+ .... 

Moreover, (jl_ and (jl+ depend differentiably on t. 
From the definitions (4.13) of fjl_ and (jl+ we read 

off the difference equations 

¢1~1 = ¢I_ (jl_, 

J,I+ 1 -Ul '11 
'1'0. + = + '1'0. + . 

(4.16a) 

(4.16b) 

Equation (4.16b) suggests the introduction of a lattice co­
variant derivative J)I , which is defined on group valued fields 
~l (t) by 

J)I~I = (U l+ )-I~I+ 1 - ~I. (4.17) 

From (4.16b) we see that ¢b. + is covariantly constant with 
respect to this derivative. This equation may therefore be 
considered to be the discrete analog of ( 4. 7b). 

The compatibility of (4. 7b) and (4.6b) gives the follow­
ing differential difference zero curvature equations (see 
Ref. 7): 
A AA A A. A 

RI+I(p)-U I RI (p)(U I )-I+(aUI )(U I )-1 + i - + + i + Ii + + . 
(4.18 ) 

We stress that, although (4.16a) and (4.16b) are always 
valid, (4.18) can only be derived if both riO) and ri~ 1 are 
nonzero. 

One easily checks that 

R I(Pi) = UIR I(Pi)(UI)-I, (4.19) 

which shows that (4.19) is essentially the lattice resolvent, 
introduced in Ref. 7 (there we used if rather than UI

). In 
that paper we could only verify the factorization (4.15) by 
explicit calculation. Here it is a simple consequence of the 
specific form of the Birkhoff decomposition for ¢l, ¢I + 1 

following from the assumptions riO) #0 and ri~ 1 #0. 

C. Zero curvature equations on (g)p 

In this section we calculate the central component of the 
zero curvature equations (4.9) and (4.18) and we will see 
that it is trivially satisfied. First we calculate the central term 
of R 1+ (Pi)' which we denote by c:; 
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, A, 
Ci : = 1T.(R + (Pi»)' (4.20) 

Here 1T. is the projection on the center of the Kac-Moody 
algebra. Using (4. 7b) we may write 

1T.(R '+ (Pi») = 1T.(a,,'¢b. + )('¢b.+ )-1) (4.21) 

and since the center is contained in h we obtain 

ci = 1T. (a,,'¢b) ('¢b) -I). (4.22) 

For 1')°)#0 (3.14) reads 

'¢b = exp{a'l}w exp{A bc + (A ~ - A b )anexp{b Ie}, 
(4.23) 

where we have used c = ag + a~. Substitution in (4.22) 
yields 

(4.24) 

Since the two-cocycle, defining the central extension, is zero 
on (£ + ) p' the central component of ( 4. 9) becomes 

a,c,' = a,ci, 
, J 

(4.25) 

which is trivial in view of (4.24). 
Similarly we find, (see 4.15), 

1T.(a"fj'+ ) (U'+ )-1)= (a"ln1')C:!t -a"ln1'IO»c 
(4.26) 

and the central component of ( 4.18) reads 

ci+ 1= ci + (a" In 1')°11 - a" In 1'IO»c, (4.27) 

which is again trivially satisfied. 
From the discussion above it is clear that we may project 

the zero curvature equations (4.9) and (4.18) on the loop 
algebra without loss of information. More generally, all ob­
jects (and relations between them) introduced in Sec. IV B 
have, by projection, their counterparts on the loop group and 
loop algebra. We will denote them by the same symbols with 
the hat A replaced by a tilde - and will refer to them by 
their formula number in Sec. IV B. 

V. THE RESOLVENT 

A.lntroduction 

In Sec. IV we saw that the central component of the zero 
curvature equations carries no information and that these 
equations may. therefore just as well be formulated on the 
loop algebra. This does not mean that the center is unimpor­
tant; in this section we will use the complete affine algebra, 
or rather its basic representation L(Ao), to compute the re­
solvent R' (Pi) explicitly. 

In Sec. V B we will find an expression for k (Pi) in 
terms of the components of the l' function; the final formula 
we obtain was found earlier by Flaschka, Newell, and Ra­
tiu. 8 However, these authors introduce the l' function in a 
completely different context (see Sec. VI) and they-as they 
stress themselves-do not have a Lie algebraic interpreta­
tion for it. 

In Sec. V C we express the resolvent in terms of differen­
tial polynomials in certain fundamental fields. In terms of 
these fields the zero curvature equations (4.9) and (4.18) 
become a system of AKNS equations on a lattice coupled by 
Toda equations. 7 This connection between Toda and AKNS 
equations was discovered before (see Refs. 16 and 17) by 
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considering certain Backlund transformations for the 
AKNS system. Our construction is less ad loc and shows 
that it is natural to think of Toda and AKNS equations as 
members of one family, the Toda-AKNS hierarchy. 

B. The resolvent In terms of T functions 

The simplest of the covariant derivatives (4.8) is the one 
in the t I = : x direction. It has the form 

-, -, h (0 
Dx =ax -R + (PI) =ax -A® 2- r' (5.1 ) 

We will now derive expressions for q' and r' in terms of l' 
functions. 

First consider q' ; it is the coefficient of A ° ® e in the root 
space decomposition of R' (PI) = (if,'- ) -IA ® h 12if,'_ and 
therefore it is also the coefficient of A - I ® e in the decompo­
sitionof(if,'_ )-I(hI2)if,'_. Since (if,'- )-I(hI2)if,'_ and 
('¢'_ ) -I (h /2)'¢'_ differ only by a central term we may 
write 

q' = H(A -I ® e'vo,('¢'_ ) -I(h 12)'¢1_ .vo) 

X [H(A -I ®e'vo,A -I ®e'vo)]-I 

= H(/o· VO, ('¢'_ ) -I (h 12)'¢'_ ·vo) 
A A 

= H (h 12)' (t/i_ ) -It./o. vo,l/l_ . vol. (5.2) 

Here the dagger t means Hermitian conjugation as usual; 
if ('¢l_) - I is an expression of the form 
exp 1T",,, (XI)" 'exp 1T",,, (xn ), we have, using (2.5), 

(¢' _ ) -It = exp{ - 1T ",.,(wo(xn »)}" ·exp{ - 1T ",.,(WO(x I ) I}. 
(5.3 ) 

~ince ('¢'_ ) -I belongs to (fr _) p' its conjugate belongs 
to ( U + ) p and we may write 

(¢'_ )-It = I +A+, (5.4) 

where A + is an operator, which raises the weight of a vector 
it acts on. The vector /0' Vo has weight Ao - ao and the only 
weight higher than this is Ao itself. Therefore we have 

('¢l_ ) -It '/o'vo = /o'vo + I/,Vo, (5.5) 

where It is some complex number. 
We now calculate 

(h 12)('¢1_ ) -It"/o 'Vo 

= ~a~ '/o'vo + Yta~ 'Vo 

= ~ (Ao - ao, a~ )/o'vo + YL(Ao, a~ )vo = /o'vo' (5.6) 

Using the definition of the translation operator T and the 
weight system P(Ao) (3.7), we readily find 

T'vo = - fo'vo 
and hence 

q' = - H(T'vo,'¢'_ ·vo) 

- H(vo,T-I'¢'('¢b. + ) -Ivol· 

If riO) #0 this becomes 

q'= -H(vo,T-I,¢'vo)'e-Ab 
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An analogous calculation yields 

I = rl~ I hIO). (5.10) 

Next we consider the complete resolvent RI (Pi); we 
write it as 

We already know 

I (0 
R o = I 

For the other matrices R : we write 

R: = res(R I(Pi») = res(R 1_ (Pi») 

=res(¢/_)-Ia",j/_), i=1,2, .... 

Here we have used (4.7a). 
The operator ~/_ may be written as a series 

~/_ = 1 +b l1TAJA -I®e) +al1TA.,(A -I®h) 

+ cl1TAJA -I ®j) + .... 
Hence after projection we obtain 

ij/_ = 1 + A _I(a
l 

b I ) + ... 
cl -al 

and we find 

I tj 

(
a al a"b

l
) 

R i = a,,cl _ a"al . 

Using (5.13) we calculate the coefficients ai, bl
, cl

; 

bl=H(A -1®e'vo,~/_ ·vo) =ql, 

cl = H(A -I ®lvo,~/_ ·vo) = - I, 
al=H(A -1®h'vo,~/_ -VO) 

X [H(A -1®h'vo,A -I®h-vo)]-I 

=H(A -1®(h/2)'vo,¢;_ ·vo) 

"'I "'I -I ) 
= H(vo,PltP (tPo.+ ) 'Vo 

(5.11 ) 

( 5.12) 

(5.13 ) 

(5.14 ) 

(5.15 ) 

(5.16 ) 

(5.17) 

= H(vo,(ax~/)(¢Jo. + ) -I· VO) (5.18) 

{ "'I ')) :1.1 :1.1 -I} ) =H(vo, axtP_ + '1'_ (ax '1'0. + )('1'0.+) 'Vo 

=H(vo,(ax~b.+ )(¢Jo.+ )-I· VO) 

=H(vo'c~ ·vo) [see (4.22)] 

= ax In riO). 

So we finally obtain 

(

a, ax In riO) 
R:= 'al 

" 

a,ql ) 
, (0)' i = 1,2, .... 

- a" ax In rl 
( 5.19) 

Note that, since riO) depends only on a finite number of 
times, R : = 0, 't;/ i > N. This means that the resolvent R I (p 1 ) 

is an element of the polynomial loop algebra 8:. 
For the sake of completeness we also give the expression 

for the positive part of the lattice resolvent in terms of r 
functions; 
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fjl+ = (ij/!I)-IT-(?/_ 

= (A - ax In( riO) hl~ I) - rl~o) I IrIO») 
rIO)hl~1 

= (A - ax In l qo/). (5.20) 
-l/ql 

C. The resolvent as a differential polynomial 

In the usual theory of resolvents (see, e.g., Dickey l5) 

the matrix coefficients of resolvents are polynomials in some 
set offundamental fields and their derivatives with respect to 
some variable; one may choose, e.g., ql and I as fundamen­
tal fields and x as the special variable but other choices are 
also possible, as we will see in this section. The explicit form 
of the resolvent derived in Sec. V B does not look like this at 
all, since all ti derivatives appear and the diagonal terms are 
of the form a" ax In riO). One knows however, that the r 
functions satisfy many equations and (implicitly) using 
these, one finds that resolvents may indeed be expressed in 
terms of differential polynomials, as stated above. 

We start with a factorization for ~/_ EGp • It may be 
written as 

~/_ = 1 + A ~A -I + A ~A -2 + ... = 1 - A I, 

where 

A/:= - IA:A -iEGp • 

i>1 
We can define the logarithm of ~/_ by 

n/ : = log ~/_ : = I ~ (A I) k 

k>1 k 
and we have 

~/_ = exp nl. 

(5.21 ) 

(5.22) 

(5.23 ) 

We stress that n l is, in general, not in any of the completions 
(~_ ) p' but ought to be considered as a formal power series 
with traceless matrices as coefficients; 

nl= In:A -i, trn: =0. (5.24 ) 
i>1 

The Lie algebra £. may be decomposed as 

£.= ~fJJ~1, (5.25 ) 

where hi = fJJ aeAga is of course just a subspace, not a subal­
gebra. Associated with this decomposition we have a factori­
zation of ~/_ . 

Lemma 5.1: There exist unique formal power series 

Sl = I S:A -i, S:E~, 
i>1 

and 

k I = I k:A - i, k :E~ \ 
i>1 

such that 

~/_ = exp sl'exp k I. 

Proof: We have 
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exp sl'exp k I = exp L Cn (s',k I), 
n>1 

(5.27) 

where the Cn 's are the well-known Campbell-Baker-Haus­
dorf expressions 

CI(SI,k l ) =Sl + kl, C2 (SI,kl) = ~ [s',kll, 

C3 (SI,k I) = -b {[SI,[SI ,k']] + [kl,[kl,sl ]]}, etc. 

(See, e.g., Varadarajan. 18
) 

(5.28 ) 

According to (5.23) we should try to solve Sl and k' 
from 

L Cn (sl,k I) = nl. (5.29) 
n>1 

The A. - i coefficient of this equation reads 

s~ + k ~ + Ci(S~ .. 's~_l>k ~ ···k ~_I) = n~, (5.30) 

where Ci is a complicated expression in commutators of the 
arguments indicated. Using (5.25) we can, if 
s~ ... s~ _ I> k ~ ... k i-I are already determined, find SiEh 
and k ~Eh 1 in exactly one way. 0 

Theformal power series Sl and kl are both important; in 
this subsection we will use k' to express the resolvent in 
terms of differential polynomials. The significance of i will 
be discussed in Sec. VI. 

The following lemma states that a gauge transformation 
byexp kl "diagonalizes" the covariant derivatives jj :, (4.8). 

Lemma 5.2: 

k '(a R I ( ) - k' a a I e Ii - + Pi) e = Ii - Pi + I,S. (5.31) 

Proof By (4.2) and (4.7b) we have 

Pi = (aJi/- ) (ii/_ )-1 

+ :;'1_ (a:;'1 )(:;'1 ) -1)(:;'1_ )-1 
'f' ti'f'O.+ 'f'O. + 'f' 

= (ati¢/- ) (ii/_ )-1 + ti/_ R 1+ (Pi)(¢/- )-1. 

(5.32) 

Substituting the factorization (5.26) and using the fact that 
exp Sl centralizes Pi one easily obtains the lemma. D 

The following proposition is due to Drinfeld and Soko­
lov. 3 

Proposition 5.3: Let Dt be a covariant derivative of the 
form 

(5.33 ) 

where the Vm 's are functions oft with values in~ = s1(2,C). 
Then there exists a unique formal series 

k = L kiA. - i, kiE~ \ 
i>1 

such that 

. h . 
exp(adk)(Dt ) =at -,1'-- L A.,-mhm, (5.34) 

2 m>1 

where hm E~. Moreover, the matrix coefficients of the ki's 
and hm's are polynomials in the matrix coefficients of the 
Vm 's and their t derivatives. 

Combining Lemma 5.2 and Proposition 5.3, we con­
clude that the matrix coefficients of the k j's are polynomials 
in the matrix coefficients of R 1+ (Pi) and their ti derivatives, 
for arbitrary i. We will call such polynomials and, somewhat 
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inaccurately, also matrices with these polynomials as coeffi­
cients ti -differential polynomials. 

Since kl is a ti-differential polynomial for all i, the same 
holds for the resolvents RI (Pj ) and the lattice resolvent fI; 
indeed we have 

and 

Ul = (ii/_ )-IT-lfi/_ = e-k'e-/T-Ilek' = e-k'T-Iek ', 

(5.36) 

where we have used that eS
' centralizes both Pi and T. 

Taking i = 1, e.g., we find that R.I (Pj) and fI are x­
differential polynomials, i.e., that their matrix coefficients 
are polynomial expressions in the fields ql, r' and their x­
derivatives. In terms ofthese fields the zero curvature equa­
tions (4.9) are by definition the AKNS family formulated 
on a lattice, L='l. The first two members ofthis family are 

[jj: ,jj~] = a¢} I at, ql = a!ql- 2(l)2r', 
, a r'= _a2r'+2ql(r')2 

t, x 

(nonlinear Schrooinger), 

[ jjl ,jjl] = a¢} la,Jql = a~ql - 6qlr' aAI
, 

t, x a,/ = a ~r' _ 6qlr' axr' 

(5.37) 

(modified KdV). 

The differential difference zero curvature equations 
( 4.18) tell us how the fields in different lattice points are 
related. It turns out that all information is contained in the 
case i = I, which gives the Toda equations 

ql+ 1= _ (ql)2r' + ql a! In ql, r'+ 1= - III (5.38) 

(see Ref. 7 for a more detailed discussion) . 
As mentioned in the Introduction, we will refer to the 

complete system of differential difference equations for ql 
and r' as the Toda-AKNS family. 

We may summarize this section by the following simple 
proposition. A 

Proposition 5.4: Let geGAo and 

r'0): =g·vAo = L 1'jO) (x) ®ela 

iEZ 

be its associated l' function. Then ql : = - 1'j~ I hiO) and 
r' : = 1'i~ I hiO) are solutions of the Toda-AKNS family. 

VI. CONSERVATION LAWS 

A. Introduction 

In this section we discuss conservation laws for the 
Toda-AKNS system. For the AKNS family two different 
constructions of conserved densities exist. The first one is 
due to Drinfeld and Sokolov3 and comes down to a diagona­
lization of the zero curvature equations by performing a 
gauge transformation by exp kl. The second construction 
expresses the conserved densities in terms of the resolvents. 
This method may be found in Dickey. IS Flaschka, Newell, 
and RatiuK noted the connection with l' functions. In Sec. 
VI B we will compare the conserved densities obtained by 
these different methods and we will see that they are essen-
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tially identical. For a discussion of various constructions of 
conservation laws in the context of Lax equations we refer to 
Wilson. 19 

If one considers the AKNS system on a lattice, the con­
served densities will of course not only depend on the times 
t i , t;;. 1, but also on a discrete index fEZ. In Sec. VI C we will 
investigate the discrete evolution, which will lead to the for­
mulation of discrete conservation laws. Finally we will see 
that, taking a different point of view, one may also obtain 
conserved quantities for the Toda lattice from these discrete 
conservation laws. 

B. AKNS conservation laws 

Let f be a ti-differential polynomial for some fixed 
choice of t i . The tj derivative off can be calculated from the 
tj derivatives of the generators of ti -differential polynomials, 
i.e., the coefficients of R 1+ (Pi); these follow from the zero 
curvature equations [jj :i,jj:j] = 0, which can be rewritten 
as 

-I -I -I 
a'jR + (Pi) = [D 'i,R + (p)]. (6.1 ) 

Since R 1+ (p) is a ti-differential polynomial, we deduce 
from (6.1) that the tj derivative of a ti -differential polyno­
mial is again a ti -differential polynomial. 

We will call a ti -differential polynomial a ti -conserved 
density if there exists for all j> 1 a ti -differential polynomial 
gj' such that 

a,!=a,gj" 
J , 

(6.2) 

We will refer to (6.2) as a ti-conservation law. 
It is easy to construct such ti -conservation laws; define 

h j : = arl, (6.3) 

where Sl is the formal power series defined in (5.26). Al­
though Sl is not a ti -differential polynomial, it is easily seen 
from (5.31) (with i replaced by j) that h j is a ti-differential 
polynomial. The obvious identity 

a,h;=a,h j
l (6.4) 

J ' 

tells us that h ; is a ti -conserved density. Expanding (6.4) in 
powers of A. - I, one finds an infinite sequence of ti -conserva­
tion laws. Using (5.31), the reader easily checks that (6.4) is 
nothing else but the zero curvature condition [jj :i,D:

j
] = 0 

after a gauge transformation by exp kl. This is the construc­
tion of Drinfeld and Sokolov.3 

Now we will discuss the second derivation of conserva­
tion laws. Remember from Sec. IV that the central compo­
nent ofthe resolvent Rl (Pi) is given by 

c; = 1T. (Ad(¢I_ ) -I (Pi») = (a'i In 7 1(0) ·c. (6.5) 

For the adjoint action of the Kac-Moody group Gp on the 
Kac-Moodyalgebra (&) p one has the following well-known 
formula: 

Ad g"(.x + ac) = Ad g(x) + {tr res(g-I (a"g)x) + a}c, 

(6.6) 

(see, e.g., FrenkeI20
). 

Here g denotes, of course, the image of g under the pro­
jection Gp -- Gp • 
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Using this formula we can express the quantity 

Fij:=a,a,ln7}0) (6.7) 
, J 

in terms of resolvents: 

Fij =a'j trres(¢/_ (a" (;p_ )-I)Pi) 

=trres({(a,;p_ )(a,,(¢/_ )-1) 
J 

+ ti/_ (a" a,/ii/_ ) -1)}Pi) 

= tr res ( {¢/_ R 1_ (Pj )(a" (ii/_ ) -I) 

-ti/_a,,(-RI_ (Pj}(ti/_ )-I)}Pi) 

- tr res(¢.I_ a" (R 1_ (Pj ))(¢.I_ ) -Ipi ) 

-trres(a,,(R I_ (p))RI(Pi)) 

=trres(R I_ (pj)a,,(RI(Pi»)) 

= tr res(R l(p)a,,(R 1+ (Pi»))' (6.8 ) 

Here we have used (4. 7a) and some obvious properties of the 
trace and the residue. 

From the final expression it is clear that F ~ is a ti -differ­
ential polynomial. Then the identity 

a, Fl. = a Flk (6.9) 
k Ij Ii J 

shows that F~ is for allj a ti-conserved density. 
Remark: By studying the structure of the AKNS equa­

tions, Flaschka, Newell, and Ratiu are led to introduce the 
quantities Fij :=trres(R(p)a"R+(Pi»)' They proceed to 
prove that the F ij 's are symmetric in i and j and that a'k F ij is 
totally symmetric in i,j, and k. This enables them to define 
the 7 function as a potential; Fu = : a, a, In 7. From this 

, 'J 

definition, however, it is not at all clear that 7 has anything to 
do with the representation theory of the group G. 

The relation of F ~ with the conserved densities obtained 
from expanding h ; is as follows; substituting the factoriza­
tion ¢.I_ = eS"ek' in (6.5) we find 

a'j In 7iO) = tr res ( {exp k I a" (exp( - k I») - a"sl }Pj)' 

( 6.10) 

This gives, for F~, 

F~ = a'iKj - tr res((a"h ;)Pj), 

where 

Kj = tr res(exp k I a,,(exp( - k I»)pj) 

is a ti -differential polynomial. If we substitute 

h l =Ih l .. (1 O)A.- j 

I j>O Ij 0 - 1 

in (6.11) we find 

(6.11 ) 

(6.12 ) 

(6.13 ) 

F~ =j-h ~ + a'iKj. (6.14) 

So the two constructions of ti -conserved densities differ 
by a total ti derivative, which is not considered to be essen­
tial. 

c. Discrete conservation laws 

In the previous section we found that h ; is constant in 
all times modulo total ti -derivatives of ti -differential polyno­
mials. A natural question to ask is how h ; changes under the 
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discrete evolution 1-- 1+ 1. For this purpose we introduce a 
lattice derivative a by 

(6.16 ) 

We then have 

ah ; = a catiS') = ati (as'). (6.16 ) 

If we want to interpret (6.16) as a discrete conservation 
law, we have to investigate whether as' is a ti -differential 
polynomial. From the definition (4.15) of U '+ and the fac­
torization (5.26) of'if'_ we obtain 

exp( - as') = exp k'+ IU'+ exp k'T=: 1- IAiA -i. 
i>1 

( 6.17) 

Observing that K' + I is a polynomial in q' + I, r' + I, and their 
x derivatives and using the expressions (5.38) for q' + 1, r' + 1, 
and the explicit form (5.20) of U'+ we find that the matrix 
coefficients of A: = l:i>IAiA - i are polynomials in q', r', 
their x derivatives, and 1/ q' . Since 

as' = I ~, 
k>O k 

(6.18 ) 

the matrix coefficients of as' are of the same form. Using the 
zero curvature equations, one can express the x derivatives 
of q' and r' in the generators of ti -differential polynomials 
and their ti derivatives, so that the matrix coefficients of as' 
may also be written as polynomials in these generators, their 
ti derivatives, and 1/q'. We conclude that as' is not a t i -

differential polynomial and that if we want to read (6.16) as 
a discrete conservation law we will have to adjust the defini­
tion of a conservation law somewhat to allow powers of 1/ q' 
in the right-hand side. 

One may, however, also take a different point of view 
towards (6.16); reading it from the right to the left, it states 
that as' changes with a total lattice derivative of a ti -differ­
ential polynomial under the ti evolution. This opens the pos­
sibility of constructing conserved quantities for the Toda­
AKNS system by summation over the index I. 

To perform this summation we have to study in some­
what more detail the solutions q' and r' and the 7 function 
associated to an element g'vo of the orbit of G A" passing 
through Vo' Since G A" is an algebraic group, q', r', and 7)°) 
depend only on a finite number of times ti and 7)°) will be 
identically zero for almost alII. The next lemma gives some 
more precise information about this situation. 

Lemma 6.1: (a) If q', r' do not depend on tn + I , they are 
also independentoftn + i' Vi> 1, i.e., the set ofi's such thatq' 
and r' depend on ti is an interval 1 <J<.n. 

(b) The set of I 's such that 7)°) is not identically zero is 
an interval N<.I<.M. 

(c) At the boundary points NandM determined by (b) 
the conserved densities h ~ and h t;t are identically zero. 

Proof For (a) letq' andr' be determined by (5.1) and 
let them be independent of tn + I . We then have 

-, -, [- , R-' ( )] - 0 (6 19) [Dx,D t.+ t ] = D x' - + Pn+1 -. . 

In otherwordsR '+ (Pn + I) is a resolvent for jj ~.It is easy to 
see that all resolvents of jj ~ must be of the form 
exp( - ad k') (p'), where p' is a constant element of the 
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Heisenberg subalgebra 1 and k' as in Proposition 5.3. Using 
this we write 
-, , 
R + (Pn+ I ) = exp( - ad k )(Pn+ I ) 

-exp( - adk') (~a;A -ih) 
1>0 -, 

= R (Pn+ I) 

-exp( -adk') (~a;A -ih). 
1>0 

(6.20) 

Here the ai's are constants. Expanding the resolvent R '(PI) 
as in (5.11) and taking the residue of (6.20) we obtain 

-, , 
O=R n + 1 -alh. (6.21) 

Using this, the zeroth-order term of the zero curvature equa-
tion [jj ~ ,jj ~ ] = 0 becomes 

.+2 

(
0 q') ( 0 

atn+ 2 r' 0 = - 2a~ r' 
2a~q') 

o ' (6.22) 

solving this we find 
, 2a't , q=e In+2· q Un+2 =0), 

, 
r'=e-2attn+2·r'Un+2 =0). 

(6.23 ) 

Now formulas (5.9) and (5.10) show that q' and r' are 
rational functions of the times t i . So-provided that q' and r' 
are not identically zero-we must have a~ = 0 and 
at q' = 0 = at r'. As a side result the proof shows that 

n+2 "+2 -, -,. . 
R + (Pn + I) = R (Pn + I ), I.e., that the resolvent IS algebra-
ic. 

For (b) and (c) we consider a right boundary point of 
the lattice, i.e., a point M such that 7~)¥=0,' 7~~ I =0. For­
mula (5.9) shows that qM =0 and therefore the covariant x 
derivative in I = M becomes 

(6.24) 

This enables us to calculate kM explicitly. 
Remember from Proposition 5.3 that kM is determined 

by the condition 
M - kM 

ek (D~)e- ~. (6.25 ) 

It is natural to look for a solution of (6.25) of the form 

(6.26) 

If such a solution exists, it is unique by Proposition 5.3. Us­
ing this ansatz, we calculate 

exp(ad kM)(jj~) 

= a - A..!!.- - Ak M _ a k M _ (0 00)' 
x 2 x ~ 

Using (6.25) we find 

Ak M = _ a k M _ ( 0 0) 
x ~ O· 

Equating the coefficients of A - i, t;;,O, we find 

ft;t = (- )i(ax)i-I(~), Vi;;.!. 

We can now compute the resolvent R M (Pi): 
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R M(Pi) = e- kMpiekM = Pi - A. ikM. (6.30) 

It has zeroth-order term 

-M (0 0) i-I,N (0 00)' R ° (Pi) = - jl( 0 = ( - ax) ( ) 1 

(6.31) 

The AKNS equations [jj ::,jj~] now become very simple; 

at;,N = ( - )i+ I(ax h,N), Vi>l. (6.32) 

Since,N depends only on the times I 1,/2, ... ,ln , we must have 

(ax )i(,N) = 0, Vi>n + l. (6.33 ) 

Using (6.26), (6.29), and (6.33) we finally find 

kM= n±lA. _i(O 0) (_ )i(ax)i-I(,N). 
i~ I 1 0 

(6.34 ) 

Remark that kM is algebraic and nilpotent, which implies 
that exp kM = 1 + kM belongs to the algebraic group 
SI2(C[A.,A. -I J). 

It is now easy to calculate at,sM=hl(; with (5.33), 
(6.26), (6.29), (6.30), and (6.32) we compute 

a
M kM - M - kM 

t;S = Pi + e (at; - R + (Pi))e 

- a k M - (A. ik ) 
I j M -

-4,A.-j(~ ~){atJ;+.t:+j}=O' (6.35) 
J>I 

Since we are working with an algebraic group this result 
can be sharpened to SM = 0; indeed since "if! (0) is algebraic, 
its factors tW. + (0) and 'iii!- (0) = exp ~ (O)exp kM (0) are 
also algebraic. Above we saw that exp kM is algebraic so the 
same must hold for exp SM (0), i.e., it is of the form 

M (pM(A. -I) 0) 
exp s (0) =. M I' o q (A. - ) 

(6.36 ) 

wherebothpM(A. -I) andqM(A. -I) = l/pM(A. -I) are poly­
nomials in A. - I starting with 1. This can only happen if 
pM=1=qM and hence ~(O) =0. Using (6.35) we find 
SM =0 as desired. (If we leave the algebraic group we may 
still derive at SM = 0 at a right boundary point M but not 
~=O.) , 

Finally we consider the Birkhoff decomposition of 
~ + i for i> 0; we have 
A/'./'. A 

if?1 + i = T - 'if?1 = T - 'VI'!- ~ + 

=T-~ TiT-~+ 

= (1 + T -ikMTi)T -~+. (6.37) 

Now 

T-i(A.j®j)Ti=A.j-2i®j (6.38) 

and hence (T - ~ Ti) t stabilizes Va. Using this we obtain 
for'T'~~i 

(0) H( T - Ci.M ) H( T - i ) (0) 0 'T'M + i = Va' 'fo, + Vo = vo, Vo 'T'M = . 
(6.39) 

The situation at a left boundary point N is similar and will be 
left to the reader. This completes the proof of the lemma. 0 

Now return to Eq. (6.16). Summation over 
N < / <M - 1 yields, using the lemma, 
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at;s = h I( - h ~ = 0, 

where we have defined 
M-I 

S:= L !!J 
I~N 

(6.40) 

( 6.41) 

So S is a polynomial expression in the fields ql, r, their x 
derivatives, and l/ql, N</<M - 1, which is conserved with 
respect to the Ii evolutions. Note that, in the case of the 
algebraic group we are working with, the fields land rare 
such that S is identically zero; 

(6.42) 

(see the proof of Lemma 6.1). 
Let us now calculate the explicit form of the first two 

conservation laws contained in (6.40) for Ii = I I = x. Using 
(5.31) one finds 

h: = -qlr·A.-lh+~(qlaxr-raAI)'A.-2h+"· 
(6.43) 

and with (5.38) one determines the first two terms in the 
expansion of ( 6.16 ) , 

a( -lr) =a~ In ql= ax (ax Inql), (6.44) 

a ~(ql axr - r axl) 

= ax(~ (ax In ql)2 - qlr/) + ~ ax (a ~ In ql). 

Summation over N</<M - 1 yields 

ax (~~: ax In ql) = 0, 

(6.45 ) 

( 6.46) 

(6.47) 

If we substitute u/ : = In ql, i: = axul, (6.46) and (6.47) 
are just the conservation of the total linear momentum and 
the total energy ofthe Toda lattice; 

(
M-I ) 

ax I~Ni =0, 

VII. THE TODA-AKNS SYSTEM AS DEFINING 
EQUATIONS FOR p(O Ao) 

A.lntroductlon 

(6.48) 

(6.49) 

In the preceding sections we have seen how an element 
geGAo gives rise to a solution ql = - 'T'}~ I /'T'}O) , 

r = 'T'}~ I /'T'}O) of the Toda-AKNS system. Since we are 
A 

working with the algebraic group GAo, the solution satisfies 
the following: 

there exist integers N,M such that 

ql,r,¥=O, for N</<M, 

qN=I=O, ~=O, qM=O, ,N=I=O. 

for N</<M ql and r are rational functions 
of a finite number of variables, 
say 11,/2,oo.,ln • 

( 7.1a) 

(7.1b) 

In this section we want to follow the reverse way; starting 
from a solution ql,r of the Toda-AKNS equations, which is 
of the form (7.1a) and (7.1b), we will construct a group 
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A 

element gEGA
" , which gives rise to this solution. 

Such a group element is obviously not unique, since 
multiplication on the right with an arbitrary element of the 
stabilizer Po of the highest weight vector vo will not change 
the 7 function. Moreover, since ql and r' are quotients of 
components of 7 functions, g and Ag, AEC· will yield the 
same solution. 

The explicit construction of g in this section shows that 
the freedom mentioned above is the only one. This means 
that any solution of the Toda-AKNS equations of type 
(7.1a) and (7.1b) corresponds to precisely one element of 
the projectivized group orbit peG A,,/PO ) = P(OA,,) and vice 
versa. We may also say that the Toda-AKNS equations are 
defining equations for P(OA" ) as a subset of P(L(Ao»). 

B. Outline of the construction 

The strategy to construct a group element g starting 
from a solution l, r' of the form (7.1a) and (7.1b) is as 
follows: suppose for a moment that we have fo~d al3... ele· 
ment g giving rise to this solution. The factors 1/11_, 1/1b. + 
from the Birkhoff decomposition (3.8) of 

;// = T - 1 expCt, P;ti)g 

then satisfy the linear equations (4.7a) and (4.7b). Project­
ing these equations on the loop group and rewriting them 
slightly, we find 

-I -I -I a,,1/1o.+ =R+(Pi)1/10.+' l,,;;i,,;;n, (7.2a) 

a",!/_ =Piif/- - if/- R 1+ (Pi)' l,,;;i";;n. (7.2b) 

Remember that R 1+ (Pi) is an x-differential polyno-
mial, so that it is completely determined by the solution l, 
r'. This suggests that, given such a solution, we should try to 
solve the linear equations. Having done this, we define 

if/:=if/-~b,+ (7.3) 

and we derive from (7.2a) and (7.2b), 

a'i~/=Pi~/, l,,;;i,,;;n. (7.4) 

The solution of (7.4) is simply 

~I = expCt/;ti)~/(O) = expCt/;ti)~/- (O)~b.+ (0). 

(7.5) 

It is now evident that we should take for g an arbitrary 
lift of 

g: = T/~/_ (O)~b.+ (0) (7.6) 

to GA
". This determines g up to a nonzero complex constant 

AEC·. The remaining freedom in g consists of the possible 
choices of the initial conditions ~b. + (0) and ~/_ (0) for the 
linear equations (7.2a) and (7.2b). 

In Sec. VII C we will see that (7.2a) has a local solution 
~b. + (t)ESI2 (A / ) for any initial condition 
~b. + (O)ESI2(qA » = Po, so that g can indeed be multiplied 
on the right by an arbitrary element of Po. The linear equa­
tions (7.2b) will be studied in Sec. VII D. It will turn out 
that (7 .2b) is only solvable in Sl2 (A p- ) for a special class of 
initial conditions ~/_ (0) and that this class contains only 
one element of the algebraic loop group G. 

1319 J. Math. Phys., Vol. 29, No.6, June 1988 

c. The linear system (7.2a) 

We start to remark that the integrability conditions of 
(7.2a) are, of course, satisfied, because ql,r' is a solution of 
the AKNS equations; 

a'j a,,~b. + - a" a'j~b. + = [lJ :"lJ:j]~' + 
= 0, l,,;;i,j,,;;n, (7.7) 

therefore any initial condition 

~b. + (0) = Bo + B,A + ... + BkA kEgI2 (C[A ]) (7.8) 

determines a local solution ~b.+ (t), t= (t"oo.,tn ), ti <Ei . 

[Sinceql, r'have singularities, ~b. + (t) will in general not be 
globally defined.] Because R 1+ (Pi) is traceless, 
det ~b. + (t) is constant in t. Hence choosing 
~b, + (0)ESI2(qA », we will have det ~b. + (t) = 1. 

We now investigate the A dependence of the solution 
~o. + (t). Because of the integrability of (7 .2a) we may per­
form the integration of this system in n successive steps, 
where in the ith step all times except ti remain constant. The 
resulting ordinary differential equations (ODE's) can be 
solved iteratively and it is not too difficult to derive the fol­
lowing lemma. 

Lemma 7.1: Let P be an arbitrary symmetric weight, 
1/1b. + (t) a solution of (7.2a) with initial condition 
-I -1/10. + (O)ESI2(C[A ]), then 1/10. + (t)ESI2 (A /). 

D. The linear system (7.2b) 

The linear system (7.2b) is fundamentally different 
from (7.2a). One may of course, just as in Sec. VII C, check 
that the integrability conditions are satisfied and conclude 
that any initial condition determines a local solution of 
(7 .2b). However, because of the presence of positive powers 
of A in the right-hand side of (7 .2b), this solution will, even if 
its initial value is prescribed to be in Sl2 (C [A -']), in general 
not remain in this group [or in one of its completions 
SI2(A p- )]. This can only be achieved for a special class of 
initial conditions. 

In order to find these initial conditions, let us try to 
construct a formal solution ~/_ of the form 

~/_ = LAiA -i, Ao =I. 
i>O 

Using Lemma (5.1) we can write 

~/_ = es"ee, 

where 

Sl= LA -isi, 
i>' 

and 

k 1 = LA - ik i, k iE~ 1 

i>' 

(7.9) 

(7.10) 

are formal power series. Substitution of (7.10) in (7.2b) 
yields, of course (see 5.31 ) , 

ek'(a" - R 1+ (Pi »)e- k' = a,/ - Pi' (7.11) 

According to Proposition 5.3 such a kl is uniquely deter-
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mined in terms of the solution ql, r. Furthermore, Sl should 
satisfy 

k '-I ' asl=p.+e D e- k . 
ti I ti 

(7.12) 

These equations are again integrable because 

a I a a I k' - I - I - k' ,.a,s - , ,s =e [D"D,.]e =0. 
J I I J I J 

(7.13) 

Note that the integrability conditions (7.13) are just the 
conservation laws (6.4). So any initial condition s/(O)eL 
determines a local solution Sl (t), ti < Ei of (7.12). -

Thus we have determined all solutions of (7.2b), which 
contain only negative powers of A,. The possible initial condi­
tions are 

es'(O) 'ek'(O), (7.14) 

wheres' (O)L is arbitrary and k' (0) is determined by ql and 
r. The problem with (7.10) and (7.14) is of course thatthey 
are just formal power series and that we do not know at all if 
they belong to the algebraic group Sl2 (C [A, - 1 ] ) or one of its 
completions. 

To solve this problem, we use condition (7.1a). Let M 
be the right boundary point determined by this condition. 
Using the proof of Lemma 6.1 (b) and 6.1 (c) one shows that 
exp kM (0) eSl2 (C [A, - I ] ). Therefore the set of possible ini­
tial conditions (7.14) contains for I = M only one algebraic 
initial condition, namely SM (0) = 0 and 'iii!.- (0) 
= exp k M (0) . Using again the proof of Lemma 6.1 (b) and 

6.1 (c) one shows that a,,sM = 0, Vi. Hence the unique alge­
braic solution of the linear system (7.2b) for I = M is given 
by 

(7.15) 

E. Conclusion 

We now combine the results of the previous sections to 
define, as was outlined in Sec. VII B, an element of the alge­
braic loop group by 

- M.J. -g:= T ~ (O)~+ (0) (7.16) 

and take for g an arbitrary lift of g to GAo. It remains to check 
that the solution ql, r of the Toda-AKNS system associated 
to this element g coincides with our original solution ql, rl 
for all N<I<M. For this we remark that 

A,~+(O q~=[('iiI!.-)-IA,~'iiI!.-] 
2 yN 0) 2 + 

= [e-kMA,(h/2)ekM] =A,~+(O q~ 
2 ~ 0) 

(7.17) 
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by the results of Secs. IV and V. So we have 

qM = qM = 0, yN = ~ = 1'ri~ I/1'ri) #0. (7.18 ) 

Moreover, both ql, rand ql, r satisfy the differential differ­
ence equations (5.38), which may be rewritten as 

ql- 1 = _ 1/r, N + 1 <I<M, 
(7.19) 

rl- I = - ql(r)2 + r a; In r. 

From this we conclude that ql, rand ql, r are indeed identi­
cal. 

We may summarize this section with the following 
proposition. 

Proposition 7.2: Let ql, r be a solution of the Toda­
AKNS system that satisfies (7.1a) and (7.1b). Then there 
exists an element l' = g. Vo of the group orbit of GAo through 
vo, which has, in the homogeneous realization of L(Ao), 
components 1'iO

), such that 

(7.20) 

The l' function, and hence its components 1'iO
), is unique up 

to a mUltiplicative constant. 
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The generalized Sturm-Liouville problem for a system with a Dirac-type spectrum was 
converted to that of a linear integral operator with a symmetrical kernel by Yang [Commun. 
Math. Phys. 112, 205 (1987)]. A supplementary case is discussed in this paper. 

I. INTRODUCTION 

Recently, the Sturm-Liouville theorem was general­
ized I to 2N coupled first-order linear ordinary differential 
equations with a Dirac-type spectrum. The elegant Sturm­
Liouville theorem is a powerful tool for obtaining informa­
tion on the number of eigenvalues, on the nodes of the wave 
functions, and on the meaning of Levinson's theorem. 2-6 

However, the relativistic equation of motion, the Dirac 
equation, is a first-order differential one, and there are differ­
ent characters between the first-order and the second-order 
differential equations. For instance, the energy spectrum for 
the Dirac equation is unbounded from below. 

Consider the radial Dirac equation 

- g'(r) + (K/r)g(r) = [E - V(r) - M If(r) , 

/'(r) + (K/r)j(r) = [E - V(r) + M ]g(r), (1.1) 

where the potential V(r) is a real continuous function of r 
satisfying 

V(r) = {O, at r;pa, (1.2) 
const, at r - 0, 

and K = + (j + D. For definiteness, we discuss the case 
with K > 0. Changing Eq. (1.1) into the matrix form, we have 

H(r)rp(r) = Erp(r), rp(r) = (f(r»), (1.3) 
\g(r) 

H(r) = - i0'2!... + U(r), ar 
U(r) = (K/r)O'I + M0'3 + V(r) 12, 

(1.4 ) 

where U(r) is a 2X2 symmetric matrix and O'j is the Pauli 
matrix. Near the origin, one solution is divergent and the 
other is vanishing. From the indicial equation of ( 1.1 ), two 
solutions satisfy the different boundary conditions at the ori­
gin. The latter solution satisfies 

f/glr=o =Ko=O. (1.5) 

In the region [a, (0) the solutions of Eq. (1.1) can be ob­
tained exactly. For IE I <M, there is only one solution van­
ishing in infinity, the ratio f / g of which at r = a + can be 
calculated as 

( 1.6) 

Ifin the region [O,a] there is a solution satisfying Eq. (1.3) 

and both boundary conditions (1.5) and (1.6), this solution 
is the physically admissible one, called the bound state. 

In some physical problems, for example, fermions mov­
ing in the background monopole field2

,4 or in the back­
ground Skyrmion field,6 and the ftilly relativistical treat­
ment for two particles,7 the radial equations appear to be 
four coupled first-order linear ordinary differential equa­
tions which are the general forms ofEq. (1.3) with the gen­
eral forms of boundary conditions (1.5) and (1.6). Yang's 
generalized form of the Sturm-Liouville theorem provides a 
powerful method to deal with those physical problems. 

Furthermore, by converting the Sturm-Liouville prob­
lem to that of an integral operator with a symmetrical ker­
nel,8,9 one has powerful control over the properties of the 
eigenfunctions and eigenvalues. The generalization has been 
made by Yang to the first-order differential equation 

[E-H(x)]<I>(x) =f(x), O<x<a, 

where E is not equal to the eigenvalue of the Hamiltonian. In 
this paper we will generalize this method to the case where E 

is an eigenValue of the Hamiltonian. Some properties of the 
solutions will also be discussed in this paper. 

We use the same notations as used in Ref. 1. 

II. PROBLEM 

We consider the first-order ordinary differential equa­
tions in the matrix form 

[E - H(x) ]<I>(x) =f(x), O<x<a, (2.1) 

where <I>(x) andf(x) are 2N X 1 column matrices,f(x) is 
piecewise continuous in the region [O,a], and 

H(x) = m ax + V(x), (2.2) 

m=(O 
IN 

(2.3) 

where V(x) is a real symmetrical 2N X 2N matrix and con­
tinuous in the region [O,a], 1 N is an N X N unit matrix, and 
all quantities are real. Whenf(x) = 0, we have the eigen­
equation of H(x), 

H(x)rp(x) = Erp(x), rp = (!), (2.4) 

where sand 11 are N X 1 column matrices. We shall discuss 
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the solutions if! satisfying the boundary conditions at x = ° 
and x = a: 

s = Ko1/, at x = 0, 

s = Ka 1/, at x = a, 

(2.5) 

(2.6) 

where Ko and Ka are real symmetrical N X N matrices. 
There are N linearly independent solutions ofEq. (2.4) 

satisfying the boundary condition (2.5). Arranging them in 
columns we obtain the matrix solution "': 

H(x)",(x,E) = E",(x,E) , (2.7) 

"'=(!), (2.8) 

where sand 1] are N X N matrices, and, at x = 0, 

1](O,E) = IN' s(O,E) = Ko. (2.9) 

Similarly, arranging N linearly independent solutions of Eq. 
(2.4) satisfying boundary condition (2.6), we obtain the 
matrix solution", I: 

and, atx = a, 

1]1(a,E) = IN' sl(a,E) =Ka· 

Define 

W(x,E) =;i'vu"'= (s-Ka1])lx=a, 

then 

d 
- W(x,E) =0. 
dx 

(2.10) 

(2.11 ) 

(2.12) 

(2.13 ) 

As shown in Ref. 1, the necessary and sufficient condition 
that there is a nonvanishing solution of Eq. (2.4) satisfying 
both boundary conditions (2.5) and (2.6) is 

det W(x,E) = O. (2.14) 

Such a solution is called an eigenfunction and corresponding 
E is an eigenvalue: 

H(x)tPI(x) = EltPl(x), tPI(X) = (Ill «X») , 
VI x) 

IlI(O) = Kovl(O), at x = 0, 

III (a) = Ka VI (a), at x = a. 

(2.15 ) 

For any real number E that is not an eigenvalue of Eqs. 
(2.4)-(2.6), the only solution ofEq. (2.1) satisfying both 
boundary conditions (2.5) and (2.6) for if! at x = 0 and 
x = a can be expressed as I 

<I>(x) = f (xl 0 Iy)j(y)dy 

= "'I (X,E) W-I(X,E) LX -iiJ(y,E)j(y)dy 

+ ",(X,E) W-I(X,E) f-iiJ1 (y,E)j(y)dy. (2.16) 

If E is an eigenvalue of H(x), E = Es' W(x,Es) is singular, 
and W -I (x,Es) cannot be defined. In the following, we as­
sume, first, that Es is nondegenerate, and the only eigen­
function is 
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tPs (x) = ",(x,Es); = t: ~;~) , 
where; is a real normalized N X 1 matrix and 

Vs (0) =;, Ils (0) = K o;, 

Ils (a) = s(a,Es); = Ka 1] (a,Es ); = Ka Vs (a). 

III. NECESSARY CONDITION 

(2.17) 

(2.18 ) 

If the piecewise differentiable solution <I>(x) of Eq. 
(2.1) satisfying both boundary conditions (2.5) and (2.6) 
exists when € is an eigenvaue Es of H(x), we multiply the 
eigenfunction tPs (x) on the both sides ofEq. (2.1) and inte­
grat6 it in [O,a]: 

.C~s(X)j(X)dX= f~s(X)[Es -H(x)]<I>(x)dx 

= f{[Es -H(x)]tPs(x)Y<I>(x)dx 

- ~s(x)m<l>(x) I ~:g = 0, 

where the superscript T denotes the transpose of the matrix. 
Therefore, the necessary condition for the existence of such a 
solution <I> (x) is 

f [",(x,Es);] T j(x)dx = 0. (3.1 ) 

IV. GENERAL SOLUTIONS 

If <1>1 (x) and <1>2 (x) are the solutions ofEq. (2.1) satis­
fying the boundary conditions (2.5) and (2.6), the differ­
ence<l>l(x) - <l>2(X) satisfiesE.q. (2.4) with the eigenvalues 
E = Es. Since the eigenvalue Es is nondegenerate, 

The general solutions ofEqs. (2.1), (2.5), and (2.6) can be 
expressed as 

<I>(x) + ctPx (x), (4.2) 

where <I>(x) is a particular solution which we will discuss. 

V. PARTICULAR SOLUTION 

Define X as an N X N real orthogonal matrix with; as its 
first column and Yas such a matrix whose first column is 
proportional to 1] (a,Es ); = Vs (a), which is not vanishing 
because the eigenfunction <l>s is not a trivial one. Now, the 
necessary condition (3.1) becomes 

f [",(x,Es)X] T j(x)dx = (~), (5.1) 

where D is an (N - 1) X 1 matrix. 
It is easy to see that the first column and row of the 

following matrix vanish: 

- - (0 0 ) YW(x,Es)X= Y(S1]-1 -Ka)1JXlx=a = 0 WI' 

(5.2) 

where WI (x,Es) is an (N - 1) X (N - 1) real nonsingular 
constant matrix because the eigenvalue Es is nondegenerate. 
The first column of the matrix in Eq' (5.2) vanishes because 

Z. Ma and A. Oa; 1322 



                                                                                                                                    

the first column of TJX is the lower part Vs (a) of the eigen­
function ¢s; and the first column of the transposed matrix of 
(5.2) vanishes because the first columns of 1JX and Yare 
proportional to each other. 

Define an N X N real symmetrical matrix K ': 

K'=K _ y(1 O)Y. 
a 0 0 

(5.3 ) 

We getthesolution ""(x,Es) ofEq. (2.7) withE = Es' satis­
fying the boundary condition at x = a: 

TJ'(a,Es) = IN' S'(a,Es) =K', at x=a. (5.4) 

Instead of W(x,Es) we introduce W' (x,Es): 

W' (x,Es) = \ii' (x,Es )li.I"'(x,Es) 

= (STJ-I-K')TJlx=a' (5.5) 

In fact, W' (x,Es) is independent of x. Now, 

YW'X=Y[STJ-I-Ka+Y(~ ~)Y]1JXlx=a 

= (~ ~) + (~ ~)Y1JX Ix=a 

= (: ~). (5.6) 

where S is a 1 X (N - 1) matrix, and b is a nonvanishing 
constant. Therefore, W' is nonsingular, 

det W'#O, (5.7) 

and W' - I can be defined. 
Defining <I> (x) as in Eq. (2.16): 

<I>(x) = La (xl'{}'ly)f(y)dy 

= ""(x,Es) W'-I(x,Es) LX\ii(Y,Es)f(Y)dY 

+ ",(x,Es) W'-I(x,Es) f\ii'(y,Es )f(y)dy, (5.8) 

and following the proof of Lemma 9 in Ref. 1, we find that 
<I> (x) is a piecewise differentiable solution of Eq. (2.1) with 
€ = E s ' and satisfies the boundary conditions 

<I>(x) = ("'(X»), 
v(x) 

",(0) = Kov(O), ",(a) = K'v(a). 

However, at x = a we have from Eq. (5.8) 

<I>(a) = ""(a,Es) YYW,-I(a,Es)X 

X La [",(y,Es)X] T f(y)dy 
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(5.9) 

= Kav(a). (5.10) 

Therefore, <I>(x) in Eq. (5.8) is the particular solution of 
Eqs. (2.1), (2.5), and (2.6). 

VI. DEGENERATE CASE 

If Es is n-fold degenerate, there are n linearly indepen­
dent eigenfunctions ¢s; = "'t;, i = 1,2, ... ,n, where t; can be 
chosen as orthogonal and normalized. The necessary condi­
tion for the existence of the solution ofEqs. (2.1), (2.5), and 
(2.6) is thatf(x) satisfies Eq. (3.1) for each of "'t;. The 
general solutions now can be expressed as 

n 

<I>(x) + I c;",(x,Es )ti> (6.1 ) 
;=1 

where <I>(x) is the particular solution. In the degenerate 
case, X is defined as an N X N real orthogonal matrix whose 
first n columns are t;. The TJ(a,Es )t; are linearly indepen­
dent because there are n linearly independent eigenfunctions 
with the degenerate eigenvalues Es. Orthogonalizing and 
normalizing them, we define an N X N real orthogonal ma­
trix y whose first n columns are 

n 

Y; = I [TJ(a,Es )tj ] (B -I )j;' 
j= I 

;jT)(a,Es)TJ(a,Es )t; = Bj;, (6.2) 

i,j = 1,2, ... ,n, det B #0. 

Now, WI (x,Es) in Eq. (5.2) becomes an (N - n) 

X (N - n) real constant matrix with a nonvanishing deter­
minant. Defining an N X N real symmetrical matrix K' as 

K' =K _ Y n Y (1 0)_ 
a 0 0 ' 

(6.3) 

and substituting it into Eqs. (5.4) and (5.5), we get 

YW'X=(OO ;)+Co" oO)Y1JX lx=a =(! ~J' 
where S is an n X (N - n) matrix. Thus 

det W'#O, 

(6.4) 

(6.5) 

and W'-I is defined. Finally, substituting "" (x,Es) and 
W'(x,Es) into Eq. (5.8), we can also prove Eq. (5.10), 
namely, <I> (x) is the particular solution ofEqs. (2.1), (2.5), 
and (2.6), where € = Es is an n-fold degenerate eigenvalue 
of H(x). 

VII. INTEGRAL TRANSFORMATION ONTO THE 
EIGENFUNCTION OF H{x) 

Choose the source functionf(x) as 

f(x) = (Es - H)¢I = (Es - EI )¢/' (7.1) 

where ¢I is an eigenfunction of H(x) with the eigenvalue 
EI #Es' and f(x) satisfies the necessary condition (3.1). 
The solution <I> (x) in Eq. (5.8) now satisfies the same equa­
tion and boundary conditions as ¢/' so 
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(7.2) 

From Eq. (5.10), the lower component vex) ofct>(x) satis­
fies 

(7.3 ) 

i.e., 

(7.4 ) 

Since the lower component of tPsi (a) is just 1) (a,Es );i' the 
coefficients Ci in Eq. (7.2) can be determined uniquely from 
Eqs. (7.2) and (7.4). Therefore, 

fa(xIO'ly)tP[(y)dy= ct>(x) 
Jo Es -E[ 

= [tP[(X) + ~CitPSi(X) ](Es _E[)-l, 

(7.5) 

where the c;'s have been determined. Equation (7.5) is the 
generalized form of Lemma lOin Ref. 1. 

VIII. APPLICATION 

Courant and Hilbert8 pointed out that every continuous 
function ct>(x) that, as in Eq. (2.16), is an integral transform 
with a symmetric kernel (x I 0 Iy) of a piecewise continuous 
function f(y) can be expanded in a series in the eigenfunc­
tionsg[(y) of (xIOly): 

f (xIOly)g[(y)dY=Ji[g[(y), (8.1) 

ct>(x) = L c[g[(x), (8.2) 
[ 

c[ = Jg[(X)ct>(X)dX = J J g[(x) (xl 0 Iy)f(y)dx dy 

=JiJ g[(y)f(y)dy. (8.3) 

Now, when E=I=Es, from Lemma 11 in Ref. 1, 
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(8.4 ) 

Therefore, ct>(x) in Eq. (2.16), which is the solution ofEqs. 
(2.1), (2.5), and (2.6), can be expanded in a series in the 
eigenfunctions tP[(x) of H(x). When E=Es andf(x) 
= l:[ ,",s d[tP[ (x), the solution ct>(x) can be expressed as 

ct>(x) = f (xIOly)f(y)dy 

= L d[ fa (xIOly)tP[ (y)dy 
['"'s Jo 

where Eq. (7.5) has been used and Ck can be determined 
uniquely by Eqs. (7.2) and (7.4). 
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In a previous paper [J. Math. Phys. 28, 964 (1987)], the author showed that the internal 
motion of a molecule, a many-body system in the Born-Oppenheimer approximation, can be 
well described in terms of the gauge theory or of the connection theory in differential 
geometry. However, the scope of that paper centers on the planar triatomic molecule in order 
to put forward the gauge theory in an explicit manner. This paper is a continuation of the 
previous one and gives the generalization to the planar multiatomic molecule. The internal 
space of the n-atomic molecule proves to be diffeomorphic to R + X cp n - 2, the product of the 
positive real numbers and the complex projective space. The internal states of the molecule are 
described as cross sections in complex line bundles over the internal space. Introduction of the 
complex line bundles is a geometric consequence of the angular momentum conservation law, 
because cross sections in each complex line bundle are in one-to-one correspondence with 
eigenstates that have a fixed total angular momentum eigenvalue. The internal Hamiltonian 
operator is obtained, which acts on the cross sections in the complex line bundle. Further, 
boson calculus is performed to obtain a complete basis of internal states of the molecule, using 
the harmonic oscillator annihilation and creation operators. As a result, carrier spaces of 
unitary irreducible representations of the unitary group U(n - 1), which are characterized by 
two integers, are realized as finite-dimensional subspaces of the space of the square integrable 
cross sections in the complex line bundle. 

I. INTRODUCTION 

A "molecule" in this and previous papers of the author 
means a system of several particles or atomic nuclei in the 
Born-Oppenheimer approximation. In quantum chemistry, 
theoretical treatment of nonrigid molecules has been related 
more or less with the Eckart frame. 1 However, the Eckart 
Hamiltonian is interpreted as valid in the vicinity of the equi­
librium nuclear position. If one wishes to study motions of 
nonrigid molecules far from the equilibrium position, one 
must become involved with the difficulty in separating rota­
tion and vibration. It is Guichardee who showed that the 
vibration motion cannot, in general, be separated from the 
rotation motion. 

On the basis of Guichardet's work, the author demon­
strated in previous papers3

,4 that the internal motion of the 
nonrigid molecule can be well described in terms of the 
gauge theory or the connection theory in differential geome­
try: The center-of-mass system is made into a principal fiber 
bundle with the rotation group as the structure group. The 
base manifold of this fiber bundle is called the internal space, 
which is thought of as the set of all the molecule forms inde­
pendent of the position. With this principal fiber bundle are 
associated the complex vector bundles assigned by the total 
angular momentum eigenvalues, the cross sections of which 
are understood as internal states of the molecule. The associ­
ation of the complex vector bundle is a geometric conse­
quence of the conservation of the total angular momentum. 
Hence the internal Hamiltonian operator is derived from the 
standard one on the center-of-mass system by using the con­
servation law of the total angular momentum. 

Introductory remarks on the present geometric setting 

for the n-body system are here worth making to show that 
this setting could provide a profound view of n-body sys­
tems. If the molecule is regarded as a system of nucleons, i.e., 
as a nucleus, the geometric setting in this paper becomes 
related to the collective models of nuclei. In the microscopic 
collective model, one discusses the problem of effecting a 
change of coordinates on the n-body center-of-mass system 
(Rd)n - 1 from Cartesian to collective plus intrinsic coordi­
nates. The essential idea made clear by Rowe and Rosen­
steel5 is this; consider a Lie group G acting on (Rd) n - 1 and 
decompose (Rd)n-l into orbits ofG. The collective coordi­
nates are taken to be a chart for the generic orbits, while the 
intrinsic variables are a set of coordinates for the transversal 
to those orbits. This idea has the same origin as the present 
geometric setting with G = SO(d), and may be developed 
further to fit into the principal fiber bundle theory; the cen­
ter-of-mass system is indeed made into a principal fiber bun­
dle. The collective coordinates are represented as the Euler 
angles for SO(d), and the intrinsic coordinates should be a 
chart for the internal space, the base manifold of the princi­
pal fiber bundle. The transversality is then taken to be the 
distinction between rotational and vibrational vectors, and 
eventually leads up to the connection on the principal fiber 
bundle. 

In the collective models, one is interested in G = SO(d), 
SL (d,R), or G L + (d,R), and in the collective part of the 
kinetic energy operator. However, in the present setting for 
G = SO(d), the whole (i.e., collective plus intrinsic) kinetic 
energy operator is discussed. The intrinsic (or "vibrational" 
in this paper's nomenclature) part is of interest from the 
chemical and geometric points of view, because this part is 
characteristic of nonrigid molecules and associated with the 
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linear connection induced on the complex vector bundles. 
Though the previous papers3

•
4 presented the general 

method for treating the internal motion of the molecule, as 
stated above, applications were restricted to the triatomic 
molecule; in Refs. 3 and 4, triatomic molecules were dealt 
with in two and three dimensions, respectively. This paper is 
a continuation of Ref. 3, and gives an application of that 
method to the planar multiatomic molecule. 

The organization of this article is as follows: Section II is 
concerned with the center-of-mass system for the planar n­
atomic molecule. It is shown that the center-of-mass system 
is made into a principal fiber bundle en - 1 __ R + X cp n - 2 

with the structure group U ( 1 ) ~ SO (2), where the overdot 
means that the origin is deleted, and R + and Cp n - 2 denote 
the positive real numbers and the complex projective space,6 

respectively. The connection defined by the Eckart condi­
tion is constructed and its curvature is shown to be the 
Kahler form associated with the Fubini-Study metric on 
Cp n - 2 (Ref. 6). The induced metric on the internal space 
R + X Cp n - 2 is also obtained, which turns out to be a 
warped product of the standard metric on R+ and the Fu­
bini-Study metric on Cp n - 2. 

Section III contains the associated complex line bundles 
over the internal space R + X Cp n - 2. These complex line 
bundles Lm are assigned by the eigenvalues m of the total 
angular momentum operator, i.e., all the integers. Thus 
cross sections in Lm are understood as internal states of the 
molecule with the total angular momentum eigenvalue m. 
The linear connection in Lm, which are induced from the 
connection defined on the center-of-mass system, is dis­
cussed together with its curvature. 

Since R + is contractible, complex line bundles over 
R + X Cp n - 2 are in one-to-one correspondence with com­
plex line bundles over Cp n - 2, so that the contents of this 
section run in parallel with the theory of complex line bun­
dles over Cp n - 2 (see Ref. 7, for example). The curvature 
two-form of the induced linear connection in Lm defines, 
independently of R +, the first Chern class on Cp n - 2,

7 and 
hence the first Chern class numbers prove to be nothing but 
the eigenvalues m of the total angular momentum operator. 

The curvature form is interpreted as a "magnetic" field 
or a gauge field caused by the rotation of the molecule. W rit­
ten in local coordinates, the linear connection in L m is 
thought of as a minimal coupling of the internal motion with 
the gauge field. 

Section IV deals with the internal Hamiltonian operator 
that acts on cross sections in the complex line bundle Lm. 
This operator turns out to be quadratic in the covariant deri­
vation operator and to contain a centrifugal potential. This 
implies that the internal Hamiltonian operator satisfies the 
principle of minimal coupling with the gauge field. 

Section V is devoted to boson calculus using the har­
monic oscillator annihilation and creation operators in order 
to obtain a complete basis of internal states with the assigned 
angular momentum eigenvalue. In conclusion, unitary 
group actions on the cross sections in L m are considered. In 
the space of cross sections in Lm, a series of carrier spaces of 
unitary irreducible representations ofU (n - 1) xU (n - 1) 
and of U (n - 1) are found, which are characterized by two 

1326 J. Math. Phys., Vol. 29, No.6, June 1988 

integers. Thus the internal states of the n-atomic molecule 
are classified in terms of a U (n - 1) basis. 

Though this paper concentrates on the planar multiato­
mic molecules, the same idea of the geometric setting can run 
for d-dimensional multiatomic molecules. In fact, for d = 3, 
triatomic molecules were discussed in the same geometric 
setting, using explicit coordinates such as Euler angles, prin­
cipal moments of inertia, etc. For three-dimensional multia­
tomic molecules, complex vector bundles VI' 1= 0,1,00', are 
used, instead of the complex line bundles Lm for the planar 
molecules, to describe the internal states of the molecule. 
The standard fiber of VI is C21 + 1, the carrier space for the 
unitary irreducible representation of SO (3). The internal 
Hamiltonian operator can be obtained in the same manner as 
developed in Ref. 4. 

While the two-dimensional molecule is of mathematical 
interest, its simplicity admits a complete analysis, so that the 
geometric setting becomes tractable. Indeed, the internal 
space, diffeomorphic with R + X Cp n - 1, and the complex 
line bundles Lm over it are topologically easy to understand. 
In this respect, together with the introductory remarks al­
ready made, Sec. V will give new insight into the microscopic 
collective models, but in two dimensions. 

II. THE PRINCIPAL FIBER BUNDLE 

In this section we make the center-of-mass system into a 
principal fiber bundle with the structure group U ( 1 ) 
~SO(2), and discuss the connection and curvature due to 
Guichardet. 2 To carry out this program in an explicit man­
ner, it is of great use to introduce an orthogonal system in the 
center-of-mass system, which is closely related with the so­
called Jacobi vectors. 

A. Settings on the center-of-mass system 

LetYj' j = 1,00.,n, be position vectors ofn particles in R2 
with masses mj , j = 1,00.,n, respectively. The configuration 
space Qo of the planar n-atomic molecule is then the linear 
space of all the n-tuples ( Yl,oo.,Yn); 

Qo: = {Y = (Yl,.oo,Yn); YjER2}. (2.1) 

This is clearly isomorphic with the vector space R2n. The Qo 
is endowed with the inner product by 

n 

K(x,y) = L mj (xj IYj) , 
j= 1 

(2.2) 

where the parentheses denote the standard inner product in 
R2. 

The center-of-mass system Q is defined as the linear sub­
space of Qo by 

(2.3 ) 

The inner product induced on Q will be also denoted by K. 
The rotation group SO(2) acting on R2 acts on Qo in a 

natural manner; for gESO(2) one has 

Y = (Ywoo,Yn) --gy = (gYl,·oo,gyn) . (2.4) 

It is clear that the center-of-mass system Q also admits the 
SO ( 2) action. 
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The following proposition, easy to prove, is basic for the 
discussion below. 

Proposition 2.1: Let e l and e2 be the standard basis in R2. 

Then the following n-tuples constitute an orthonormal sys­
tem in Qo with respect to the inner product K: 

(2.5) 
C2 = NO(e2, .. ·,e2) , 

f2j-1 = N;( - mj+ lei'"'' - mj+ I el,Ctl mk) el,o, ... ,o), 

f2j = N;( - mj+ I e2, .. ·, - mj+ I e2,( ± mk) e2,0, ... ,0), 
~jterms~ k=1 

j = 1,2, ... ,n - 1, (2.6) 

where N;, j = 0, 1, ... ,n, are normalization constants given by 

( 

n )-112 
No= L m k , 

k=1 
(2.7) 

N; = [mj+ I Ctl mk )Ct: mk)] - 112, j = 1, ... ,n - 1 , 

(2.8) 

respectively. 
The vectors fk' k = 1, ... ,2(n - 1), and Ch ' h = 1,2, 

form an orthonormal basis in Q and Q 1, the orthogonal com­
plement of Q, respectively. Thus Q becomes isomorphic to 
the vector space (R2)n-l. 

The decomposition Qo = Q Ell Q 1 is a restatement of an 
elementary fact of mechanics. Let B denote the center-of­
mass vector: 

(2.9) 

Then any n-tuple Y = (YI, ... ,Yn) in Qo is, as usual, broken 
up into 

(2.10) 

wherex = (xl, ... ,xn ) is in Q. The right-hand side of (2.10) is 
expressed in terms of fk and C h as 

2(n-l) 2 Bhc 
Y= L q'1k + L __ h, qk=K(x,fk)' (2.11) 

k= I h= I No 

Thus one has the following. 
Corollary 2.2: The 2n variables (B hi No,qk), h = 1,2, 

k = 1, ... ,2(n - 1), serve as the Cartesian coordinates in Qo. 
In particular (qk) are the Cartesian coordinates in Q. 

It is of practical importance to note that the (qk) has a 
realization in R2 as a system of Jacobi vectors. In fact, after a 
calculation with (2.6), we can get 

q2j - lei + q2je2 

( 

j ) 112(j + I ) -1/2 
= mj+ I L m k L m k 

k=1 k=1 

(2.12) 

The vectors in the right-hand side are known as Jacobi vec­
tors and used frequently in several-particle systems. The vec­
tors in the left-hand side lead us to the introduction of the 
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complex vector space structure in Q~ (R2) n - I. We set 

j- 2j-1 ·2j '- r---11 '-1 1 z - q + lq , I - V - 1, J - , ... ,n - . (2.13 ) 

In what follows, the complex coordinates (z j) will be exten­
sively used. 

We return to the SO(2) action defined in (2.4). 
Proposition 2.3: Letg(t)ESO(2); 

(

COS t 
g(t) = . t 

sm 
- sin t). 
cos t 

(2.14 ) 

Then the action of SO (2) on Q is expressed with respect to 
the basis {fk} in the block diagonal form 

(

g(t). ), 
(2.15 ) 

g(t) 

where missing matrix entries are all zero. The action on Q 1 is 
expressed in the same form as (2.14) with respect to the basis 
{ch }· 

Proof Computing K (g( t) Jj, fk) to get the coefficients of 
g(t)Jj = l: akjfk results in (2.15). This ends the proof. 

Corollary 2.4: The SO (2) ~ U ( 1) action on Q~ en - I is 
also expressed with respect to the complex variables (2.13) 
as 

(2.16) 

B. The principal fiber bundle 

From (2.15) or (2.16) it follows that the SO(2) action 
[ or U ( 1) action] on Q is free if the origin of Q is removed. 
Further, we see from (2.12) that the origin corresponds to 
the collision of all the particles at the center of mass. By Q we 
mean the Q whose origin is removed. The Q becomes diffeo­
morphic to en - I: = en - 1_ {O}. We now show the follow­
ing theorem. 

Theorem 2.5: For the planar n·atomic molecule, the 
center-of-mass system Q without the origin is made into a 
principal fiber bundle with structure group U ( 1). The base 
manifold M: = Q !U ( 1 ), called the internal space, is diffeo­
morphic to R + X cp n - 2, where R + and Cp n - 2 denote the 
positive real numbers and the complex projective space, re­
spectively. Let the natural projection be denoted by 1T. Then 
one has 

1T: Q~en-I--+M = QIU(1) ~R+ XCP n- 2 • (2.17) 

Proof' Note that en-I~R+XS2n-3. It is proved in 
Refs. 6 and 8 that S 2m + I is a principal fiber bundle over Cp m 

with structure group U ( 1 ); S 2m + 1--+ Cp m, called the Hopf 
fibering. The action of the U ( 1) is expressed in the form 
(2.16) withm = n - 2 and l:ltl2 = 1. Thus we have (2.17). 
This ends the proof. 

Remark: For n = 3, we recover a result in Ref. 3 
(Theorem 4). Note that the base manifold, diffeomorphic 
with R+ xCP I, is then diffeomorphic with R+ XS2~R3. 

We now define a local coordinate system that gives a 
local picture of the principal fiber bundle (2.17). Let Un _ I 
denote the open subset of en - 1 such that zn - 1 # O. Then we 
can introduce the local coordinates in Un _ 1 by 

z'" = rei/Jpwa, a = 1, ... ,n - 2, zn - 1 = rei/Jp , 

with 
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n-l n-2 

r2= L Iz jl2 , p-2=1+ L Iwa l2 • (2.18) 
j=1 a=1 

The 8 and r are the coordinates of S I, the fiber, and R + , 

respectively, and (wa
), a = 1, ... ,n - 2, serve as local coordi­

nates in Cp n - 2. The internal space, which is, so to speak, the 
space of all molecule forms independent of the position in R2, 
has then the local coordinate system (r,wa

). Note also that 
r 2 is the moment of inertia of the molecule; 

n 

=K(x,x) = L mj(xjlxj ) , XEQ. (2.19) 
j= I 

When restricted to r = 1, the coordinate system (2.18) 
becomes the one used by Trautman9 for discussing the 
Yang-Mills equation associated with the Hopf fibering 
S 2m + I ..... Cp m. Another choice oflocal coordinate system is, 
of course, possible for the open subset Uj of cn 

- I such that 
zj:;60, 1<J<n - 1. 

c. The connection and curvature 

In this section we apply the connection theory due to 
Guichardet2 to our principal fiber bundle 
en - I ..... R + X cp n - 2. Rotational vector fields are defined as 
the infinitesimal generators of the rotation group. In our 
case, since that group action is given by (2.16), the rota­
tional vector field is found to be 

F = n ~ I ( _ q2j _a_. _ + q2j _ I ~) 
jf'1 aq2l - I aq2l 

(2.20) 

where 

a l(a .a) 
az j =""2 aq2j -1 - I aq2j , 

a l(a .a) 
azj =""2 aq2j -1 + I aq2j . 

In Ref. 6, the generators of the structure group action are 
called fundamental or vertical as long as there is a connec­
tion. The vector field Fis interpreted also as the total angular 
momentum. 

The vector fields Yorthogonal to Fare called vibration­
a12 (or horizonta16); 

(2.21 ) 

where Kx is the inner product naturally induced in the tan­
gent space Tx (Q). For convenience, we extend the definition 
of Kx to complex vectors so that Kx may be a symmetric 
bilinear form on Tx (Q)c, the complexified tangent space. 
Then, for a vector field 

Y= L (sj~+1Jj~) 
az l azl 

to be vibrational, it is necessary and sufficient that 

(2.22) 
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To see this, we have only to note that from Corollary 2.2 Kx 
can be expressed as the standard flat metric on en - I; 

n-I 

Kx = L dzjdz j . 
j= I 

(2.23) 

In the following, differential forms on Q will be tacitly as­
sumed to be extended in order to be defined for complex 
vector fields on Q. 

Let Wx,vib denote the linear subspace of Tx (Q) spanned 
by all the vibrational tangent vectors at x. The connection 
due to Guichardet2 is the assignment: x ..... Wx,vib' The con­
nection is given, in a dual manner, in terms of differential 
forms as follows. 

Theorem 2.6: The connection form UJ defined on the cen­
ter-of-mass system is expressed as 

(

2(n-l) )-In-I 

UJ = k~1 (qk)2 j~1 (q2j -1 dq2j _ q2j dq2j -l) 

= {2 ~tll Izjl2) - I ~tll (zjd zj - zj dz j ) . (2.24) 

Proof We identify u ( 1 ), the Lie algebra of U ( 1 ), with 
R. For the rotational vector field F and vibrational vector 
fields Y, we obtain, from (2.20), (2.22), and (2.24), 

UJ(F)=I, UJ(Y)=O. (2.25) 

Thus, by definition,6 UJ proves to be the connection form. 
Note that the connection form UJ is associated only with 

the inertia moment and the angular momentum. This is ob­
served from (2.19) and (2.20). 

The curvature form n is given by the structure equa­
tion6 n = dUJ - UJ /\ UJ. Applied to (2.24), this formula gives 
the following. 

Theorem 2.7: The curvature form n is expressed as 

n = i Ctll Izjl2) - 2Ct: Iz j l2 :t: d~ /\ d Zk 

j~~11 zkzjdzk/\dzj) , (2.26) 

and defines a two-form on Cp n - 2. 

Proof' When applied to (2.24), the formula n = dUJ in 
our case results in (2.26) after a calculation. The curvature 
form is known to vanish for any vertical vector fields. For 
(2.26), we can verify this fact by a simple calculation with 
(2.20). Further, as is easily seen, n is invariant under the 
U ( 1) action, so that n defines a two-form on the internal 
space R+ X cpn - 2. Moreover, since n vanishes for the radi­
al vector field l: (Zk a / azk + Zk a/a Zk), it comes to define a 
two-form on CP n - 2. This ends the proof. 

We proceed to express the connection and curvature 
forms in the local coordinates introduced by (2.18). A 
straightforward calculation with (2.18) yields 

i l:(wadlija - lija dwa) 
UJ=d8+- , 

2 1 + l:lwa l2 
(2.27) 

(1 + l:lwa I2 )l: dwa /\d/ija -l: /ija wb dwa I\dlijb 
n=i~~~~~----------~~------------

(1 + l:lwa I2 )2 

(2.28) 

where a and b run over 1,2, ... ,n - 2. In view of this expres-
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sion, n becomes equal to the fundamental form associated 
with the Fubini-Study metric6,IO on cp n - 2, 

D. Rotation and vibration 

In this section we return to the rotational and vibration­
al vectors defined in Sec. II C in connection with the Eckart 
condition of rotationless constraint. As is observed from 
(2.25), the Eckart condition is described as the differential 
equation w = O. However, this equation is not completely 
integrable, II because of n #0. Alternatively, the assignment 
X-+ Wx,vib is not completely integrable. II Accordingly, there 
are no submanifolds of the center-of-mass system on which 
every motion is vibrational. Here a curve or a motion is 
called vibrational if its tangent vectors at every point of the 
curve are vibrational. This nonintegrability is worth reinves­
tigation. To this end, we wish to work with the coordinates 
introduced by (2.18). 

as 
The rotational vector field F given by (2.20) is written 

F=~. 
ao 

(2.29) 

Any rotational vector field is a multiple of F. We tum to 
vibrational vector fields. Let Xbe a vector field on the inter­
nal space M. The horizontal (or vibrational) lift X * of X is 
defined as a unique vector field on Q which projects to X; 

1T*X~ = X 1T(Xl' XEQ, where 1T* is the tangent map of 1T: 
Q-+M. For local vector fields a lar, a lawa, and a la /if on 
the open set Un _ I' we obtain, using the condition 
w( (a lawa)*) = 0, etc., 

(a)* a 
ar = ar' 

(~)* =~+l-.-p2fija~, a= 1, ... ,n-2, 
awa awa 2 ao 

(a~ar = a~a - ~ p2wa :0' a = 1, ... ,n - 2, 

(2.30) 

wherep2 was defined in (2.18). We notice that every local 
vibrational vector field on Un _ 1 is expressed as a linear com­
bination of these horizontal vectors. 

The Jacobi brackets among these vectors are calculated 
to give 

[:r'(a~ar] = [:r'(a~ar] =0, 

[(a~ar '(a~br] = [(a~ar '(a~br] =0, (2.31) 

[(~)* ,(~)*] = i fijawb - (1 + ~lwaI2)8ab ~. 
awa afijb (1 + ~lwaI2)2 ao 

These equations show that the assignment x -+ Wx,vib is not 
completely integrable (Frobenius' theorem 11), and are ca­
pable of the following interpretation: The infinitesimal vi­
brations (a I awa) * and (a I a fijb) * are coupled to give rise to 
the rotational vector field, the right-hand side of the last 
equation in (2.31). This is a reason why the rotation and 
vibration cannot be separated to each other. We note also 
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that the right-hand sides of (2.31) give the components of 
the curvature tensor (2.28); 

n (( ~a r, (a~br) 
= - w ([ (a~a r '(a~b rD, etc. 

This is why the nonintegrability is measured by the curva­
ture. 

E. The induced metric on the internal space 

Recall that we have the standard flat metric (2.23) on 
the center-of-mass system Q. This metric is, of course, invar­
iant under the U ( 1) action and induces a Riemannian met­
ric B on the internal space M as follows: Let X and Y be 
vector fields on M, and X* and y* their horizontal lifts, 
respectively. Then the induced metric B is well defined by 

B1T(x) (X,Y) = Kx (X*,Y*), XEQ. (2.32) 

Theorem 2.8: The induced metric B on the internal 
space R + X cp n - 2 is expressed as 

dr + r dq2, (2.33) 

where dq 2 is the Fubini-Study metric on cp n - 2. 
Proof' To get (2.33), we use the local coordinates 

(2.18). Inserting (2.18) into (2.23) results in 

(2.34) 

where w is the curvature form given by (2.27) and 

dq 2 = ..:.(_I_+,---~...!.1 w--,al....;2 )_~_d_w_a _d_fij_a __ -::--~:-fij_aw_b_d_w_a_d_-_wb 

(1 + ~lwaI2)2 
(2.35) 

This is known as the Fubini-Study metric on the complex 
projective space.6 The expression (2.34) was also obtained 
by Warner,12 and reduces, when restricted to r = 1, to the 
one used by Trautman.9 Recalling that for horizontal vector 
fields the connection form vanishes, we come to the desired 
conclusion (2.33). 

Remark: For complex-valued vector fields X and Y, we 
can get a "Hermitian" metric on G on M by setting 

(2.36) 

For later use, we discusss below the inner product K ~ 
defined in the cotangent space T~(Q). Let K~ be the iso­
morphism of Tx (Q) to T~(Q); 

(2.37) 

and set (K ~ ) - I = K ,!. Then the inner product K ~ is de­
fined for p,qET~ (Q) by 

K~(p,q) = Kx(K'!(p),K'!(q») . (2.38) 

Like Kx, K~ is extended so as to be a symmetric bilinear 
form on T~(Q)c. 

Let the components of the metric dq 2 be denoted by 
(gab)' and set gab = gbQ' By (g"b) and (~b) we mean the 
inverse matrices of (gab) and (gab)' respectively; 

dq 2 = ~ L(gab dwa dfijb + gab dfija dwb) , 
2 a,b 
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Then one has, from (2.34), (2.36), and (2.38), 

K~«(j),(j) = l/r, 

K~(dr,dr) = 1 = G*(dr,dr) , 

K~(dwa,dwb) = 2gab /r = G*(dwa,dwb) , 

K~(dwa,dwb) = 2lf'b /r = G*(dwa,dwb) , 

and the other vanishing. 

(2.39) 

Let f be a complex-valued function on Q. Then its dif­
ferential dfis written as 

df= af (j) + af dr+ L (~)* fdwa 
ae ar awa 

+ L (a~ar fdw
a

. (2.40) 

Using this together with (2.39), we obtain 

K*( dlf dlf) = ~ af af af af 
x , r ae ae + ar ar 

2 b ( a )* -( a )* +~L~ awa f awb f 

(2.41 ) 

This is nothing but a kinetic energy density. The first term of 
the right-hand side gives the rotational energy density, and 
the rest the vibrational energy density. 

III. THE ASSOCIATED COMPLEX LINE BUNDLES 

The internal space M may be viewed as the space re­
duced from the center-of-mass system Q by separating off 
the rotation angle variable. Accordingly, the conservation of 
the total angular momentum is brought into effect for de­
scribing the internal states of the molecule. Take up the open 
subset Un _ 1 considered in (2.18). Since Un _ 1 is broken up 
into a direct product SiX 1T( Un _ 1 ), any local function on 
Un _ 1 may be expanded into a Fourier series in the rotation 
angle, an expansion in the eigenfunctions of the total angular 
momentum operator. Then the internal state of an assigned 
momentum eigenvalue will be singled out as a Fourier coeffi­
cient of this series. However, this idea can be carried out only 
locally, because the total space Q is not broken up into a 
product space of S 1 and M. Therefore, for the global descrip­
tion of the internal states, we must pass to complex line bun­
dles over the internal space. We will soon see that the intro­
duction of the complex line bundles is a geometric 
consequence of the conservation of the total angular mo­
mentum. 

A. The associated complex line bundles 

Fix an integer m and letpm denote the representation of 
U ( 1) given by 

Pm (eil ): S ...... eimIS, SEC. 

Define a left action of U ( 1) on Q X C by 

(z,s) ...... (eilz,eimls) , 
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(3.1 ) 

(3.2) 

where z = (Zl , ... ,zn - 1) is used instead of x. This action de­
fines an equivalence relation in Q X C. Then the quotient 
manifold, denoted by Q X m C, is made into a complex line 
bundle Lm = (Q X mC,1Tm,M) via the commutative dia­
gram 

. q. 
QXC-QxmC 

pr , J 1T m , (3.3 ) 

Q -!!.- M 

where pr and q denote the projection onto the first factor and 
the natural projection, respectively. The Lm is called the 
complex line bundle associated with the principal fiber bun­
dle Q ...... M. A map s: M ...... Q X m C is called a cross section in 
Lm if 1TOS = idM, idM being the identity of M. The space of 
square integrable cross sections in Lm will serve as the space 
of internal states of the molecule. 

A complex-valued function f on Q is called Pm equi­
variant if it satisfies 

(3.4 ) 

The Pm-equivariant functions are in one-to-one correspon­
dence with the cross sections in Lm. 6 This correspondence is 
denoted by q!. For a cross section S in Lm one then has 

(q!s)(x) = qx- 1(S(1T(X»)) , XEQ, (3.5) 

where qx: C ..... 1T,;; 1(1T(X») denotes the isomorphism restrict­
ed from q on fibers; qx (s) = [(x,s)], [ ] denoting the 
equivalence class. 

We now take up investigation into what the q! means in 
quantum mes!tanics. The total angular momentum operator 
is defined by F = - iF, where F is the rotational vector giv­
en by (2.20). If we differentiate Eq. (3.4) with respect to t, 
we get 

Ff=mf. (3.6) 

This means that the equivariant function f is an eigenfunc­
tion of F. Thus picking up the Pm -equivariant functions out 
of wave functions and, therefore, introducing the complex 
line bundles Lm amount to making geometric use of the con­
servation of the total angular momentum. 

We tum to the local description of cross sections and to 
gauge transformations, in order to understand that cross sec­
tions in Lm are closely related with coefficients of the eigen­
function expansion for the total angular momentum opera­
tor. Define a local Pm-equivariant function tPk on an open 
subset Uk as follows: 

(3.7) 
Uk = {(zl, ... ;zn-l); Zk#O}. 

On the nonempty intersection Uk n~, one has 

tPk = (Zk Izlj/zjlzlk)mtPj . (3.8) 

Let S k denote the corresponding local cross section in L m ; 
q! S k = tP k' Suppose a cross section S in L m is expressed as 
fkSk =fjSj on 1T(UknUj ). Then, put together with (3.8), 
this expression gives rise to the gauge transformation 

fk = (zjlzkl!~lzjl)mfj on 1T(Uj nUk)· (3.9) 
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We note that, for k = n - 1, tPk becomes eim(J, an eigen­
function of F [see (2.29)], in the coordinates (2.18). For 
any k, a ~cal cross section IkSk corresponds to an eigenstate 
IktPk ofF. Thus the Ik' an internal state defined on l7(Uk ), 
is thought of as a Fourier coefficient of the Fourier series for 
a local wave function on Uk' The gauge transformation 
(3.9) thus gives the law of piecing together locally defined 
internal states Ik' In the literature the coefficients in (3.9) 
are called transition functions (see Refs. 7 and 8, for exam­
ple). 

B. The linear connection and curvature 

The connection defined on the principal fiber bundle 
Q-+M can be carried over into the associated complex line 
bundleLm. LetXbea vector field onM, andX* its horizon­
tal lift. Then for a cross section s in Lm its covariant deriva­
tive with respect to X is defined by 

(3.10) 

The operator V is called the linear connection, which is lin­
ear in X and s, and satisfies for arbitrary functions I the 
conditions 

(3.11 ) 

The curvature of V is defined for vector fields X and Yon M 
by 

(3.12) 

Theorem 3.1: The curvature of the linear connection on 
Lm is expressed as 

R(X,y) = - im!l(X, y), mEl, (3.13 ) 

where X and Yare vector fields on M, and !l is the curvature 
form on the principal fiber bundle Q-+M. 

Proof" By combining Eqs. (3.10) and (3.12), 

R(X,y)s = q! -I( [X*,Y*] - [X,Y]*)(q!s) . (3.14) 

We use the local coordinates (2.18) for the right-hand side 
of (3.14). We notice here that for apm-equivariant function 
q!s one has, from (2.29) and (3.6), 

~ q#s = imq#s. 
a() m m 

(3.15 ) 

We now apply (3.14) together with (2.28), (2.31), and 
(3.15) to obtain 

R(~,~)= -im!l(~,~), etc. 
awa a/ijb awa a/ijb 

This completes the proof, because Eq. (3.13) is a tensor 
equation. 

As was stated in Theorem 2.7, the two-form !l defines a 
two-form on ep n - 2; so does the curvature R. Hence we can 
show that [R ]l217i is an integral cohomology class, follow­
ing Wells, Jr.,7 for example; taking up ep l cepn-2, as a 
two-cycle, to be defined in Un _ I by Zl = ... = zn - 3 = 0 
and r = 1, we have, along with wn 

- 2 = w, 

R Icp. = m(dwl\d/ij)/( 1 + IwI 2)2, 

which yields, after integration, 

1 i - R= -m. 
217i cpo 
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(3.16 ) 

This equation may also be viewed as giving the quantized 
strength of the magnetic field R. For n = 3, we have proved 
the same equation in Ref. 3, in which we interpreted the 
curvature as a magnetic monopole field of the quantized 
strength on the internal space R + X ep 1 ~ R3. 

The internal motion of the molecule is coupled with the 
magnetic field R through a locally defined gauge potential. 
This is observed when we express the connection V in local 
coordinates (2.18). Take up the horizontal vector fields 
(2.30) defined on Un_I' Then by definition (3.10) along 
with (3.15) we obtain 

(3.17) 
V (

a . i 2a) -S= ---lm-p w S 
a a/ija 2 ' 

whereVr , Va' Va stand for Va1a, , Va1aw'" Va1aW",respective­
ly. These equations prove the above assertion, because 

m ~p2 L (wa d/ija - /ija dwa) (3.18) 
2 

is a locally defined gauge potential for mR [see (2.27) and 
(2.28) ]. 

c. The inner product for cross sections 

The inner product for cross sections in Lm should be 
derived from that for functions on Q. The volume element on 
M for integration must be reduced as well from the standard 
one on Q. The configuration space Qo has the standard vol­
umeelement 

dQo = dYI 1\ ... 1\ dYn , 

where dYk = dyl 1\ drl, k = 1, ... ,n. The volume element 
dVo defined by the inner product K is related to dQo by 

dVO=ml"'mndQo' 

According to (2.11), the d Vo is expressed also as 

dVo = N 0- 2 dB I 1\ dB 2 1\ dV, 

where No is the normalization constant and 

dV = dql 1\ .,. 1\ dq2(n - I) ( 3.19) 

is the volume element on Q defined by the inner product K. 
Thus, separating off the center-of-mass coordinates from 
dQo, we obtain the volume element dQ on Q in the form 

dQ = /-l dV, /-l = kIn m k [kf{ mk] -I (3.20) 
k=1 k=1 

To bring out the volume element dM on M, we refer to the 
expression (2.34) of the standard flat metric Kx on Q. In 
view of (2.34), we obtain dV (up to sign) in the form 

dV = rw 1\ dr 1\ r(n - 2) dS 

= w 1\ rn - 3 dr 1\ dS , (3.21 ) 

where dS is the volume element defined on ep n - 2 by the 
Kahler metric du 2. We may take dS in the coordinates 
(2.18) as 

dS= {i/2)n-2J
g
dw l 1\ d/ij' 1\ ... 1\ dwn- 2 1\ d/ijn-2, 

(3.22) 
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where Jg denotes the determinant of the Hermitian matrix 
(gab)' a,b = 1, ... ,n - 2, and is calculated as 

(n;>2) . (3.23 ) 

A straightforward but long calculation brings about the rela­
tion 

[1I(n-2)!]W- 2=r- 2det(gab)dw l /\ d/jjl 

/\ ... /\ dwn - 2 /\ d /jjn - 2 • 

(3.24 ) 

Hence, one has 

dS = [( n - 2)!2 n - 2] - Ion - 2 . (3.25) 

In the coordinates (2.18), the volume element dQ becomes 

dQ = f1 de /\ rn - 3 dr /\ dS. (3.26) 

Now we turn to the inner product for cross sections. For 
the cross section Sk, k = 1,2, in Lm, the Hermitian metric on 
Lm is given by 

(3.27) 

where the overbar indicates the complex conjugate. The 
right-hand side of (3.27) is clearly invariant under the U ( 1 ) 
action, so that it depends on 1T(X) only. 

Theorem 3.2: The inner product for cross sections Sk, 
k = 1,2, is given by 

fM (sllsz)dM= 50 q;,sl q;,s2dQ, (3.28) 

where dM is the volume element onM defined, together with 
(3.25), by 

dM = 21Tf1rn - 3 dr /\ dS. (3.29) 

Proof For Pm-equivariant functions q;'Sk = <Pk' 
k = 1,2, one has the inner product, using (3.20) and (3.21), 

f <PI <Pz dQ = f1 i i <PI <P2(jJ /\ rn - 3 dr /\ dS JQ s' M 

= 21Tf1 fM <PI <pzrn - 3 dr /\ dS. (3.30) 

Here we have used the fact that <PI<P2 is constant on each 
fiber 1T- I (p) '?5,SI, pEM. Then Eqs. (3.27) and (3.30) are 
put together to prove Eq. (3.28). We note in conclusion that 
the volume element dM on M is not equal to that defined by 
the induced Riemannian metric (2.33) on M. The latter is 
written as rn - 4 dr /\ dS = (21Tf1r) - I dM. 

IV. QUANTUM MECHANICS FOR INTERNAL STATES 

Weare now in a position to set up quantum mechanics 
for internal states of the planar molecule. What we have to 
do is to bring out the internal Hamiltonian operator acting 
on cross sections from the standard Hamiltonian operator 
on the center-of-mass system. 

A. The Laplacian 

We start with the kinetic energy operator. The standard 
one on the configuration space Qo is, of course, given by 
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(4.1 ) 

where a laYk' k = 1, ... ,n, denote the gradient operators. The 
operator (4.1) is thought of as -! times the Laplacian ao 
with respect to the inner product K on Qo. By Corollary 2.2, 
ao turns out to have the form 

2 2 ( a)2 2(n - I) ( a )2 
ao=No L -h + L - .. 

h=1 aB j=1 aql 
(4.2) 

Separating off the center-of-mass coordinates, we have the 
Laplacian on the center-of-mass system Q in the form 

2(n-I)(a)2 n-I aZ 
a= L - =4 L --. 

j=1 aqj k=lazkiJZk 
(4.3) 

We should here note that the a can be derived from the 
energy functional by integration by parts. Let j be a wave 
function on Q. Then its energy density is given by 

where K ~ was defined in (2.38). Thus one obtains, by inte­
gration by parts, 

(4.5) 

We now wish to express a in the coordinates (2.18). Let 
j have its support in Un _ I' Then, from the expressions 

(2.41) and (3.26) of K~( dj,dj) and dQ, respectively, we 
obtain, after integration of the left-hand side of (4.5) by 
parts, 

a_I a z 1 a (rn _ 3 a) 
- "1 ae z + rn - 3 ar ar 

(4.6) 

where Jg = det(gab)' The first term of the right-hand side 
represents the rotational energy operator, and the rest of the 
terms the vibrational energy operator. 

B. The internal Hamiltonian operator 

The internal Hamiltonian operator acting on the cross 
sections should be derived from the standard one on Q, 

H= -!a+ V, 

where V is a potential function depending on the internal 
coordinates only. Let S be a cross section in Lm' Then the 
internal Hamiltonian operator H m is defined through 

fM (sIHms) dM= 50 q;,s H(q;,s) dQ. (4.7) 

A local expression of H m is easy to obtain. 
Proposition 4.1: In the local coordinates (2.18), the in­

ternal Hamiltonian H m takes the form 
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(4.8) 

Proof Let s be a local section with compact support in 
Un _ 1 • We operate a local Pm -equivariant function q! s with 
the Hamiltonian and use the formulas (3.15) and (4.6) to­
gether with (3.17) to find (4.8). This ends the proof. 

We observe that the Hamiltonian H m indeed satisfies 
the principle of minimal coupling, which requires that when 
the magnetic field mR is turned on, the operator a / awa and 
a/a wa should be replaced by the covariant operators Va and 
Va' respectively [see (3.17) ]. This coupling is the very influ­
ence that the rotation of the molecule produces on the inter­
nal motion. The term mZ /2r represents the other influence, 
which shows that a centrifugal potential for the internal mo­
tion should be added. We remark further that the same 
expression as (4.8) is available in the open subset Uk' 
l.;;;h;;n - 1. 

To get a global idea of the internal Hamiltonian in a 
differential geometric setting, we return to the kinetic energy 

density K: ( dl ,dl). For our present purpose, I has to be a 
Pm -equivariant function. Let 1= q! s. We are to have a close 
look at dl = dq!s. The question that arises is whether one 
can interchange d and q!. To answer this question, we get 
back to the definition of the connection. An alternative in­
troduction of the connection is made as follows: Let 
T*(M)c be the complexified cotangent bundle. A connec­
tion, denoted by d v, is a i(:-linear mapping from the space of 
cross sections in L m to the space of cross sections in the 
tensor product bundle T*(M)c®L m , which satisfies the 
Leibnitz formula 

(4.9) 

where land s are a function on M and a cross section in L m , 

respectively. If we apply the formula ( 4. 9) to a vector field X 
on M and set dVs(X) = V xs, we again find the second of 
Eqs. (3.11). The first equation of (3.11) is clear, because 
dVs is required to be an Lm-valued differential form. 

We proceed to the next stage to ask if one can extend q! 
to the cross sections in T * (M) C ® Lm. In other words, how 
can we define q! d vs? From definition (3.10), we obtain the 
equation q!(dvs(X») = (dq!s)(X*). The right-hand side 
of this equation implies that the horizontal part of the differ­
ential dq!s is picked up. Hence we define d h as the horizon­
tal part of d; for a function Ion Q, one has 

( 4.10) 

where F and ware the rotational vector field and the connec­
tion form, respectively. For F, d Y vanishes, as seen from 
(2.25). For vibrational (or horizontal) vector fields Y, one 
has dYe n = dl( n. 

We now come to the final equation 

q!dvs=dhq!s or dVS=q!-ldh(q!s). (4.11) 
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This equation solves our question. That is, d and q! do not 
commute, but the connection leads us to the desirable con­
clusion (4.11). In the coordinates (2.18), we obtain from 
(2.40) 

(4.12) 

Our third task is to define a Hermitian metric on the 
tensor product bundle T* (M) C ® L m , which is induced nat­
urally from both the Hermitian metric in T*(M)c given by 
the Riemannian metric on M and the already defined Hermi­
tian metric (3.27) in Lm. In view of (4.11), we define the 
Hermitian metric on T*(M)c ®Lm for dVs1 and dVsz by 

(dvs1Idvsz) = K:( dhq!SI' dhq!sz) . (4.13) 

Note that for horizontal vectors, Kx indeed defines a Rie­
mannian metric on M (Theorem 2.8); so does K: for hori­
zontal covectors. Using the orthogonal decomposition 
dl = d Y + (FI )w, one obtains the kinetic energy density 
for a Pm -equivariant function q!s in the following form: 

K:( dq!s, dq!s) = (mz/r)(sls) + (dvsldvs) . (4.14) 

The first term of the right-hand side is the rotational energy 
density possessed by the molecule of the total angular mo­
mentum eigenvalue m, and the last term is the internal ener­
gy density coupled with the gauge field mR. In the local 
coordinates (2.18), definition (4.13) gets easier to under­
stand. From (2.39) and (2.41) we obtain 

K:( dhq!s, dhq!s) 

2 -
= (V,sIV,s) +""1 I [g"b(VasIV);s) + tb(VasIVbs)] 

= G * (dr,dr) (V ,slV ,s) 

+ I [G*(dwa,dwb)(VasIV);s) 

+ G * (dwa,dwb)(VasIVbS>] . 

On the other hand, (dvsldvs) is written out, from (4.12), as 

(dvsldvs) = (dr® V,sldr® V,s) 

+ (I diVa®VaslIdwb®V);S) + .... 

(4.15 ) 

Accordingly, definition (4.13) implies that 

(diVa ® Vasldwb® V);s) 

= G*(dwa,dwb)(VasIV);s) , etc., ( 4.16) 

which serve as a local definition of the inner product for 
cross sections in T * (M) C ® Lm. 

Using (4.14), we obtain the kinetic energy functional 
for q! s in the form 

fo K:( dq!s,dq!s)dQ 

=J1-l,fM(~Z (sis) + (dVsldVs») 

X w /\ rn - 3 dr /\ dS 

= fM (~Z (sis) + (dVsldVS») dM. 
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Here we have used (3.21), (3.29), and the fact that kinetic 
energy density is constant on each fiber 1T-

1 (p) over pEM. 
The last step toward a global definition of the internal 

Hamiltonian is to define a covariant codifferential {jv, which 
is dual to d v and maps the space of cross sections in 
T * (M) C ® L m to the space of cross sections in L m. The de­
finition depends on the Riemannian metric B and the volume 
element dM on M. Let sand u be cross sections in Lm and in 
T*(M)c ®Lm , respectively. Then the covariant codifferen­
tial operator {jv is defined through 

fM (dvslu) dM = fM (sl{jvu ) dM. (4.18) 

Using {jv and d v, one has the Laplacian operator7 am for 
sections in Lm: 

( 4.19) 

(The minus sign is for our convenience. In the literature, the 
Laplace operator is defined to be a = {jv od v + d v o{jv for 
bundle-valued p-forms.) 

We are in a final position to derive H m. From definition 
( 4. 7), one obtains 

L q!s H(q!s) dQ 

= L q!s ( - ~ a + V)(q!s) dQ 

= L [~ K~( dq!s,dq!s) + q!s Vq!s] dQ 

= fM [ ~ (dVsldVs) + ~ (sis) + (sl Vs) ] dM 

Thus we have the following. 
Theorem 4.2: The internal Hamiltonian operator H m' 

acting on the cross sections in the complex line bundle L m , is 
expressed as 

Hm = -~am +m2!2r+ V, (4.21) 

where am is the Laplacian operator defined on Lm and given 
by (4.19). 

We remark in conclusion that according to the product 
structure M ~ lIt + X Cp n - 2 and Proposition 4.1, H m can be 
expressed as 

H = _l.._I_i.(rn - 3 i.) __ I_A + m
2 
+ V 

m 2 rn - 3 Jr Jr 2r m 2r ' 
(4.22) 

where Am is the Laplacian operator defined on the restric­
tion of Lm to the submanifold r = 1. This Am is called the 
Bochner-Laplacian operator, and is studied by Kuwabara. 13 

V. A COMPLETE ORTHONORMAL BASIS 

In this section we discuss how one can pick up Pm -equi­
variant functions out of a complete orthonormal system in 
L 2(Q). To carry out this purpose, we make use of boson 
calculus for the harmonic oscillator. 
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A. Picking up Pm-equivariant functions 

Suppose we have the harmonic oscillator potential 

I n-I I n 

V=- L IzjI2 =- L mdxklxk )· (5.1) 
2 j =1 2k=1 

Though this potential is not realistic for the molecule, it 
helps in explaining the complete orthonormal bases in 
L 2(Q). Let ak and at denote the annihilation and creation 
operators, respectively, defined by 

a = 2- 1/2(qk +..i..) k Jqk ' 
(5.2) 

Then, as is well-known, the functions 

[k I··· k I] -1/2(at )k, ... (at )k2(n-"IO) 
I· 2(n-l)· 1 2(n-1) 

(5.3 ) 

form a complete orthonormal system inL 2(Q), where 10) is 
the normalized ground state. 

In keeping with (2.13), we introduce the annihilation 
and creation operators 

Aj = 2-1/2(a2j_1 + ia2j ) , 

B 2-1/2( .) j = a2j _ 1 - lO2j , 

A t - 2- 1/ 2 ( t . t ) j - a2j _ I - lO2j , (5.4 ) 

B]=2- 1/2 (4_1 +i4), 

(j= I, ... ,n -I), 

which satisfy the commutation relations 

[Aj,A 1] = {jjk, [Aj,B 1] = 0 , 

[ Bj ,B 1] = {jjk' [ Bj,A 1] = 0 , 
(5.5 ) 

and the others all vanishing. Since the transformation (5.4) 
is canonical, the complete orthonormal system (5.3) may be 
written in the form 

Nkl(A t)k(Bt)'IO) , (5.6) 

where we have used the following abbreviations: 

N - [k I ... k II I ... I I] - 1/2 kl - I· n - I· I· n - I· , 

(At)k=(AT)k'···(A~_I)kn-', (5.7) 

(Bt)'= (BT)" ... (B~_I )In _,. 

We proceed to picking up Pm -equivariant functions out 
of system (5.6). The U(l) action on Q defines a unitary 
operator U, in L 2 (Q) as usual: 

(U,J)(z,z) =/(e-i'z,ei'z). (5.8) 

Thus, from (3.4), a function / inL 2( Q) iSPm-equivariant if 
and only if 

U,J= e- im'f. (5.9) 

Differentiating Eq. (5.8) with respect to t, we have the gen­
erator - /F of U" where F is the total angular momentum 
operator. Note here that the F was defined as a differential 
operator, but we have used the same letter for the self-adjoint 
extension of F. Thus one has 

A 

U, = exp( - itF) . (5.10) 
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The total angular momentum operator can be expressed 
in terms of the operators (5.4) in the form 

A n-l 

F= L (-AjA]+BjB]). (5.11) 
j= I 

To verify this is a matter of calculation. Further, by this 
expression, one obtains 

A t tAt t 
[F.Ad = -Ak' [F,Bd =B k · 

Vsing these equations together with (5.10), we can show 
that the unitary operator Ut induces the transformations of 
A 1 and B 1 in the form 

UtA 1 U t- I = eitA 1 , 
t . t k= 1, ... ,n -1. (5.12) 

UtBkU t-
1 =e-"B k , 

It is easy to check that both sides of (5.12) satisfy the same 
differential equations in t. The domain of A 1 and Blare 
supposed, for example, to be the space of such functions as 
the products of 10) and polynomials in z and z. 

We are now in a position to pick up P m -equivariant func­
tions. 

Theorem 5.1: Let 

Em =span{Nkl(At)k(Bt)/IO); Ikl-I/I = -m}, 

(5.13 ) 

with Ik I = kl + ... + kn _ I' III = II + ... + In _ I' be­
ing the closed linear subspace of the Pm-equivariant func­
tions on Q. Then the Hilbert space L 2 (Q) is broken up into 
the orthogonal direct sum 

(5.14 ) 
m= - 00 

Proof Equation (5.12) and the fact that Ut 10) = 10) 
imply that 

Ut (A t)k(B t)1 10) = e - it( -Ik I + III) (A t)k(B t)1 10) . 

(5.15) 

Therefore, from (5.9), one verifies that (A t)k(Bt)/IO) is 
the Pm-equivariant if and only if - Ik I + III = m. As the 
system (5.6) forms a complete orthogonal system, we get 
Eq. (5.14), as desired. 

Remark: In view of (3.28), we observe that Em is iso­
morphic with the space of square integrable cross sections in 
Lm, which is denoted by q! - IEm. 

B. Unitary group actions 

The planar n-body harmonic oscillator was treated in 
Ref. 14, using Lie algebraic methods. In this section we wish 
to study the harmonic oscillator in order to show that 
q! - IEm carries unitary representations of 
V (n - 1) X V (n - 1) and of V (n - 1), on the analogy of 
harmonic polynomials in z and z. We notice first that the 
harmonic oscillator Hamiltonian is expressed as 

n-I 

H = L (A ]Aj + B]Bj) + n - 1. (5.16) 
j=1 

The eigenspaces of H are clearly spanned by functions (5.6) 
under conditions Ik I + III = N, whereNisnon-negative in­
tegers. As is well known, each of the eigenspaces is the repre-
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sentation space of a unitary irreducible representation of 
V(2(n - 1)). 

We restrict the group V(2(n - 1)) to the subgroups 
V(n - 1) xV(n - 1) and V(n - 1). For non-negative in­
tegers p and q, set 

Ep,q = span{(A t)k(Bt)/IO); Ik 1= p, III = q}. 

(5.17 ) 

The subspace Em we have discussed is the direct sum of Ep,q 
withp - q = m. 

Theorem 5.2: The product group V (n - 1) X V (n - 1) 
has a unitary irreducible representation in the space Ep,q. 

Proof' For (g,h)eV(n - 1) XV(N - 1), we define the 
actions VI(g) and V 2 (h) as follows: 

VI(g)AkVI(g-l) = L gjk Aj' 

(5.18 ) 

where g = (gjd and h = (hjk ). The tensor product V I ® V 2 

is then defined to act on Ep,q in the form 

(~g. At)k' ... (~h. Bt)/' "'10). £.. 1. 1 1. £.. lit Jt 

As is easily verified, the transformations (5.18) are canoni­
cal in the sense that the commutation relations are left invar­
iant, so that the norm of (A t)k(Bt)/IO) is preserved, and 
hence V I ® V 2 becomes unitary on Ep,q' Further, since V I 
and V 2 are viewed as unitary irreducible representations 15 in 
the space of polynomials in A] and in B], respectively, the 
tensor product representation VI ® V 2 is also irreducible. 16 

This ends the proof. 
We now proceed to representations ofV(n - 1). Ifwe 

replace g for h in Eq. (5.18), then we have a Kronecker 
product representation of V (n - 1) in Ep,q' which is not 
irreducible. In order to find out invariant subspaces, we con­
sider following two operators invariant under the V (n - 1) 
action, 

n-J n-l 

AB = L AjBj , A tBt = L A ]B] . ( 5.19) 
j=1 j=1 

Let 

Gp,q = {jeEp,q; (AB)j= O}, (5.20) 

the kernel of AB: Ep,q -+ Ep _ I,q _ I . Since AB is invariant un­
der the action of V (n - 1), Gp,q is an invariant subspace of 
Ep,q. The Gp,q is an analog to the space of harmonic polyno­
mials in z and z. The following is a key formula to dividing 
the space Ep,q into V (n - 1) -invariant subspaces. 

Proposition 5.3: For integers m, p, and q satisfying 
1 <.m <.p,q, and for a function j of Ep _ m,q _ m' one has 

AB(A tBt)mj) 

= m(n - 2 + p + q - m)(A tBt)m-Ij 

+ (A tBt)m(AB)j. (5.21) 

Toshihiro Iwai 1335 



                                                                                                                                    

Proof: We prove this proposition by mathematical in­
duction in m. For m = 1 and/EEp _ I,q _ I' using the commu­
tation relations and the fact that A j 10) = Bj 10) = 0, we can 
show that 

(A tA)/= (p - 1)/, (BtB)/= (q - 1)/. 

Using these equations, we obtain, after calculation, 

AB(A tBt)/1 

= (A tBt)(AB)/ + (n + p + q - 3)/. 

Thus the proposition holds for m = 1. Now, assuming that 
(5.21) holds for m, we prove it for m + 1 with m + 1 <.p,q. 
For a function /EEp_(m+I),q_(m+l» the function 
/1 = (A t B t)/ belongs to Ep _ m,q _ m' so that the assump­
tion of induction can be applied for the J.. Thus one has 

AB(A tBt)m/d 

= men - 2 +p+q- m)(A tBt)m-11 

+ (A tBt)m(AB)/1 . (5.22) 

To dispose of the last term in the right-hand side, we can 
apply the formula (5.21) with m = 1. In fact, as / is looked 
upon as belonging to E(p _ m) _ I.(q _ m) _ I' we can apply 
(5.21) with m = 1 and withp and q replaced by p - m and 
q - m, respectively, so that we obtain 

(AB)/I =AB(AtBt)/1 

+ (n +p + q - 2m - 3)/ + (A tBt)(AJI)/. 

(5.23 ) 

Equations (5.22) and (5.23) are put together to yield the 
formula (5.21) for m + 1. This completes the proof. 

Theorem 5.4: The space Ep,q is decomposed into the di­
rect sum 

Gp,o = Ep,o, Go,q = Eo.q , 

Ep,q = Gp,q Ell (A tBt)Ep_l,q_1 (p,q>I). 
(5.24) 

Proof: The first two equalities are clear. We start by 
proving 

Gp,qn(A tBt)Ep_l,q_1 = {O}. (5.25) 

What we have to do is to show that for any nonzero function 
/of Ep_ \,q_I' AB«A tBt)/1 never vanishes. Let 

(A tBt)/= (A tBt)m/o, (5.26) 

where m is a maximal number such that 10 no longer has the 
factor A tB t. Noting that IoEEp _ m,q _ m' we apply the for­
mula (5.21) to (5.26) to get 

AB«A tBt)/1 

= men - 2 + P + q - m) (A tBt)m- '1'0 
+ (A tB t)m(AB)/o . (5.27) 

If we had AB(A tBt)/1 = 0, then the right-hand side of 
(5.27) would vanish, so that 10 would have the factor A t B t, 
contradicting the assumption. The last part of the above rea­
soning is trivial if m = 1. For m > 1, we can come to the same 
conclusion. In fact, by applying the formula (5.21) induc­
tively, we can write out (AB)m(A tB t)/ in a similar form to 
(5.27). This ends the proof of (5.25). 

The decomposition (5.24) now becomes easy to prove. 
Indeed, the dimensions of the both sides of (5.24) are equal, 
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because of (5.25) and of the fact that Gp,q is the kernel of the 
linear map AB: Ep,q -Ep_l,q_ I' Thus we have proved the 
theorem. 

A successive application of (5.24) results in the follow­
ing. 

Corollary 5.5: The space Ep,q is broken up into 

Ep,q = Gp,q Ell (A tBt)Gp_l,q_1 

Ell ... Ell (A tBt)'Gp_r,q_r' (5.28) 

where r = mine p,q). 
Here we remark that the direct sum decomposition 

(5.24) has great resemblance to a decomposition of the 
space of polynomials in complex variables z and z. Thinking 
of Gp,q as the space of harmonic polynomials, one finds in 
Ref. 17 an analog to (5.24). The representation ofU (n - 1) 
induced in Gp•q is then irreducible and belongs to the repre­
sentation of highest weight (p,O, ... ,O, - q). (See Refs. 18 
and 19, for example.) The dimensionality of Gp•q is comput­
ed by (5.24) to give 

dim Gp,q = dim Ep,q - dim Ep _ I,q _ I 

(n - 2 + p + q)(p + n - 3)!(q + n - 3)! 
(n - 2)( (n - 3)!) 2p!q! 

(5.29) 

Further, the decomposition (5.28) reminds us of the 
Clebsch-Gordan series lS for a Kronecker product represen­
tation. Thus the Kronecker product representation of 
U (n - 1) in Ep,q is reduced to its irreducible components. 

We now return to the harmonic oscillator to carry out 
our purpose of showing that the groups 
U(n - 1) XU(n - 1) and U(n - 1) act on the cross sec­
tions in Lm. The space of Pm -equivariant eigenstates of the 
harmonic oscillator is assigned by the conditions p + q = N 
andp - q = - m, and hence by 

p=(N-m)/2, q=(N+m)/2 (N)lml). (5.30) 

Thus from Theorem 5.2 and Corollary 5.5, we have the fol­
lowing. 

Theorem 5.6: The product group U (n - 1) xU (n - 1) 
has a unitary irreducible representation in the space 
q! - I Ep.q of cross sections in the complex line bundle L m, 
wherep and q are assigned by (5.30). 

Theorem 5.7: The unitary representation ofU (n - 1) in 
the space q! - I Ep,q of cross sections in L m , which is induced 
from that in the above theorem, is reducible to its irreducible 
components according to the decomposition (5.28), where p 
and q are assigned by (5.30). 
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The Hamiltonian system given by H = ~p2 + V(q) with VEe 00 (Rn) is considered. A method 
for integrating such a system is that of separating the variables in the Hamilton-Jacobi 
equation. It is known that if such a separation is possible, then it can take place only when the 
equation is expressed in terms of generalized elliptic coordinates or in a degeneration of these. 
A criterion is proposed for deciding if separation is possible, and if it is, in which degeneration 
of elliptic coordinates it takes place. 

I. INTRODUCTION 

We consider the problem of integrating a Hamiltonian 
system by separating the variables in the Hamilton-Jacobi 
equation. 

Proving integrability by separating the variables in­
and so solving-the Hamilton-Jacobi equation has the ad­
vantage (over just the application of Liouville's theorem) 
that it allows one to directly find a transformation to cyclic 
variables for the system, and so to solve the equations of 
motion explicitly. The so-called property of separability (we 
speak of a "separable Hamiltonian system" or of a "separa­
ble potential") was the principal object of inquiry in the late 
nineteenth and early twentieth centuries for the study of 
Hamiltonian systems. A review of some important results of 
the period can be found in Ref. 1. Recently, more results on 
separability have been found; see Ref. 2-5. The last word, it 
seems, remains to be said. 

Our work can be seen as the conclusion of a program 
initiated by Stiickel6 in 1891, that of classifying Hamiltonian 
systems according to their separability or nonseparability. It 
is often thought that the question posed in the title of this 
paper is answered by Stackel's theorem; in fact this is not the 
case. Stackel's theorem gives us no indication of what the 
variables for separation are, if they exist, or even if indeed 
such variables do exist. It only tells us if a given coordinate 
system has this property with respect to whichever Hamilto­
nian system we are considering. A natural Hamiltonian is 
typically expressed in Cartesian coordinates; our criterion is 
implemented in Cartesian coordinates. 

We present the means for the classification by separabil­
ity of "natural" Hamiltonian systems (a natural Hamilto­
nian is one having the form H = T + V, where 
T = ~~Z = I pi and Vis a function of the position variables qj 
only), which describe the motion of particles in a space of 
zero curvature. In other words, one can take any natural 
Hamiltonian system and subject it to certain tests enabling 
one to answer the question, is the system separable? And if so, 
in which coordinates is it separable? 

For a system with two degrees offreedom the answer to 
this question was provided by Whittaker in his book.7 From 
his account of results of Bertrand and Darboux we are led to 

formulate a theorem which we call the Bertrand-Darboux 
theorem. Essentially this tells us that a necessary and suffi­
cient condition for a given natural Hamiltonian H = ~ (p~ 
+ p~) + Vex, y) to be separable in elliptic, polar, parabolic, 
or Cartesian coordinates is that the expression 

(Vyy - Vxx )( -2axy-b'y-bx+c l ) 

+ 2 Vxy (ay2 - ax2 + by - b 'x + c') 

+ Vx (6ay + 3b) + Vy ( - 6ax - 3b ') (1.1 ) 

vanishes for some constants (a,b,b ',c,c',c l ) =I (O,O,O,c,c,O). 
In addition, this theorem tells us in which particular coordi­
nate system [the characteristic coordinates of (1.1) 1 the 
Hamilton-Jacobi equation for H separates, depending on 
the values of the constants (a,b,b ',c,c',c l ). 

The second integrable case of the Henon-Heiles system 
was shown to be separable using this criterion.8 

As an illustration of the use of this theorem as an effec­
tive criterion of separability, let us prove that the three-di­
mensional nonperiodic Toda lattice Hamiltonian is nonsep­
arable: 

H = ~ (p~ + p~ + p~) + e2 (q, - q,) + e2 (q, - q,). ( 1.2) 

If we set x = lI~(ql - q2)' y = lI.j6(ql + q2 - 2q3)' and 

z = lI.j3(ql + q2 + q3)' we have 

H = ~(p~ + p~ + p;) + e2J2x _ e,[6y- Jix, (1.3) 

and the problem ofthe separability of the Hamilton-Jacobi 
equation is reduced to the problem with two degrees of free­
dom, with 

H(x,y,PX'PY) = ~(p~ + p~) + V(x,y) 

and 

Vex, y) = e2J2x _ eJi>y - J2x. ( 1.4) 

Now if we form the expression given in ( 1.1) for V given by 
( 1.4 ), we find that in order to make the expression vanish we 
are forced to choose (a,b,b ',c,c',c l ) = (O,O,O,c,c,O). Hence, 
applying the theorem, the Hamilton-Jacobi equation for H 
given by (1.4) is nonseparable; this in tum implies the non­
separability of ( 1.2). 

We will formulate a similar condition for a system with 
arbitrary degrees of freedom. 

1338 J. Math. Phys. 29 (6), June 1988 0022-2488/88/061338-09$02.50 @ 1988 American Institute of Physics 1338 



                                                                                                                                    

Iarov-Iarovoi3 proved, using the zero curvature condi­
tion, that if a given natural Hamiltonian system is separable, 
then it is separable in generalized elliptic coordinates or in 
some degeneration of elliptic coordinates-for example, in 
parabolic coordinates.9 Because of the large number of such 
degenerations for n>3, we are unable to provide a straight­
forward formulation of the criterion of separability in gen­
eral. We adopt instead the approach of treating elliptic co­
ordinates (nondegenerate case), followed by a discussion of 
the effect of degenerations. 

In the case n = 2 the Bertrand-Darboux theorem does 
constitute the most general criterion of separability, in that it 
accounts for all degenerations. 

For n = 3 there are already 11 degenerations, instead of 
four for n = 2 (see Refs. 2 and 10). We are preparing a paper 
that gives the form of the criterion in each case, and we ex­
pect this to largely supersede Eisenhart 10 in its application 
directly to the solving of problems. 

In Sec. II we recall the n = 2 case. We then go on to 
consider separability for arbitrary n. In Sec. III we confine 
ourselves to the case of separability in generalized elliptic 
coordinates, and then in Sec. IV we look at what happens in 
the degenerate cases. Finally, the Appendix contains calcu­
lations which, either because they are already available in the 
literature, or because they are not central to the main argu­
ments, have been relegated to the end. 

II. THE BERTRAND-DARBOUX THEOREM 

For the Hamiltonian function in R2XR2 H = ~(p; 
+ p;) + V(x,y), where (Px,py ) is the momentum conju­

gate to (x, y), for some constants (a,b,b ',C,C',CI) 
-# (O,O,O,c,c,O), the following conditions are equivalent. 

( 1) H has an independent integral of the form 

K = (ay2 + by + c)p; + (ax2 + b'x + c')p~ 
+ ( - 2axy - b'y - bx + cI)Pxpy + k(x,y), 

where k is some differentiable function: RXR ..... R. 
(2) V satisfies the differential equation 

( Vyy - Vxx ) ( - 2axy - b 'y - bx + C I ) 

+ 2 VXy (ay2 - ax2 + by - b 'x + c - c') 

+ Vx (6ay + 3b) + Vy ( - 6ax - 3b ') = 0, 

where subscripts on V mean "differentiate," e.g., Vx 
=av/ax. 

(3) The system is separable in one of the following or­
thogonal coordinate systems in the plane: 

Cartesian, polar, parabolic, elliptic. 

A complete account of the content of this theorem can 
be found in Ref. 7. See also Ref. 8 or Ref. 11 for the parabolic 
case. 

III. SEPARABILITY IN GENERALIZED ELLIPTIC 
COORDINATES 

The Bertrand-Darboux theorem has an extension to 
higher dimensions establishing a condition for the separabil­
ity, in each degeneration of elliptic coordinates, of the Ham­
ilton-Jacobi equation for a natural Hamitonian system. The 
respective degenerations prove too messy to be incorporated 
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explicitly, and all at once, into a single expression; so we 
prefer to formulate the theorem as it applies just to separabil­
ity in undegenerated elliptic coordinates, and to follow this 
by a breakdown of all the possibilities for the (slightly) dif­
ferent forms the theorem takes in the degenerate cases. 

Theorem: Given a natural Hamiltonian system with 
1 n 

H = - L p~ + V(q), (3.1) 
2 k= I 

the following three conditions are equivalent. 
(a) H has n global, independent, involutive integrals of 

motion having, in some Cartesian frame, the form 

It 
K; = L + P; + k;(q), i= 1, ... ,n, 

j#-; a; - aj 
(3.2) 

whereal, ... ,an are n distinct constants. What is important is 
the differences a; - aj ; we can suppose that 0 = a l <a2 

< ... < an' lij = q; Pj - qj P; and k; are functions of q only. 
(b) The potential V satisfies the set oqn (n - 1)2 equa­

tions, 
(a; -a,)-I(q;Vrs -q;q,V;s) 

(a; -a,)-lq;q,(V;; - Vrr ) - L (a; -aj)-Iq;qj~, 
j#- i,r 

+ v;,[.~ (a; -aj)-lqJ+ (a, -a;)-I(q;_ri,.)] 
J#- ',' 

+ V;, + 3 (a; - a,) - I (q, V; - q; V,) = 0, i -# r. 
(3.3 ) 

Subscripts on Vmean "differentiate," e.g., Vi = av /aq;. 
(c) The Hamilton-Jacobi equation for H, 

H(q,p) Ip = as/iJq = E, is separable in generalized elliptic co­
ordinates (ul, ... ,un ) given by 

n q2 n 

1 + L __ k - = II (z - uj ) 

k=lz-ak j=1 

( 

n )-1 U(z) 
X II (Z-ak) =--. (3.4) 

k= I A(z) 
Remark: For n = 2 this theorem is the same as the Ber­

trand-Darboux theorem with a = ! (a I - a 2 ) - I, b = b ' 
= C I = 0, C - c' = 1. 

Proof The condition {H,K;} = 0 yields 
n n 

L k;,jpj = - 2 L (a; -aj)-I 
j= I j#-; 

X(lij(q; ~ - qj V;») - 2p; V;. 

We construct 1:7,j= I (z - a;) -Ik;,jpj and take the coeffi­
cient of p, to get 

n 

L (z-a;)-Ik;" 
;=1 

n 

= -2(z-a,)-IV, -2 L (z-a;)-I(z-a,)-I 
i#T 

X(q;V,-q;q,V;), 'tIr. (3.5) 

By differentiating (3.5) we have an expression for 
1:7= I (z - a;) -Ik;,rs' Setting 

n 

L (z-a;)-I(ki,rs -k;,sr) =0, 
;=1 

as of course it should, we obtain 
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n n a L (z-ai)-lq;«z-ar)-I-(z-as)-llVrs+(z-as)-lqs L (z-ai)-Iqi-Vr 
i=1 i=1 aqi 

- (z - a r ) -Iqr ± (z - a,.) -Iq,. ~ Vs + (z - a r ) -I Vrs - (z - as) -I Vrs 
i=1 aq,. 

+ 3(z - ar)-I(z - as)-I(qs Vr - qr Vs) = 0, 't;/z, r,s = l, ... ,n. (3.6) 

[Note that from (3.5) we can obtain ki,r' and this enables us to check that {Ki,K) = 0, 't;/ ij'] 
The residues of (3.6) at z = a,., for i,r,s all different and for i = s=/=r, respectively, give the equations in (b). That (3.6) 

can itself be recovered from (b) is also easy to show. Thus (a):::::} (3.6)¢::>(b). 
We now show that (3.6) :::::} (c), and hence (b):::::} (c). We make use of the following identities: 

To get (i), differentiate the equation 

1+ ± ~= U(z) 
k=1 z-ak A(z) 

with respect to q k : 

2qk 1 n I aUj 
:::::}--= ---U(z) L (z-uj )- -. 

z-ak A(z) j=1 aqk 

Now keeping U and q fixed, let z -+ U j : 

2qk U'(uj ) aUj 
:::::}---

uj-ak A(uj ) aqk 

Hence 

aUj 2qk A(uj ) 
=-----~ 

aqk ak-uj U'(uj ) 

and (i) follows. Identity (ii) comes from (i) together with 
the equations 

(z-ai)-I(ai -Uk)-I 

= (z- Uk)-I(z-ai)-I + (a i - Uk)-I) 

and 

n q2 
L i = 1, Vk. 
i=1 a i - Uk 

Identity (iii) follows easily from (ii). 
At length we obtain that (3.6) is equivalent to 

U(z) n A(Uk) _I _I a 
- 2 -- qs L , (as - Uk) (z - Uk) - Vr 

A(z) k=1 U(Uk ) auk 

+2 U(z) ~ A(Uk) (a -u )-I(Z-U )-1 
A( ) qr £.. U'( ) r k k Z k = I Uk 

1340 J. Math. Phys., Vol. 29, No.6, June 1988 

(3.7) 

(where, remember, Vr = av laqr)' For r=/=s, keeping q and 
U fixed, let Z-+Ui in (3.7). Using the identities (i)-(iv) we 
get 

~ A(uk ) I I 
£.., (ar - Uk) - (as - Uk )-

k=1 U (Uk) 

X[(U,,-Uk)~+ aV]=O. 
aUiaUk aUk 

Now make use of the fact [see (AID) in Appendix A] 
that 

± P(uk ) =0 
hi U'(u k ) 

when P(z) is any polynomial of degree less than n - 1, and 
we get 

~ A(ud I I 
£.. ---(ar-uk )- (as-uk )-

k= I U'(u k ) 

X[(Ui-Uk)~-(av - av)]=o. (3.8) 
aUiaUk aUi aUk 

We read (3.8) in this way: for fixed i and r it is an 
(n - 1) -dimensional linear equation of the form 
.r(r,i)x(i) = 0, where .r(r,i) is the (n - 1) X (n - 1) matrix 
with components 
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s#r, k #i, (3.9) 

and x(i) is the (n - 1) X 1 column vector, 

(i) a a [( ) V] X k = - -- U; - Uk . 
au; aUk 

(3.10) 

Unless det .sf (r.i) =0 this equation has the solution x(i) = ° 
for all i. Now 

Xdet[ A(uk
) ] 

as - Uk 

(0 means omit the ith term). As Uk ~ak for k #r, 
i,T 

[ 
A(uk ) ] A(u r ) v 

det _ ~ ± _ A'(al)···A'(an)¢O. 
as Uk a; Ur 

Hence det .sf(r,;)¢o, and therefore x(i) k = 0, Vi,k. In other 
words, 

a a 
-- [(U; - Uk)V] =0, 
au; aUk 

Vi,k. (3.11) 

The general solution of (3.11) is 

V= i Jj~Uj) , 
j~ I U (u) 

(3.12) 

and the Hamilton-Jacobi equation is separable (see Appen­
dix A). 

In elliptic coordinates the Hamilton-Jacobi equation 
takes the form 

(3.13 ) 

and is separable whenever V has the form given by (3.12). 
(c) =} (a): V(q) separable in generalized elliptic co­

ordinates ¢:} V takes the form 

V(q(u») = i Jj~Uj) . 
j= I U (uj ) 

The Hamilton-Jacobi equation takes the form 

i ,1 [-4A(Uj ) (as)2 +1Jj(uj ) -P(Uj )] =0, 
j=1 U(u) aUj 

(3.14 ) 

where P(z) = TJlzn - 1+ TJ2Zn-2 + ... + TJn, 2E = TJI' and 
can be simultaneously separated by posing 

n 

s= I Sj(Uj ) (3.15 ) 
j= I 

to give 

or 

-4A(uj )v]+2Jj(uj ) -P(u) =0, j= 1, ... ,n. 
(3.16 ) 
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The TJI, ... ,TJn are constants of integration that would be fixed 
by initial conditions in the complete solution. If we set 

Xj = - 4A (uj ) v] - uj 

and 

Yj = 2Jj(uj ) + uj, 

we can write (3.16) as 

C1/1) = x + y, ( 3.17) 

with C1/ the n X n matrix, C1/ ij = u7 - j. Now det C1/ is the van 
der Monde determinant, ITi<j(u; - uj ); this is nowhere 
identically zero, and hence (3.17) defines the constants 
TJI,. .. ,TJn uniquely in terms ofu and v, and so in terms of q and 
p. 

We write 

1)-" = C1/ -IX and 1)Y = C1/ -Iy so that 1) = 1)-" + 1)Y. 

(3.18) 

We will show that (3.18) together with the mapping 
(tft , ... ,q! ) ..... (uI,···,un) implies 

n 

I zn- kTJ\(U(q),v(q,p») 
k=1 

= A (z) [ 1 + ;tl z ~;a; ] - zn, Vz, (3.19) 

where 

R; = I (a; -aj)-Il~ +p:+q:. 
j#; 

A polynomial of degree v is uniquely defined by its val­
ues at v + 1 distinct points. It is enough then to check (3.19) 
for the points z = ul, ... ,un: 

n R. 
1+ I-'-

;=1 z-a; 

_ [~~ (U(Z) )]2 
2 dt A(z) 

asp = i;; 
n R. 

".1 + I ' 
;= I uj -a; 

Hence 

(rhs of (3.19»)lz= u 
) 

= [A(Z)(1 +.i~) _zn] I 
1=1 Z a i Z=Uj 

= -4A(uj )v]-uj=xj , 

but from (3.18) this is just C1/ 1)-". In turn 

C1/1)-" = (lhs of (3.19) )Iz = u' 
) 
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so (3.19) is proved. 
We know that 1]\ + 1] Yk is a constant of motion for 

k = 1, ... ,n, hence 
n 

I zn-k(1]\ + 1] Yd 
k=1 

is a constant of motion for all z. Taking the limit as z - a i and 
using (3.19) which we just proved, we obtain n constants of 
motion 

Ki = Ri + ki(q), 

where 

k i = lim z-ai (i zn-k1]Yk) 
z-a, A(z) k= I 

and is easily seen to be independent of p. 
Moreover, as 

ttl ~-k1]k' ktl ~-k1]k} 

(3.21 ) 

is clearly zero for all choices of z I and Zz, we find 
{Ki ,K) = 0, V i,j. 

IV. DEGENERATIONS 

We now discuss the possible degenerations of elliptic 
coordinates on Rn. The systematic description in Ref. 2 is 
very useful here. 

There are four types of degeneration: 

1+ i ~= U(z) _ 
k=1 z-ak A(z) 

n q2 n-I 

(i) I __ k - = qZ 11 (z - wj)IA(z) 
k=lz-ak j=1 

= qZW(z)IA(z) 

(qZ = q~ + ... + q~); 

(ii) [ 1 + i ~ = UI (z) , 
k=1 z-ak AI(z) 

1+ i ~- Uz(Z)] 
k=v+lz-ak-Az(z) , 

where 

v v 

UI(z) = 11 (z-uj ), AI(z) = 11 (z-ai ), 
j= I i= I 

n n 

Uz(z)= 11 (z-uj ), Az(z)= 11 (z-ai ); 
j=v+1 i=v+1 

( 
••• ) n~1 tPi + 2"'" _ U(z) 
111 L --- z- 'I'n -~, 

k=1 z-ak A(z) 

n-I 

A(z) = 11 (Z-ak) 
k=1 

(this is the case an - (0); 

(iv) 1+ i ~+~= U(z) 
k=3Z-ak z-az A(z) 

and 
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q I = P cos e, qz = p sin e, 
A n 

U(z) = 11 (z - Uj ) 

j= 2 

(this is the case a l - az-O). 
The degenerations in (ii) and (iv) can take place as 

many times as we like-up to (n - 1) of course-the other 
two only once. Also (i) and (iii) cannot be combined with 
each other whereas both (ii) and (iv) can be combined in 
various ways with any of the other degenerations. We will 
examine (i)-(iv) in detail. 

(i) Suppose we have 
n q2 n 

1 + I __ k - = 11 (z - Uj ) 

k=lz-ak j=1 

( 
n U(Z»)-I 

X 11 (Z-ak) =-- . 
k= I A(z) 

Then 
n qi U(z)-A(z) I -- = --'-..--'.....----'--'-

k=lz-ak A(z) 

U(z) - A (z) is a polynomial of degree n - 1, with leading 
term 

n n 

zn-I I (ak -Uk) =zn-I I qi, 
k=1 k=1 

as can be seen by multiplying both sides by A (z). 
Thus U(z) - A (z) = qZ W(z), where W(z) is a polyno­

mial of degree n - 1 with leading term zn - I. By the funda­
mental theorem of algebra W(z) can be written 

W(z) = (z-wl)"'(Z-wn_ I ), for WiEC. (4.1) 

It is immediately apparent that in fact all Wi are real for 
qi,aiER; we have 

~ qi 
L --- = 0, Vwi • 
k=IWi-ak 

Suppose Wi = t + i1] for some i with 1]#0. Then we have 
n 

I «t- a k)Z+1]Z)-lqi(t-ak -i1]) =0. (4.2) 
k=1 

The imaginary part of (4.2) is 
n 

1] I (t - adZ + 1]2)-lqi = ° 
k=1 

-and we have a contradiction. We have then 

i ~ = qZ W(z) , with WiER. 
k= I z - a k A(z) 

The theorem cannot be directly translated into the ap­
propriate form for this case, but needs to be developed from 
the beginning. It is straightforward to do this. We leave it to 
Appendix B. 

(ii) This case is obvious. We have essentially two nonin­
teracting systems. 

(iii) Suppose 

n qZ n 

1 + I __ k - = 11 (z - Uj ) 

k=lz-ak j=1 

( 
n U(Z»)-I 

X 11 (z-a k ) =--
k= I A(z) 

Let qk = tPkh/ an' k #n, and qn = (tPn + an )Ivan. Mul­
tiply both sides by z - an and let an - 00. We obtain 
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~ tPi 2'/" _ U(z) 
£.. --- - z + 'fJn - --.---, 

k= I Z - a k A(z) 
(4.3) 

whereA(z) = (z - a l )" '(z - an-I)' 
In this case the theorem is not affected by taking the 

limit. That is, 

lim (a) ~ lim (b) ~ lim (c) ~ lim (a) 
a,,-oo a,,- 00 

when the limit is taken according to the above prescription. 
(This has been checked!) We only need to see what happens 
to (a), (b), and (c) in this limit. We get the following re­
sults. 

(where Si =p/van , i= 1, ... ,n) 

= _1 nil (tPiSj - tPjSi )2 + _1 (tPiSn - tPnSi )2 

a~ j#i a i - aj a~ a i - an 

_ 2Si (tPiSn -tPnSi) +ki(q). 
an (ai - an) 

Multiply by a~ and let an -+ 00. Writing 

n-I 

we get 
n-I 

Ki = L (ai - aj)-IA t + 2SiAin - aiS; + k.i(tP), 
j#i 

(4.4) 

Kn = S~ + -+ nil (tPnSj - tPjSn + anSj )2 + k
n 

(q) 
an an j= I an - aj 

Multiply by an and let an -+ 00: 

n 

Kn = L S;+k.n(tP), (4.5) 
i= I 

where 

- . (tPl tPn +an) kn(tP) = hm ankn --, ... , . 
a n- 00 v' an v' an 

Kn must be the Hamiltonian of the theorem as it has a natu­
ral form: 

o = {Kn,H}~{T,V - !k.n} = O~k.n = 2V, 

to within a constant. 
(b) Applying the limit an -+ 00 in the same way to the 

equations in part (b) of the theorem, we obtain 

tPi( Vii - Vnn ) + 3Vi + (2tPn + a i ) Vin + L (ai - aj)-I(tPitPj ~n - tPJV;n) = 0, i = 1, ... ,n - 1, 
j#i 

(ai -a,)-I(tP7V,s -tPitP,Vis ) = (ai -as)-I(tP;V,s -tPitPsVi,) =0, i,r,s= 1, ... ,n -1 all different, 

(ai - a,) -l tPitP, (V" - Vii) + (a i - a,) -I (tP; - tP;) Vi' + tPYn, 

(c) This translates to the following: "The Hamilton­
Jacobi equation is separable in parabolic coordinates given 
by 

(iv) In this case the limit is a l - a 2 -+O. 
Consider the n integrals of the theorem, 

As in Ref. 5 we take instead the integrals 

K = KI + K2, (a2 - a 2) (K I - K2), Kj> t;;.3, 

and then let a l - a 2 -+O. This gives us, respectively, K, 112, 

Ki U;;. 3 )-n integrals in involution. 
We have an obvious symmetry in the system: invariance 
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(4.6) 

I 
with respect to rotations in the (ql,q2) plane. This means we 
can reduce the system in the usual way by one degree of 
freedom before applying the theorem. In the framework of 
the Hamilton-Jacobi equation the reduction procedure is 
just precisely that of separating off one variable. We illus­
trate the procedure. 

Let 

q I = P cos e, q2 = P sin e, 
PI = ill = P cos e - p2iJ sin e, 
P2 = il2 = P sin e - p2iJ cos e. 

Then 
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aH 2' ao =P e. 
Let the momentum conjugate to p be S and the momentum 
conjugate to e be '1]; then S = p, 'I] = p20. In (p,e,S, '1]) vari­
ables 112 is just '1]. Hence e is a cyclic variable and 'I] is a 
constant of motion. 

So we have 

H = ~(S2 + P~ + ... + p~) + V(P,q3, ... ,qn) + 'I]/p2 

= ~(S2 + P~ + ... + p~) + V<P,q3, ... ,qn)' 

Look at the constant K = KI + K 2: 

nj + nj = (PPj - Sqj)2 + 'l]2qJ/p2 

in the new variables, so 
n 

K = I (a2 - aj ) - 1 (PPj - Sq) 2 
j= 3 

2 

+ S2 + '1]2 + kl(q) + k2(q) 
P 

2 n 

+'1]2 I (a2-aj )-lqJ. 
P j=3 

(4.7) 

Note that as e is cyclic all k j must be independent of e 
(i = 3, ... ,n) as must kl + k 2• 

Set tP2 = p, tPj = qj' j>3, S2 = S, Sj = Pj, j>3; then we 
have n - 1 integrals in involution K j (i = 2, ... ,n) oftheform 

K j = I (aj - aj)-I(SjtPj - SjtPY + S; + Xj(tP), 
j#j 

( 4.8) 

all commuting with the Hamiltonian 

H = !(S~ + ... + S~) + V(tP2,···,tPn)· (4.9) 

We are now able to immediately apply the theorem. 

APPENDIX A: ELLIPTIC COORDINATES ON an AND 
SEPARABILITY 

The coordinates (ql, ... ,qn) are Euclidean (or Carte­
sian) coordinates on an. 

Ordinary generalized elliptic coordinates are defined by 
the transformation4 

( 

n U(Z»)-I 
X II (Z-ak) =--

k=1 A(z) 
(Al) 

This transformation is defined with respect to the constants 
(al, ... ,an )ean

• We must assume in (Al) that all a's are 
different. 

The metric on an is given by ds2 = l:7= 1 dq;. Let us see 
how we write this metric in terms of u variables. 

so 

1344 

We have 

2 = lim (z _ a ) U(z) = U(ak ) 
qk z-ak k A(z) A '(ak ) 

U(a k ) n 1 
=?2qk dqk = -, I (a k - Uj )- duj , 

A (ak) j=1 
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n 

X I (ak - uj)-I(ak - Uj)-I dU j dUj 
j.j= 1 

1 n 
=-qi I (ak-Uj)-I(ak-u)-Idujduj' 

4 j.j= 1 
Now use 

(ak - uj)-I(ak - Uj)-I 

and 

= (u j - uj)-I[(ak - Uj)-I- (ak - Uj)-I], 

for i#j, 

which comes directly from (AI), so that 
n 1 n n 
I dqi = - I du; I qi (a k - Uj ) -2. 

k=1 4 j=1 k=1 

Now observe that 

Thus 

d~= -1. i U'(u j ) du;. 
4 j=1 A(uj ) 

(A2) 

We use (A2) to transform a Hamiltonian function of 
the form H = ~p2 + V(q) to (u,v) variables. We must find 
the canonical momentum v. We have 

H=1. i (d
qk )2 + V(q). 

2 k = 1 dt 

We assume that V can be written in terms of U so that 
V( u) = V( q) when U and q are, respectively, the elliptic and 
Cartesian coordinates of the same point in an. Then 

1 ~ U'(u j ) (du j )2 _ 
H= -- £... - + V(u). 

8 j =1 A(uj ) dt 

Now v = aH fait, so 

Vj = 
1 U'(u j ). U'(u j ) A(u j ) 
---Uj =? it; = 16 v;. 

4 A(uj ) A(uj ) U'(u j ) 

Thus 

~ A(uj ) 2 -
H= -2 £... Vj + V(u). 

j= 1 U'(u j ) 

(A3) 

The Hamilton-Jacobi equation for H expressed in terms of 
the coordinates u is 

(A4) 

If we apply Stackel's theorem to (A3) we see that V must 
have the form 
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Y(U) = ± };~U;) 
;=1 U (U,) 

If we use the identity 

~ P(u;) 
~ ---=111 
;=1 U'(u;) 

(AS) 

(A6) 

for any polynomial P of the form P(z) = 1I1zn - I 

+ 1I2zn - 2 + ... + lIn, then if V has the form in (AS), (A4) 
can be separated by posing S(u) = l:7= IS; (u;) to give 

(as)2 
- 2A(u;) au; + };(u;) - P(u;) = 0, (A7) 

where 111 = E. 
To prove (A6), consider the contour integral (with the 

same U as above) 

- --dz, for fixed (uI, ... ,un ). 1 f z'dz 
211'1' c U(z) 

(AS) 

If C encloses all the U; this is just 

n u~ L ,J • 
j=1 U(uj ) 

The integral is also equal to minus the residue at infinity of 
z s/U(z); this residue is equal to the coefficient of Z-I in the 
expansion 

~=zs-n[l+z-1 ± U;+Z-2 ± u;uj +".]; 
U(z) ;=1 ;=1 

. _1_,( z s dz dz = {O, 
.. 21ri r U(z) 1, 

and so on. 

for s<n - 1, 

for s = n - 1, 

APPENDIX B: CASE (i) OF SEC. IV 

(A9) 

(AW) 

The conditions (a), (b), (c) become the following, re­
spectively. 

(a) The following are n global (nonindependent), invo­
lutive integrals: 

'" I Jk Kj = ~ + kj(q), j= l, ... ,n, 
k#jaj - a k 

for some functions kl, ... ,kn of q only; al, ... ,an are n distinct 
constants. 

(b) The potential V satisfies the set oqn (n - 1) 2 equa­
tions, 

(aj -a,)-I(qJV,s -qjq,Jjs) 

= (aj - as)-I(qJV,s - qjqs Jj,), 

( a, - as) - I q, q s ( V" - Vss ) + (a, - as) - I (q; - q;) V's 

+ L (a, -aj)-lqJV,s -q, L (ar -aj)-lqjJjs 
j#',s j#"s 

+ 3(ar - as)-I(qs V, - q,Vs) = 0. 

(c) The Hamilton-Jacobi equation for H is separable in 
spherical-elliptic coordinates (q2,WI,. .. ,wn _ I ) given by 
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2 W(z) 
=q A(z) . 

Proof, (a)~ (b): In the same way as before, we construct 
l:7= I (z - a;)-Ik;" and put l:7= I (z - a;)-I(k;,rs - k;,s,) 
=0. We get 

3(z - a,) -I(Z - as) -I(qs Vr - qr Vs) - (z - a,) -Iqr 
n XL (z-a;)-lq;V;s + (z-as)-Iqs 

;=1 

n n 

XL (z-a;)-lq;V;r + Vrs L (z-a;)-Iq; 
;= I ;= I 

X«z-ar)-I- (z-as)-I)=O. 

As before we let z-a;, i=/=r,s, and then z-ar to get the 
equations in (b). 

To go now to (c) we use 

a a n-I 
--= 2qk -2 + 2qkq-2 L (ak - W;)-I 
aqk aq ;=1 

A(wj ) a 
X --

W'(w;) aw; , 

qk 
--= -- , 
aw; 2 a k - W; 

~ ( )-1 a 
~ qk z-ak --

k= I aqk 

_ 2 2 W(z) a 2 W(z) n~1 A(w;) 
- q ----+ -- ~ 

A(z) aq2 A(z) ;=1 W'(w;) 

X(Z_W;)-I~, 
aWj 

( ) -1 ~ ( )-1 a q, z-a, ~ qk z-ak --
k= I aqk 

= 2(Z _ a ) -I W(z) ~ _ 2 W(z) 
q 'A(z) aqr q, A(z) 

n-I A(w.) a 
X L " (z - wj)-I(a, - Wj)-I_-. 

j=IW(Wj ) aWj 

In the same way as before, using now 

n-I Q(w.) 
L " = 1 
j=1 W(w;) 

for any polynomial Q of degree n - 2, we get this time 

n-I A(w.) L , J (ar - wj)-I(as - Wj)-I 
j#j W (wj ) 

X[(W.-w.) a
2
v _av _av] 

I J aw;awj aWj aWj 

+ av +q2 a
2
v 2 =0. (B1) 

aw; aWj aq 

Now V(q2,W) is separable in (q2,W) coordinates ¢:>V 
has the form 

V = V(q2) + q-2y(w), 

where 
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n-II'(W) 
V(w) = I, Ii Ii. 

i=IW(Wi ) 

The way to read (Bl), fixing rand i, is 

(~ OT )(xo (i») (0) 
:!/J (r.i) XCi) = 0 ' 

where :!/J(r.i) is the (n - 2) X (n - 2) matrix with compo­
nents 

. A(w.) 
:!/J(r,I).= J (a-w.)-I(a-w.)-I 

SJ W' (Wj ) r J S J ' 

s,j = 1, ... ,n - 1, s#r, j#i, 

x (i) =~(V+q2 av) 
o a a 2 ' Wi q 

and XCi) is the (n - 2) component column vector, 

x(i)j= aa aa (wi-wj)V), 
Wi Wi 

j = 1, ... ,n - 1, j#i. 

It is easy to check that det :!/J (r.i);¢=o. Therefore, for any 
i, Xo (i) = ° and x(i)j = 0, j = 1, .. ;..tn - 1. We !!nd that the 
general solution to (Bl) is V = V(q2) + q-2V(W), where 
V( w) has the form 

n-ll'(w) 
V(w) = I, Ji I i 

i=1 W (Wi) 

Proof, (c)~(jj): This time the separated equations are 
rl1 = x + y, where 

Xi= -4A(wi )X7- xw7- ' 

and 

Yi =/;(wi ) + xw7- ' · 

r ij = w7 - I - j, x is as yet unspecified, and X is the momen­
tum conjugate to w. We find det rr;¢=o. Set l1x = r-Ix, 
11 y = r- Iy. Let 

n-I 
I, zn - l-j1/Xj = A(z)L(z) - xzn - '. (B2) 
j= I 

The rhs of (B2) must be a polynomial of degree n - 2, so x 
will be chosen to be the coefficient of zn-I in A(z)L(z), 
which we suppose to be a polynomial of degree n - 1. Claim 
that 

1346 J. Math. Phys., Vol. 29, No.6, June 1988 

n 

L= I, (z-ai)-II, (ai -aj)-I/~. (B3) 
i= I j#1 

Then A(z)L(z) - xzn- I is a polynomial of degree n - 2, 
and so is uniquely determined by giving its value at n - 1 
different points. Thus to prove the validity of (B2) ~ (B3 ) 
we can prove (B3) ~ (B2). 

We find that the rhs of (B3) is 

q2 W(z) i (z-aj)-lpJ- [..!..~(q2 W(Z»)]2, 
A(z) j=1 2 dt A(z) 

and if we evaluate this function at z = Wi we get 

1 4 W'(W i )2 '2 2 

-"4 q A(W
i
)2 wi =-4Xi' 

If then L(z) is given by (B3), A (Wi )L(wi ) = - 4A (Wi )X7 
as required, so that (B3) ~ (B2). x = coefficient of zn - , in 
A (z)L(z). This is 

I, (ai -aj)-I/~, 
i#j 

which is zero by the antisymmetry of (a j - aj ) -lit. 
We have 

n 

I, zn-l-j1/"j =A(z)L(z), 't;/z, 
j= I 

withL(z) given by (B3). As before we recover the constants 

Ki = I, (ai -aj)-I/t +ki(q), i= 1, ... ,n. 
i#j 
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An infinite number of ways are developed for representing a function in terms of the 
(generalized) eigenfunctions of a three-dimensional scattering problem and simple known 
auxiliary functions. The freedom represented by this variety of expansions arises from the 
causal nature of the wave equations considered. The new expansions are shown to generalize 
both the Fourier and Radon transforms. An application of the new expansions to the inverse 
scattering problem is given. It is shown (under some restrictions) that the scattering amplitude 
and potential are related via one of the generalized transforms. 

I. INTRODUCTION 

The expansion of a function in terms of (generalized) 
eigenfunctions is very useful in scattering theory.I.2 In this 
paper, we will exhibit an infinite number of related ways a 
function can be expanded in terms of the eigenfunctions and 
simple known auxiliary functions. These results hold for 
scattering solutions of a three-dimensional generalization of 
the Sturm-Liouville equation. 3.4 In particular our results are 
valid for the variable-velocity wave equation, Schrodinger's 
equation, and the acoustic wave equation with variable ve­
locity and density. 

Eigenfunction expansions for these equations are not 
new. For Schrodinger's equation and the wave equation, ei­
genfunction expansions were first found by Ikebe.5 His 
methods were used by Schulenberger and Wilcox6 to obtain 
eigenfunction expansions for a number of wave equations 
occurring in classical physics. 

Our work differs from this previous work in a number of 
ways. First, we use completely different techniques. We ex­
tend Ikebe's result by using methods that do not depend on 
self-adjointness. We are thus able to avoid the vector formu­
lation used by Schulenberger and Wilcox. Second, our re­
sults differ from previous ones in that we obtain eigenfunc­
tion expansions that contain arbitrary parameters. We show 
that a certain choice of these parameters yields expansions 
that are particularly useful in inverse scattering. Finally, we 
obtain generalizations of the Radon transform 7 as well. 

The usefulness of the eigenfunction expansions for in­
verse scattering can be illustrated by considering the Schro­
dinger equation. For this equation it is well-known that the 
potential and the Born (weak scattering) approximation to 
the scattering amplitude are related by a Fourier trans­
form. I.2 That is, they are related by an expansion in free­
space solutions of the wave equation. The new eigenfunction 
expansions allow us to generalize this relation. In particular 
it will be shown that the exact scattering amplitude and the 
potential are a generalized transform pair. A convenient rep­
resentation of the potential in terms of the data (the scatter-

a) On leave ofabsence from Department of Mathematics, Duke University, 
Durham, North Carolina 27706. 

ing amplitude) and the eigenfunctions results. 
The structure of this paper is as follows. It has two main 

parts. The first part (Sees. II-V) considers a fairly general 
form of the wave equation, which is assumed to have no 
bound states. The second part (Sec. VI), which deals with 
the Schrodinger equation, allows bound states. In See. II we 
introduce the wave equation, establish notation, and give a 
brief review of some needed elements of scattering theory. In 
Sec. III we prove our basic result, a representation of the 
delta function in terms of the eigenfunctions and simple 
known auxiliary functions. This provides us with an infinite 
variety of ways of expanding a known function. Reductions 
to known expansions are shown. Next, in Sec. IV, we discuss 
the sense in which our results generalize the Fourier and 
Radon transforms. In Sec. V a transform particularly suited 
to inverse scattering theory is developed. Section VI derives 
the generalized eigenfunction expansions for SchrOdinger's 
equation when bound states are possible. 

II. THE WAVE EQUATION, NOTATION, AND REVIEW OF 
SCATTERING THEORY 

The wave equation treated in Sees. II-V of this paper 
has the form 

(V2 - V(x)tV2 
- q(x) + tV2)tP(tV,x) = O. (2.1) 

Here x is a coordinate in R 3; tV, which denotes an angular 
frequency, is a real scalar; and V2 is the Laplacian with re­
spect to x. The solution tP(tV,x) is called the wave field. The 
scatterer is described by the two real functions Vex) and 
q(x). Precise conditions on Vex) and q(x) will be given 
later. Suffice it to say here that (1) Vex) and q(x) decay 
sufficiently rapidly to zeroforlargex = Ixl; (2) 1- Vandq 
are non-negative and 1 - Vis bounded away from zero; (3) 
Eq. (2.1) has no bound states (Le., solutions with rapid spa­
tial falloff). We note that V( x) is related to the local velocity 
of wave propagation, c(x), by Vex) = 1 - c-2(x). Since V 
and q go to 0 for large x, one can think of the scatterer as a 
relatively localized disturbance in an otherwise uniform me­
dium. This background medium has velocity 1. 

Equation (2.1) can be brought into a form which is a 
three-dimensional generalization of the Sturm-Liouville 
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equation. In particular we make the formal substitution 
t/!(w,x) = p- I

/
2 (X)p(w,x) in (2.1). The following wave 

equation is obtained: 

Vo[(llp)]Vp] +K(X)W2p-Q(x)p=0. (2.2) 

HereK(x) = c-2(X)p-I(X), while 

Q(x) = [alVpl2lp -! (V2plp) - q(x) ]lp(x). (2.3) 

If one assumes that p (x) is twice differentiable, positive, and 
bounded, then K(X) and q(x) are defined. Finally we note 
that Eq. (2.2) has justthe form of the Sturm-Liouville equa­
tion except that V and VO have replaced the derivatives with 
respect to distance in that equation. 

A variety of physical problems can be modeled by Eq. 
(2.1). First, if one sets q = 0 and uses V(x) = 1 - c-2(x), 
the wave equation 

(V2 + W 2
C- 2(X»)t/! = 0 (2.4) 

is obtained. This equation is commonly used as a scalar wave 
approximation to a large number of physical problems. Simi­
larly ifone sets V(x) = OinEq. (2.1), the Schrodinger equa­
tion is obtained. Finally the acoustic wave equationS can be 
obtained by rewriting (2.1) as (2.2) and choosing q(x) such 
that Q(x) = O. For the acoustic wave equation, p is inter­
preted as the excess pressure, K(X) as the compressibility, 
andp(x) as the density. Bothp(x) and K(X) are assumed to 
approach constants Po and Ko = 1/ Po for sufficiently large x. 

In order to define scattering solutions of (2.1 ), we will 
need the Green's functions 

Go±(w,z) = - (41Tlzl)-lexp ( ±iwlzl). (2.5) 

Here + and - refer to radiation and incoming boundary 
conditions, respectively. 

We will be interested in scattering solutions that corre­
spond to an incident plane wave exp(iweox), where e is a unit 
vector denoting the direction of incidence. We define these 
solutions of (2.1) by the Lippman-Schwinger equation2 

t/!± (w,e,x) = exp(iweox) + f Go± (w,x - y) 

X [q(y) + w2 V(y) ]t/!± (w,e,y)d 3y. (2.6) 

It has been shown by Agmon9
•
10 that Eq. (2.6) always has a 

unique solution provided that the following conditions hold: 

(a) q and V are real, 

(b) q + w2 V is locally L 2 in x, 

(c) q(x) +w2V(x) = &(X- S/2 -€) at infinity for some 

€>O, 

(d) q(x) has no zero-energy bound or half-bound states. 

Condition (d) is relevant only in solving (2.6) with w = O. 
We will refer to hypotheses (a)-(c) together as hypothesis 
A. Finally we note that 

t/!- (w,e,x) = t/!+ ( - w, - e,x). (2.6') 

We will also need the fully interacting Green's functions 
which are solutions of 

1348 

(V2 - w2 V(x) - q(x) + ( 2)G ± (w,x,y) = 83 (x - y). 
(2.7) 
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These are related to the G o± by2 

G ± (w,x,y) = G o± (w,x,y) + f d 3Z G o± (w,x,z) [w2 V(z) 

+ q(z)] G ± (w,y,z). (2.8) 

Equation (2.8), which is similar to (2.6), also has a unique 
solution under hypothesis A. This uniqueness of solutions 
implies that 

G + ( - w,x,y) = G - (w,x,y). (2.9) 

We will also need the fact that G + (w = O,x,y) 
= G - (w = O,x,y). This is obtained by substituting (2.5) in 
(2.8) and setting w = 0: 

G ±(O,x,y) = - (41Tlx-yl)-1 

-f d 3z(41Tlx - ZI)-lq(Z)G ± (O,y,z). 

(2.10) 

Since (2.10) has a unique solution, it follows that 
G + (O,x,y) = G - (O,x,y). 

The causal properties of the Green's functions are an 
essential feature of our derivation. These are most easily seen 
by taking the "time-domain" Fourier transform II and defin­
ing 

G ± (t,x,y) = - dw e - '''JIG ± (w,x,y). A 1 foo . 
21T - 00 

(2.11 ) 

(Note that we use the caret to denote both unit vectors and 
time-domain Fourier transforms. The meaning is always 
clear from the context.) It can be shown 12 under hypothesis 

A 

B, below, that G satisfies a certain Cauchy problem with 
initial data supported at x = y at time t = O. The domain of 
dependence properties (causality) for the wave equation 
then implies that for Cm = sup C(X), 

A 

G+(t,x,y) =0, for t<lx-yl/cm • (2.12a) 

Therefore, since G + ( - t,x,y) = G - (t,x,y), we also have 

O-(t,x,y) =0, for t> -Ix-yl/cm • (2.12b) 

Hypothesis B is 

(a) q(x) is non-negative and bounded; 

(b) c- 2 (x) = 1 - V(x) is positive, bounded, and 

bounded away from zero (by c,; 2); 

(c) V(x) has two continuous derivatives. 

Finally we note that if Vand q have compact support, 
Eq. (2.6) can be expanded as5 

t/!(w,e,x) = exp(iweox) + A (w,e',e)exp(iwx)x- I 

+o(x- I
). (2.13) 

The symbol e' is defined bye' = xl x and denotes the direc­
tion of scattering. The function A is called the scattering 
amplitude. It is given by 

A(w,e',e) = - (41T)-'f exp( - iwe'oy) 

X [w2 V(y) + q(y)]tf+ (w,e,y)d 3y. (2.14) 

We note that A obeys reciprocity2; that is, 

A (w,e',e) = A (w, - e, - e'). (2.15 ) 

The scattering amplitude can also be obtained from "near-
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field" measurements of t/J as follows. 13 Suppose Vand q have 
compact support, and let n be a surface enclosing this sup­
port. Then 

A(w,e',e) = - (41T)-ll exp( - iwe'ox) 

X [noVt/J+ (w,e,x) + ike-nt/J+ (w,e,x)]d 2X, 
(2.16 ) 

where n denotes the outward unit normal to n. 

III. THE ORTHOGONALITY RELATIONS 

This section contains the main results and their proofs. 
It is shown that a function 9?(x) can be expanded in terms of 
the eigenfunctions and simple known auxiliary functions. 
Our strategy is as follows. We start with Eq. (3.1), which is 
known for Schrodinger's equation, and show that it applies 
to our more general wave equation (2.1 ). Then we show that 
Eq. (3.1) together with causality yields a representation of 
G + (w = O,x,y) in terms of an integral over exp [iwT( x,y) ] 
and a product of two eigenfunctions. Here T(X,y) is, within 
certain constraints, at the disposal of the reader. This is the 
origin of the infinite number of expansions, one for each 
choice of T(X,y). The auxiliary functions mentioned above 
are determined by the choice of T. Next we obtain 83 (x - y) 
by operating on G + (w = O,x,y) with [V2 

- q(x)]. Finally 
we integrate 83 (x - y) with the test function 9?(x), The re­
sult is the expansion of 9? in terms of the eigenfunctions and 
the auxiliary functions. These basic results are given by Cor­
ollary 3.3 in the frequency domain and by Corollary 3.4 in 
the time domain. 

Proposition 3.1: Suppose hypotheses A and B are satis­
fied. Then the following equation holds in the distribution 
sense: 

- 8~(iW)-I[G+(W,x,y) - G-(w,x,y)) 

= L,t/J± (w,e,x)t/J± o(w,e,y)d 2e. (3.1) 

(The asterisk denotes complex conjugate.) In other words, if 
9?EC 0' (infinitely differentiable functions with compact sup­
port), 

-8~I -.- [G+(w,x,y) - G-(w,x,Y)]9?(y)d 3y 
lW 

= L,t/J± (w,e,x) I t/J±*(w,e,Y)9?(y)d 3yd 2e. 

Proof Equation (3.1) holds for the Schrodinger equa­
tion. 14 We consider a Schrodinger equation with a parameter 
I: 

[V2 + w2 _/2V(X) - q(x)]t/J = 0. 

The corresponding t/J and G now depend on I. For each I and 
w, (3.1) holds. Upon choosing I = w, we obtain (3.1) where 
t/J and G corresond to Eqs. (2.6) and (2.8). Q.E.D. 

Theorem 3.2: Suppose hypotheses A and B are satisfied. 
Then for any T satisfying ITI" Ix - Yllcm and for x¥=y, 

G+(O,x,y) = - (l6~)-J:co eiWT 

X i,t/J± (w,e,x)t/J± o(w,e,y)d 2e dw. (3.2) 
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Equation (3.2) should be interpreted as a function of y in the 
distribution sense by 

I G + (O,X,Y)9?(y)d 3y 

= - (l6~)-II: co L, t/J± (w,e,x) 

xI t/J±O(w,e,y)eiWT(X'Y)9?(y)dyd 2edw, (3.3) 

where qJEC 0' . 
Proof We consider the following distribution in T: 

Q(T,X,y) = - (l6~)-li: eiWT 

X L,t/J± (w,e,x)t/J± o(w,e,y)d 2e dw. 

It operates on a test function 'T] in CO' by 

I: co Q(T,X,Y)'T](T)dT 

= - (16~) -II: coI: co e
iWT 

xL,t/J± (w,e,x)t/J±*(w,e,y)d 2edw 'T](T)dT. (3.4) 

In the right-hand side of (3.4), we use (3.1): 

I: co Q( T,X,y)'T]( T)dT 

= (21T)-II: co I: co eiwT(fw)-1 

X [G+(w,x,y) -G-(w,x,y)]dW'T](T)dT. (3.5) 

In the right-hand side of (3.5), we write 

G(w,x,y) = I: co e
iw

/ G(t,x,y)dt. (3.6) 

We also interchange the order of integration in (3.5) by us­
ing the distributional definition of the Fourier trans­
form. 15.16 The right-hand side of (3.5) is then 

(21T)-J: co (fW)-1 

X I:coeiW/[G+(t,X,y) -G-(t,x,y)]dt7](w)dw, 

(3.7) 

where 

(3.8) 

Again we use the distributional definition of the Fourier 
transform in (3.7) to interchange the order of integration: 

(21T) -II: co [G + (t,x,y) - G - (t,x,y)] 

X I: co I: co eiw(/+r)(fw) -1'T](T)dTdw dt. (3.9) 

In (3.9) we must choose a regularization of (iw) -I, but the 
choice we make does not matter in the end. For convenience, 
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choose the principal value. We then do the w integral first 
(again using the distributional definition of the Fourier 
transform). The w integral is equaP6 to 11" sgn (t + r). Thus 
(3.9) is equal to 

1 f"" f"" A A 2 _ "" _ "" [G + (t,x,y) - G - (t,x,y) ] 

X sgn(t + r)1]( r)dr dt 

= ~ f: ""f:}G+(t,X,Y) - G-(t,x,y)]dt1](r)dr 

1 f"" f- T -2 _"" _",,[G+(t,X,Y)-G-(t,X,Y)]dt 

X1](r)dr. (3.10) 

Next we use causality (2.12), which implies 

f"" A Ix-yl 
-T G-(t,x,y)dt=O, for - C

m 

< -r, (3.11) 

and 

f-
T 

A Ix-yl 
_ "" G + (t,x,y)dt = 0, for - r < C

m 

• (3.12) 

These facts imply that 

f"" A A 

_ T [G + (t,x,y) - G - (t,x,y) ]dt 

f
"" A 

= _ "" G + (t,x,y)dt = G + (O,x,y) (3.13) 

and 

f
-T 

A A 

_ "" [G + (t,x,y) - G - (t,x,y) ]dt 

f
"" A 

= _ "" G - (t,x,y)dt = G - (O,x,y). (3.14) 

We use these facts in (3.10) and (3.5), noting that 
G + (O,x,y) = G - (O,x,y): 

f: "" Q( r,x,y) 1] ( r)dr = f: "" G + (O,x,Y)1]( r)dr, (3.15) 

where we have restricted the test function 1] to have support 
in [ - Ix - yllcm , Ix - Yllcm ]. Q.E.D. 

The following corollaries are our basic results; they give 
an infinite number of ways of expanding cP (x). We note that 
the new freedom represented by these expansions arises be­
cause causality was satisfied in deriving (3.2) for any r(x,y) 
such that - Ix - Yllcm < r< Ix - Yllcm • As we will see in 
the next section, the ordinary eigenfunction expansion is ob­
tained by setting r = 0. 

Corollary 3.3: Suppose Hypotheses A and B are satis­
fied. Then for Irl<lx - yl/cm , 

t5(x - y) = - (l6~) -If"" r, (V2 _ q)eiOJT(x.Yl 
- aoJs 

X r/J ± (w,e,x)r/J ± * (w,e,y)d 2e dw. (3.16) 

The operator V2 - q may operate in either the x variable or 
the y variable. In terms of its action on a test function epeC 0' , 
(3.16) is 
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cp(x) = - (16~)-lf: ",,1,(V2 - q)r/J± (w,e,x) 

X f r/J ±' (w,e,y)eiOJT(X.Ylcp(y)d 3y d 2e dw. (3.17) 

Proof: Applying V; - V(y) to both sides of (3.2), we 
have 

t5(x - y) 

= _(16~)-I(V;_q(y») 

xf"" r, eiOJT(XoYlr/J± (w,e,x)r/J± '(w,e,y)d 2e dw. 
- aoJs 

This must be interpreted by integrating against a test func­
tion epeCO': 

cp(x) = - (16~)-J: ",,1, r/J± (w,e,x) 

X f eiOJT(X.Ylr/J ±' (w,e,y) (V2 - q)cp(y)d 3y d 2e dw 

= - (l6~) -If"" r, r/J± (w,e,x) 
- ooJs 

X f (V2 - q) [ei"'T(X,Ylr/J± * (w,e,y)] 

xcp(y)d 3y d 2e dw. 

This proves (3.16) when V2 - q operates in the y variable. 
To show that (3.16) holds when V2 

- q operates in x, 
we first note that the reciprocity relation G(w,x,y) 
= G(w,y,x) implies that 

[V! - q(x» G(O,x,y) 

=t5(x-y) = [V; -q(y)]G(O,x,y). 

We can, therefore, apply V! - q(x) to both sides of (3.2). 
We let the resulting distribution operate on test functions of 
the form CPI (X)CP2(y) (CPI,CP2EC 0'). Thus we obtain 

f CPI (x)CP2(x)d 3X = f f t5(x - y)CPI (x)CP2(y)d 3X d 3y 

= (- 16~)-J: ",,1 JeiOJT(X.yl 

xr/J± (w,e,x)(V2 - q)CPI(x)d 3x 

X f r/J±*(w,e,y)cp2(y)d 3yd 2edw. 

(3.18 ) 

In the right-hand side of (3.18), we let V2 - q operate on 
eiOJT(X,Ylr/J± (w,e,x). We then apply the resulting formula to 
test functions CPI which approximate a delta function. 

Q.E.D. 
Corollary 3. 4: Suppose hypotheses A and B are satisfied. 

Then for Irl<lx - yl/cm , 

t5(x - y) = - (8r)-lf"" r ,(V2 - q) 
- o:JJs 

Xu ±(t - r(x,y),e,x)u ± (t,e,y)d 2e dt, (3.19) 

where V2 - q may operate in either x or y. Acting on a test 
function epeC 0', (3.19) is 
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x f u ± (t,e,Y)<p(y)d 3y d 2e dt. 

Proo!' In (3.2), we substitute 

t/J± (w,e,x) = 5:"" eW'u ± (t,e,x)dt. 

This results in 

G + (O,x,y) = - (16r) -If"" {, eio
.
rr 

- coJs 

(3.20) 

x 5: "" eiw'u ± (t,e,x)dt t/J±. (w,e,y)d 2e dw 

= - (8~) -I {,5"" u ± (t,e,x) 
Js - 00 

Xu ± (t + 1',e,y)dt d 2e, 

where 11'1<lx - yl/cm . We obtain (3.19) as in the proof of 
Corollary 3.3. Q.E.D. 

IV. EIGENFUNCTION EXPANSIONS 

Functions will be expanded in terms of eigenfunctions of 
the scattering problem and auxiliary functions determined 
from exp [iW1'( x,y) ]. The representation of the delta func­
tion given in Eq. (3.16) is our starting point. Results will 
first be given for the frequency domain and then for the time 
domain. In the course of Sec. IV A, we will show that the 
frequency-domain expansions generalize the idea of the 
Fourier transform. Similarly Sec. IV B discusses the general­
ization of the Radon transform. 

A. Frequency domain expansions 

Equation (3.16) can be rewritten as 

<p(x) = - (16r) -1(V2 - q(x») 

X f: "" dw l, d 2
e t/J± (w,e,x);P ± (w,e,x), 

( 4.1a) 

where 

;p ± (w,e,x) = 5 d 3y t/J±·(w,e,y)<p(y)eiWT(X.y). (4.1b) 

We remind the reader that it is essential that 1'(x,y) be cho­
sen so that -Ix - yl!cm <1'(x,y) < Ix - yl/cm • Equations 
(4.1a) and (4.1b) represent a rather general expansion. 
However, its utility in this form is not immediately clear 
since the expansion coefficients;P ± depend in general on x. 

The nature of this difficulty can be seen by considering 
the Fourier transform, which, as we will see later, is a special 
case of (4.1a) and (4.1b). One great virtue of the Fourier 
transform is that it allows one to express a function I(x) 
either in the x variable, or in its conjugate variable q,)'( q). As 
we have just noted Eqs. (4.1 a) and (4.1 b) lack this property 
for a general choice of 1'( x,y). However, we will show that if 
1'(x,y) is chosen to have the following separable form: 

1'(x,y) = - a(x) + a(y), (4.2) 
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then this virtue of the Fourier transform is retained in our 
expansions. Here a(x) is a real-valued function that has 
two bounded derivatives and is such that 
- Ix - YI!cm < 1'(x,y) < Ix - YI!cm • 

Substitution of (4.2) in (4.1) yields 

<p(x) = - (16r) -1(V2 - q(x») f: 00 dw 

and 

X l,d 2e t/J± (w,e,x)exp[ - iwa(x)];P ± (w,e) 

(4.3a) 

;p ± (w,e) = 5 d 3y t/J± ·(w,e,y)exp[iwa(y) ]<p(y). 

(4.3b) 

Thus Eqs. (4. 3a) and ( 4. 3b) allow us to express <p in terms of 
x or w,e. 

Particular choices of a (x) lead to interesting results. We 
will consider three cases: (1) a = 0; (2) a(x) = e'·x!cm; 
and (3) a (x) = X!c m' The first case allows us to connect our 
results (1) to the well-known eigenfunction expansion 
method for Schrodinger's equation and (2) to the Fourier 
transform. The second case generates an expansion, which, 
as we will show in the next section, is of interest in inverse 
scattering. The third case was included because of its simple 
and beautiful form. 

Case (1):a=O 

Equations (4.3a) and (4.3b) become 

<p(x) = (16r) -IC-2(X) 5: "" w2 dw 

xl, d 2e t/J± (w,e,x);P ± (w,e), ( 4.4a) 

and 

(4.4b) 

Here we have rewritten Eq. (4.1) with l' = 0 and used the 
wave equation (2.1) to evaluate ( - !:1 + q) t/J ±. Equations 
( 4.4a) and (4.4b) can be specialized to the SchrOdinger 
equation case by setting c(x) = 1. With this assumption, 
Eqs. (4.4a) and (4.4b) become the standard eigenfunction 
expansion l

•
2 used in quantum theory. If we further set 

q(x) = 0, then the solutions t/J± (w,e,x) become the free­
space plane-wave solutions t/J ± = exp (iw€-x). Substitution 
of this result in (4.4a) and (4.4b) yields the usual Fourier 
transform. Thus we have shown that the Fourier transform 
is a special case of Eqs. (4.4a) and (4.4b), and consequently 
ofEqs. (4.1). 

Returning to Eqs. (4.4a) and (4.4b), we note that if the 
velocity is variable, then a weighting factor of c- 2 (x) ap­
pears. This factor appears in an unsymmetrical fashion in 
(4.4a). However, like the (21T) -I that appears in the Four­
ier transform, this weighting factor can be arbitrarily written 
in either Eq. (4.4a) or (4.4b). For example, the following 
are equivalent to (4.4): 
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q::>(x) = (l6ff3) -Ie-I (x) f: "" ui dw 

X 1, d 2e f/!± (w,e,x)if:! ± (w,e) (4.5a) 

and 

(4.5b) 

Similarly c-2 (y) could have appeared in Eq. (4.5b) while 
no powers of c(x) appeared in Eq. (4.5a). 

The acoustic wave equation was obtained from (2.1) by 
setting f/!± = p-I/2p ± and usingpK = c-2. Here K is com­
pressibility, p is the excess pressure, and p is the density. 
With these substitutions, Eqs. (4.4a) and (4.4b) become 

q::>(x) = (l6ff3) -IK(X) f: "" dw 

(4.6a) 

and 

if:! ±(w,e) = fd3yp ±O(w,e,y)q::>(y). (4.6b) 

Equations (4.4)-( 4.6) are new so far as we know. 

Case (2): a(x)= e'.x/cm 

Here e' is a unit vector. This choice is, as we will see, 
interesting for the inverse scattering problem. Equation 
(4.3a) becomes 

q::>(x) = - (l6ff3) -1(V2 
- q(x») f: "" dw 

X I,d 2e f/! ± (w,e,x)exp( - ;we'- c: )q-; ± (w,e,e') , 

(4.7a) 

and (4.3b) becomes 

q-; ± (w,e,e') = f d 3y f/!± ° (w,e,y)exP(iwe'o ~ )q::>(y). 

(4.7b) 

Equation (4. 7b) transforms a function of three variables, 
q::>(y), into a function of five variables, q-;(w,e,e'). However, 
as we see in the next section, this is precisely what is needed 
for the inverse problem. 

Case (3): a(x)=x/cm 

Equation (4.3a) becomes 

q::>(x) = - (16ff3)-I(V2_q(X»)J:"" dw 

X I, d 2e f/!± (w,e,x)exp( - i::)q-; ± (w,e), 

(4.8a) 

and (4.3b) becomes 

q-; ± (w,e) = J d 3y f/!± O(w,e,y)exp(~:)q::>(y). (4.8b) 
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The utility of (4.8a) and (4.8b) is not immediately clear. 
However, their simplicity commend them to our attention. 

B. Time-domain expansions 

The expansions given above can also be usefully ex­
pressed in the time domain. One simply Fourier transforms 
the appropriate equations with respect to frequency. The 
time-domain formulation is a generalization of the Radon 
transform. 

We start with the transform of Eqs. (4.3a) and (4.3b) 
where T(X,y) = - a(x) + a(y). The result is 

q::>(x) = - (16ff3) -1(V2 - q(x» I, d 2e 

X f: "" dT U ± (T + a(x),e,x)<I> ± (T,e) (4.9a) 

and 

<I> ± (T,e) = f d 3y q::>(y)u ± (T + a(y),e,y). 

Particular choices of a lead to useful results. 

Case (1):a=O 

and 

Equations (4.9a) and (4.9b) become 

q::>(x) = - (16ff3)-IC-2(X) f d 2e' 
Js' 

(4.9b) 

( 4.1Oa) 

(4.1Ob) 

Here we have used the time-domain form of the wave equa­
tion [Eq. (2.1)], 

a2 

V2u(t,x) - c- 2 (x) at 2 u(t,x) - q(x)u(t,x) = 0, (4.11) 

in obtaining (4.1Oa) from (4.9a). 
Equations (4.1Oa) and (4.1Ob) can now be shown to 

reduce to the Radon transform as a special case. Let us con­
sider Eqs. (4.1Oa) and (4.1Ob) with Vex) and q(x) set equal 
to o. The solutions of the Lippmann-Schwinger equation are 
then plane waves; in the time domain they are given by 
8(t - eox). Substitution of these delta-function plane waves 
in (4.1Oa) and (4.1Ob) yields II 

q::>(x) = - (16ff3)-'l, d 2e 

f"" a28 
X dT~ (T - e-x) <I> ± (T,e) 

- "" aT 
(4.12a) 

and 

<I> ± (T,e) = J d 3y q::>(y)8( T - e-y). (4.12b) 

Case (2): a(x)=e'.x/cm 

Equations (4.7a) and (4.7b) become, after a time-do­
main transform, 
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<p(x) = -(16Ji3)-I[V2 - q(x)]i,d 2e 

x f: 00 dr u ± (r + e'· e: ,e,x }I> ± (r,e,e') 

( 4.13a) 

and 

«I>±(r,e,e') = fd 3y u±(r+e'. ~ ,e,y)<p(y). (4.13b) 

Case (3): a=(x)xlcm 

Time-domain equations are easily obtained by inserting 
this form of a in Eqs. (4. 9a) and (4. 9b). 

V. APPLICATIONS TO INVERSE SCATTERING 

Formulas representing the properties of a scatterer in 
terms of the scattering amplitude and the wave field are im­
portant in inverse scattering theory. Such formulas have re­
cently been emphasized by Newton 17.18 and by Rose and 
Cheney. 19 In this section we will derive representations of 
the potential for two special cases of (2.1): (1) the variable 
velocity wave equation [q=O, e(x).;;;l]; and (2) Schro­
dinger's equation [ V = 0, e(x) = 1]. Then it will be shown 
that the scattering amplitude and the potential are, for these 
special cases, transform pairs as in Eqs. (4.7a) and (4.7b). 

We start with the variable velocity wave equation 
(q = 0) with the further constraints that the velocity is 
everywhere less than or equal to 1 (em = 1), and that 
VEC 0'. Equations (4. 7a) and (4. 7b) become, after replacing 
<p(x) by Vex), 

Vex) = - (l6Ji3) - IV2f: 00 ~m i, d 2e t/J- (m,e,x) 

( 5.1a) 

and 

v - (m,e,e') = f d 3y t/J _. (m,e,y)exp(ime'·y) V(y). 

(5.1b) 

We then use Eq. (2.6') and the factthat t/J" (m) = t/J( - m) to 
obtain 

V-(m,e,e') = f d 3y t/J+ (m, - e,y)eiwe'·yV(y). (5.2) 

We now note, by comparing Eqs. (2.14) and (5.2), that 

V-(m,e,e') = - 41Tm- 2A(m, - e', - e). (5.3) 

Next, using reciprocity [Eq. (2.15)], Eq. (5.3) becomes 

V-(m,e,e') = - 41Tm- 2A(m,e,e'). (5.4) 

Thus the transform of Vex) can be written immediately in 
terms of the scattering amplitude. A representation of the 
potential in terms of the scattering amplitude and wavefield 
can be obtained by substituting (5.4) in (5.1a). One finds 

Vex) = - (4r)- lv2f: 00 dm 

xl d 2A.I.+"( _A ) _iUJe"xA(m,e,e') e If' m, e,x e . 
S' m2 

(5.5) 

Equations (5.4) and (5.5) show that Vex) and - 41TA (m)/ 
m2 are transform pairs. We note that Eq. (5.5) is an essential 
part of the self-consistent equation approach to inverse scat­
tering recently proposed by Rose and Cheney. 19 

A representation of the potential can also be found for 
Schrodinger's equation [ V = ° :::} e(x) = 1]. Again we as­
sume that qEC 0'. This representation follows from Eqs. 
(4.7a) and (4.Th) by taking <p(x) to be q(x): 

and 

q(x) = - (l6Ji3) -I [V2 
- q(x)] f: 00 dm 

X i,de t/J- (m,e,x)exp( - ;me'·x)q- (m,e,e') 

(5.6a) 

(5.6b) 

In obtaining (5.6b) we followed the line of reasoning from 
(5.1) to (5.4) but replaced m2 Vby q. Substitution of (5.6b) 
in (5.6a) yields 

q(x) = - (4r)-I(V2 _q(X»)f:00 dm 

X r d 2e t/J- (m,e,x)exp( - ;me'·x)A (m,e,e'). 
Js' 

(5.7) 

Solving (5.7) for q (x) yields 

(5.8) 

I 
Alternatively one can use Eq. (5.7) and (a - q(x) )exp( - ;me'·x) t/J +" (m, - e,x) 
(V2 

- q) t/J = - m2t/J to obtain 

Xexp( - ;me'·x)A(m,e,e'). (5.9) 

Here we have used 
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= - 2;me·V[ exp( - ;me'·x)t/J +" (m, - e,x)]. (5.10) 

Equation (5.9) is Newton's representation 17.18 of the poten­
tial for SchrOdinger's equation. 

VI. SCHRODINGER EQUATION WITH BOUND STATES 

In this section we treat the SchrOdinger equation 

[V2 + m2 
- q(x)] t/J(m,x) = 0, (6.1) 
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where V2 
- q is now allowed to have negative eigenvalues. 

We assume that the eigenvalues are -~, n = 1, ... ,N; we 
will denote the corresponding eigenfunctions (bound states) 
by tf;~ (x), n = 1, ... ,N, b = 1,2, ... ,mn • Here mn denotes the 
multiplicity of the nth bound state. When there are bound 
states, the usual eigenfunction expansion2 can be written in 
the form 

S(x - y) = (16~)-J: ",i, tf;± (w,e,x) 

X tf;± *(w,e,y)d 2e w2 dw 

+ L tf;~(x)tf;~(y); (6.2) 
n,b 

this implies that the Green's function can be written2 

G ± (w,x,y) 

= (16~)-lf'" i-, tf;± (w',e,x)tf;±*(w',e,y) d 2e 
_ '" S w2 

- W
/2 ± iO 

12 d I '" tf;~ (x)tf;~ (y) 
Xw w + ~ 2 • 

n,b W + ~ 
(6.3 ) 

Equations (6.2) and (6.3) hold under the following condi­
tions: 

(a) q is real, 

(b) q is locally L 2, 

(c) q(x) = &(X- 5/2 - E
) at infinity for some c->O. 

We will refer to hypotheses (a), (b), and (c) together as 
hypothesis C. 

We will also need the assumption that for w = 0, Eq. 
(6.1) has no solutions that decay at infinity in x; that is, there 
are no w = 0 bound or half-bound states. As in our earlier 
arguments, we will need causality. This is more complicated 
in the presence of bound states, as we see from the following 
proposition. 

Proposition 6.1: Suppose hypothesis C holds and q has 
no w = 0 bound or half-bound states. Then the time-domain 

A 

Green's functions G ±, which are defined by (2.11), satisfy 

G+(t,x,y) - L(2Kn)-Itf;~(X)tf;~(y)eXp(Knt) =0, 
n,b 

for l< Ix - yl (6.4 ) 

and 

G-(t,x,y) - L(2Kn)-Itf;~(x)tf;~(y)exp( -Knt) =0, 
n,b 

for t>-Jx-yJ. (6.5) 

Proof: We begin with the frequency-domain Green's 
functions, which are defined by the V = 0 version of (2.8). 
We consider the w in (2.8) to be a complex variable. If we 
multiply Eq. (2.8) by Jq(x) 1'/2 exp( - iwlx - yl), we see 
from the analytic Fredholm theorem2o

,21 that exp( - iwJx 
- yl)G + (w,x,y) is meromorphic in the upper half-plane 

and goes to ( - 41Tlx - yl) - I as 1m w - 00. By arguments 
similar to those of Ref. 22, it can be shown that the difference 
exp( - iwlx - yl)G + (w,x,y) + 41Tlx - yJ) -I goes to zero 
as Jwl- 00. The Fourier transform 
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f e - iWS[e - iwlx - ylG + (w,x,y) + (41Tlx - yJ) -I ]dw, 

for s < 0, is, therefore, equal to 21Ti times the sum ofthe resi­
dues. The residues can be calculated from Eq. (6.3); the 
result is (6.4). A similar argument yields (6.5). Q.E.D. 

Theorem 6.2: Suppose hypothesis C holds and q has no 
w = 0 bound or half-bound states. Then for any 7 satisfying 
171.;;; Ix - yJ and for x#y, 

G + (O,x,y) = - (l6~) -If~ '" eiWT 

xi, tf;± (w,e,x)tf;± *(w,e,y)d 2e dw 

+ L Kn-2tP~ (X)tP~ (y)cosh(Kn7). (6.6) 
n,b 

Proof: As in the proof of Theorem 3.2, we begin with Eq. 
(3.1). We Fourier transform it into the time domain, obtain­
ing 
A A 

G + (t,X,y) - G - (f,x,y) 

= - (16~)-lf~ '" exp( - iwt)iw 

X i, tf;± (w,e,x)tf;± *(w,e,y)d 2e dw. (6.7) 

We now need a step analogous to separating the supports of 
A A 

G + and G - . To do this, we must use Proposition 6.1. We add 
the term 

'" _ I b b exp( - Kn t) - exp(Kn t) 
~ Kn tf;n (x)tf;n (y) 2 
n,b 

to both sides of (6.7). On the left-hand side of the resulting 
equation, we now have expressions (6.4) and (6.5). We can 
then separate the supports of these expressions by multiply­
ing by the Hea viside function H (t - 7), where 171.;;; 1 x - y I. 
We thus obtain 

G + (t,x,y) = H(t - 7) [ - (l6~) -I f~ '" exp( - iwt)iw 

X is, tf;± (w,e,x)tf;±*(w,e,y)d 2edw 

- L Kn-Itf;~ (x)tf;~ (y)Sinh(Knt)] 
n,b 

+ L(2Kn )-Itf;~ (x)tf;~ (y)exp(Knt). (6.8) 

Finally, we transform back into the frequency domain and 
evaluate the result at w = 0; this gives us (6.6). Q.E.D. 

Corollary 6.3: Suppose hypothesis C holds and q has no 
w = 0 bound or half-bound states. Then for any 7 satisfying 
17 1.;;; Ix - yl, 

o(x - y) 

= - (16~) - J~ 00 (V2 - q)eiWT(x.y) 

X 1, tf;± (w,e,x)tf;± *(w,e,y)d 2e dw 

+ 2>n- 2 (V2 
- q)tf;~ (x)~ (y)cosh Kn7(X,y). 

n.b 

(6.9) 
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Again various choices of 'Ie x,y) can be used to illustrate 
the new expansion. First we set 'I = 0 in (6.9). Then one 
finds Eq. (6.2), the usual form of the completeness relation 
for Schrodinger's equation. 

A form useful for scattering theory results from setting 
'I = e'·(y - x) in (6.9) where e' is a unit vector. This can be 
seen by multiplying both sides of the resulting equation by 
q(y) and integrating. After using 

(V2 - q(x»)¢(w,e,x)exp( - iwe'.x) 
• 

= - 2iwe'·V[¢(w,e,x)exp( - iwe'·x)] 

in the resulting equation, one obtains 

q(x) = e'.v{ (2r)-IJ: 00 dw iw 

X r d 2e ¢+ ·(w, - e,x)exp( - iwe'·x)A(w,e,e') 
JS2 

+ L #.: (x) [y~ (e')e - Kne'·" _ y~ ( _ e')eKne,.,,]}. 
n.b Kn 

(6.10) 

Here 

y~(e') = Jd3yeK"''''Yq(y)¢~(y). 

Equation (6.10) is Newton's representation 17 for the poten­
tial of Schrodinger's equation in the presence of bound 
states. This representation plays an essential role in an in­
verse scattering method suggested in the same reference. 

Note added in proof A brief announcement of this work 
with extensions to the near-field problem has recently ap­
peared in Ref. 23. 
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The radiation produced by two interacting relativistic point charges is considered. Under an 
appropriate approximation the radiation ofthe system as a whole (interference effects 
included) is expressed as a function ofthe relative velocity. 

I. INTRODUCTION 

In this paper the radiation produced by the interference 
of two interacting relativistic point charges is found both 
exactly and within an approximation valid under specific 
requirements. 

In Sec. II the geometrical background is presented. Sec­
tion III is devoted to getting the exact expression for the 
radiated momentum (interference effects included) for a 
system of two interacting relativistic charges moving arbi­
trarily. An approximation is introduced in Sec. IV. Its valid­
ity depends on the relative distance and relative velocity of 
the considered particles. In Sec. V a couple of examples are 
exhibited. The last section is conclusions. An Appendix in­
cludes some useful expressions and the main steps for per­
forming some calculations. 

II. NEWMANN-PENROSE RETARDED COORDINATES 

In order to define the Newmann-Penrose retarded co­
ordinates it is necessary to have a world line Xll = Zll( r) in 
Minkowski space. One can then define four coordinates 
( r,K,e,f/J) associated with any point x 11 in Minkowski space 
as follows. The retarded time r is the solution of the equation 

[Xll- zll(r) J{XIl - Zll (r)} = 0, (2.1) 

where 

Zll (r) =-1/llvZV( r) 

with 

1/IlV =-diag( 1, - 1, - 1, - 1) . 

The coordinate K is defined by 

K = vil (r) [x
il - Zll( r)] 

with 

(2.2) 

(2.3 ) 

(2.4) 

(2.5) 

Geometrically, K represents the spatial distance between 
Xll and z 11 ( r) as measured from a frame whose temporal axis 
is v 11 ( r) (r is the retarded proper time of x ll ) . 

Finally if we define 

[xIl- zll(r) L =- Crfv - t IltV) [xv - zv(r)], (2.6) 

then e and f/J are the polar angles of the three-vector 
[xll - z!1( r) ] 1 referred to an arbitrary inertial system whose 
temporal axis has the direction of a unitary vector til. 

III. TWO-PARTICLE SYSTEMS 

Let us consider two (pointlike) charges q! and q2' The 
electromagnetic field Ffv (i = 1,2) constructed from the 
Lienard-Wiechert potentials for qj is given by! 

F~V = ~ [K.[IlU.V]/K. + (1 - K· (u. ·K.»)(K.[llv."]/~)] 
I {"4ii II I 11,,1 I' 

(3.1 ) 

where 

a[llb ,,] = allb " _ a"b 11 , (3.2) 

(a'b) =allbl" (3.3 ) 

and 

Kil = K-! [xl' - z!1(r)] (3.4) 

is a lightlike vector. 
The total electromagnetic field produced by the consid­

ered system is 

(3.5) 

The energy momentum tensor Tl'v related to an electro­
magnetic field Fil" is 

TI'V = FWTFa v + lifvFaPFaP . 

Of course 

TI''',,, = 0 

(3.6) 

(3.7) 
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for any field which satisfies Maxwell equations. 
Inserting in Eq. (3.6) the decomposition (3.5) for F p-v, 

T p-v can be split as follows: 

Tp-V = T~x + TI p-v + Tzp-v, 

where 

(3.8) 

T~x = FtUF2u v + F2p-uF1u v + !TfvFt PF2ap , (3.9) 

T/v = F/uF;u v + !TfvF;a{3Fiap , i = 1,2. (3.10) 

As usual,2 the momentum radiated pP-R is defined as 

PP-R = - L Tp-vd~v' (3.11) 

where ~ is a timelike surface that will eventually be consid­
ered to tend to infinity. 

Equation (3.8) allows us to write 

PP-R = P~ Mix + P~ I +P~2 , 
where 

(3.12) 

(3.13 ) 

P~i = - f TfV d~v' i = 1,2. (3.14) 
Jl:~ 

The integrals for P~i can be partially performed to get 
more compact expressions for them,3 

P P- _ 2 2 fOO . 2 P-d Ri - - -3 qi Vi Vi r i · 
- 00 

(3.15 ) 

On the other hand 

P~MiX = - f lim (T~x d~v) . 
J~ K, ..... OO 

(3.16) 

The detailed shape of ~ is not important because of 
Gauss' theorem and Eq. (3.7). Thus we are allowed to 
choose to our convenience any surface that makes calcula­
tions simpler. We choose to work with a surface defined by 

KI = const 

(Bhabha tube for particle q I ) •4 

For such a choice 

d~p- = [(I-K1(K1·vl »)K1p- -Vlp-]~ drldn~. 

It is found that 

lim (T~x d~v) 

= - (qlq2/21T) [p3{(v2·a l )(a2·K I) 

- (V1·V2) (a2·K1) (al·K1)} 

+pZ{(vl·az)(al·K1) - (al·az)}] 

XKtdrldn~ , 

where 

p=.K1/Kz , 

and 

a/=.v/, i = 1,2. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

It is worth noting that all quantities related to qi are 
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evaluated at Ti defined as the retarded proper time on the ith 
world line of the observation point xp-. 

It follows that 

f dnO 

P~ mix = 2qlqz 41TI drl KtX , (3.22) 

where 

X = p3{(vZ·a l )(az·K1) - (vI·vz)(az·KI)(al·KI)} 

(3.23 ) 

IV. AN APPROXIMATION 

The integrals involved in Eq. (3.22) can be performed 
only if the explicit expressions for both world lines are given. 
Even in such a case the calculations may become extremely 
cumbersome. 

However, it is possible to go one step further if it hap­
pens that the time t[ that a light signal takes going back and 
forth from qz to ql is much smaller than some characteristic 
time tc of the interaction. The condition t[ 4,.tc is fulfilled 
when the particles are close to each other and their relative 
velocity 

r= [1- (v.·V2)-2]./2 (4.1) 

is small compared with the speed of light. 
Under the above conditions vl and azP- are slowly vary­

ing functions of 01 and tPl over the interval t[. 
Then, as an approximation for evaluating the angular 

integrals we consider vzP- and azP- to be independent of 01 

and tPl. 
Thus 

P~ Mix = 2q.q2 f dr. W P- , (4.2) 

where 

WP- = - (al·az) J2P- + (v l ·a2)a1vJ2P-v 

+ (v2·al)a2vJ/v- (vI·vZ)a.va2uJ3P-vu (4.3) 

and 

J a,a,"'a, - f dn~ pnK a'K a' ... K a, 
n - 41T I I I· 

(4.4) 

The integrals (4.4) can be evaluated in the described 
approximation and it is found that (see the Appendix) 

WP-= [(vl·a2)(v2·al)!I(r) + (a l ·a2)gl(r)]vt 

+ [(v1·a2)(vZ·a l )};(r) + (a.·a2)g2(r)]v2P-

+ (v l ·a2)h l(r)at + (vz·al )h2(r)a2P-, (4.5) 

where!;, go and hi (i = 1,2) are functions of the relative 
velocity r whose explicit expressions are given in the Appen­
dix. 

V. EXAMPLES 

A. The neutral particle 

First, to illustrate the plausibility of the exact and the 
approximate formulas [(3.22) and (4.5), respectively] we 
will consider the radiation of interference produced by a neu­
tral system composed by two charges + q and - q travel-
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ing together over the same world line. Of course, the result 
should be such as to have null total radiated momentum. 

In this case 

(5.1) 

The exact expression (3.23) for X now reduces to 

X = - a2 - (K'a)2 (5.2) 

and from Eq. (4.3) 

WI' = - a2Jri - ava).Jriv;' . (5.3) 

Using Eqs. (AlO) and (A12) 

WI'= -a2vl'-a2Iri-ava;.lriv;'-ava;.vl'lov;,. (5.4) 

From (A14), (A18), (A19), and (A37), 

lri = 0, (5.5) 

lriv = CohtV 

, (5.6) 

lriv;' = O. (5.7) 

Consequently 

WI' = - (1 + Co)a2vl' . (5.8) 

Equation (A37) implies 

WI' = - ~ a2vl' . (5.9) 

Thus 

P~Mix = ~ q2 f d'Ta2vl', (5.10) 

which cancels exactly the radiation produced for both parti­
cles considered independently. Therefore the total radiated 
momentum is zero as expected. 

On the other hand, the approximate equation (4.5) now 
reads 

(5.11 ) 

Ifthelimitsofgl(r) andg2 (r) [see (A36)-(A38)] are 
adequately evaluated when r tends to zero then 

WI'= -ja2vl', (5.12) 

which again leads to the correct result. 
It is worth mentioning that the approximation is exact 

for the described situation (r = 0, z t = zt) because its ac­
curacy increases as r and the relative distance (Iz t - z21'1 ) 
get smaller. 

In the same context it is very simple to regain the usual 
results for the radiation of an arbitrary charge q by consider­
ing it as the superposition of two charges aq and (1 - a)q. 

B. The posltronlum 

Let us now consider a system consisting of two particles 
( + q, - q) each of them revolving around the other with 
constant angular velocity w (the system can be thought of as 
a rotating dipole). 

We will calculate the radiated momentum during one 
period T assuming that the motion is nearly circular with 
radius R. 

The world lines for one period are described by 

zt = (ct,R cos wt,R sin wt,O) , 
(5.13 ) 

zt = (ct, - R cos wt, - R sin wt,O) . 

1358 J. Math. Phys .• Vol. 29. No.6. June 1988 

Therefore 

vt = a(c, - Rw sin wt,Rw cos wt,O) , 

vt = a(c,Rw sin wt, - Rw cos wt,O) , 

and 

at = a 2(0, - Rw2 cos wt, - Rw2 sin wt,O) , 

at = a 2(0,Rw2 cos wt,Rw2 sin wt,O) , 

where 

_ dt _ [ (RW)2] - 1/2 a--- 1- - . 
d'Tl C 

(5.14 ) 

(5.15 ) 

(5.16) 

The adopted approximation allows us to evaluate the 
dynamical quantities related to + q at the same coordinate 
time t as those related to - q. 

Then 

(v I'a2) = (V2'al) =0, (5.17) 

€=(a l'a2) =R 2w4/[1_ (RW/c)2]2, (5.18) 

r=(VI'V2) =c2 [1 + (Rw/c)2]1[1- (RW/c)2]. (5.19) 

The momentum radiated by interference from t = 0 to 
t= Tis 

AP~ Mix = - 2q2[ €{ gl (r) iT vt d'Tl 

+g2(r) iTVt d'T2}] ' (5.20) 

where use has been made of the fact that r is a constant 
[gl(r) andg2 (r) are given in (A38)]. But 

IT vt d'Tl = IT vt d'T2 = 211' ["', 
Jo Jo w 

where ['" = (1,0,0,0). 
Therefore 

t1P~mix = [gl(r) +g2(r)]41Tq2 

Analogously 

t1P~ I = t1P~ 2 

X{R 2W3/[ 1 - (RW/C)2f}ll'. 

= (411'/3 )q2{R 2W3
/[ 1 - (RW/C)2f}l1' . 

Finally, from (5.22) and (5.23) 

t1P~ =41Tq2{R 2w3/[1_ (RW/C)2]2} 

X[gl(r) +g2(r) +~]ll'. 

VI. CONCLUSIONS 

(5.21 ) 

(5.22) 

(5.23 ) 

(5.24 ) 

As is well known, the radiated momentun of a single 
charge can be expressed as an integral over its history. On the 
other hand, for a system of two interacting pointlike charges, 
apart from the four-momenta associated to each particle an 
interference term appears. As we have shown, the exact 
expression for the momentum radiated by interference in­
volves mUltiple integrals depending on the detailed shape of 
both world lines. To gain a deeper insight we have developed 
an easier to handle and more manageable approximate 
expression which-as in the single particle case--contains 
an integral over the past of only one of the particles. 
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Besides a trivial example (i.e., a neutral particle consid­
ered as the coalescence of two equal but opposite charges) to 
test the plausibility of the results, the total momentum radi­
ated by a positroniumlike configuration was calculated as a 
function of the relative velocity r. As it can be seen, the r­
dependent factor gl (r) + gz(r) - j is concave and decreases 
monotonically from ~ (for r = 0) to j (for r = I). (Never­
theless, the approximation is valid only for r< I.) 
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APPENDIX: EVALUATION OF THE INTEGRALS 

We want to evaluate 

Jna,a, "a,== f d;:? pnKla'Kla, .. 'Kt' 

n = 0,1,2, ... , s = 1,2, ... , 

when K 1 -+ 00 and where 

Let us introduce 

KIl" = Kt - vI" . 

Trivially, KIl satisfies 

KIl 'V I = 0, 

KIl 'K1 = -1, 

KIl 'KIl = - 1 , 

which shows that KIl is a spacelike vector. Define 

f da? 
In == 41r pn 

and 

I a,u,"'a, - fda? pnK a'K a""K a, 
n - 417" Il 11 Il' 

It is easy to prove that 

I n = In' 

I n'' = In" + vtIn , 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 

I n'''' = In "V + VI (vIn") + vtv( vIn , (All) 

In,,wl = In"vA + VI (I-'In VA) + VI (I-'V I vIn A) + Vll-'vlvv/In . 

(AI2) 

It will be shown that to evaluate In a,a," 'a, it is only necessary 
to know In. In fact, let us first consider In 1-'. 

Obviously, from its definition 

Inl-'vll-' = 0. (Al3) 

Then In I-' is a linear combination of vectors orthogonal 
to VII-" 

On the other hand In I-' can only depend on V2'" Thus we 
can write 
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where 

V2l" = htvv2v = vl- rut 

with 

and 

y= (V I'V2)' 

Analogously 

I aflr=f dO? pnK aK flK r 
n - 417" Illlll 

= Dnv2l aV2lflV2l r + En h ~aflV21 r) . 

(A14) 

(A1S) 

(A16) 

(A17) 

(A18) 

(AI9) 

By multiplying (AI4) by V21 a and remembering that the 
approximation allows us to bypass the integration sign it is 
found that 

yIn -In_1 =rrAn· (A20) 

Use has been made of the fact that 

(v2l ·v2l ) = - rr, (A2l) 

(K I1 ·V21 ) = lip - y. (A22) 

Equation (A20) indicates that A n can be constructed 
from In and In _ I . 

By multiplying (AI8) times V21 aV2l fl 

rIn -2yIn_1 +In- 2 =rr(rrBn -Cn). (A23) 

Contracting a and/3 in Eq. (AI8) 

In = rrBn - 3Cn . (A24) 

The last two equations constitute a system that can be 
solved for Bn and en in terms of In' In _ I' and In _ 2' 

To obtain Dn and En it is possible to mimic the above 
procedure and the resulting system is 

rIn -3rIn_1 +3yIn_2 -In_ 3 

='tr 4 (rrDn -3En), (A2S) 

yIn -In_1 = rr(rrDn - SEn) . (A26) 

Thus D n and En can be expressed in terms of In, In _ 1 , 

In_ 2' and In_ 3' 

The key point is then to evaluate In . Its value should not 
depend on the frame of reference. 

Let us choose the system attached to q). Then 

(A27) 

The z direction can be chosen to coincidence with the 
spatial component of V2'" 

Therefore 

V21-' = (y,O,o,..;:y=T) . (A28) 

Also 

Kt = (I,sin ()) cos tPl>sin (}) sin tP),cos (}I) . (A29) 

In the limit K) -+ 00, 
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p = I1y(1- rXI) (A30) 

with 

XI = cos (}I· (A3l) 

But 

dO~ = -dt/JI dxl · (A32) 

Consequently, after performing the angular integration 

1 JI 1 In =- dx . 
2 _I yn(1-rx)n 

(A33) 

This integral can be easily done, giving 

II = (I12yr) In [( 1 + r)/( 1 - r)] , (A34) 

In = [I12ynr(1-n)][(1 +r)l-n_ (l-r)l-n], 

n¥= 1. (A35) 

It is useful to exhibit the explicit expression of In for the 
various values of n needed in the calculations 

L2=j(4y2-1), LI=y, 10=1, 
(A36) 

II=(I12y,)ln[(l+r)/(1-r)], 12=1, I3=y. 

Solving Eqs. (A23), (A24) and (A25), (A26) for B n , Cn 

and Dn, En, respectively, and using the above results, the 
following list can be elaborated: 

Ao=O, 

A I =-- -In---l , l-r2[1 l+r ] 
r2 2r 1 - r 

A2 = _1_[1 _ 1 - r In 1 + r] , 
yr2 2r l-r 

A3 = 1, 

B] = 1 - r 2 [3 - r 2 In 1 + r _ 3] , 
2yr4 2r l-r 

B2 = 1 - r [3(1 - r) (1 _ J... ln 1 + r) + 1] , 
r r 2r l-r 
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B3=_I_[3(1-r2) (l-r
2

In l+r -1)+1], 
yrZ 2r z 2r l-r 

Co = -j, 

CI = - ~A2' 

Cz = -AI' 

C3 = ~ !Az, 

E I =-!B2 , 

E2 = -Bl' 

E3 = - !B2' 

Dn = [(1- r)lrJ[An + 5En] . 

(A37) 

Furthermore, the functions (f ,g,h) appearing in Eq. 
(4.5) are given by 

fl(r) = - yBz +A2 + 3rB3 

- C3 - 3yA3 + 13 - r D3 + yE3 , 

her) =B2 - 2yB3 +A3 + r D3' 

gl(r) = yA2 -12 + r E3 - yC3 , 

g2(r) = -A2 - yE3 , 

hl(r) = C2 + r E3 - yC3 , 

h2 (r) = C3 - yE3 , 

(A38) 

and as can be seen they are combinations of An' B n' Cn, D n' 

En' and In; so their explicit form as functions of r flows 
directly when expressions (A37) are replaced in (A38). 
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Hojman sf al. 1360 



                                                                                                                                    

Four-momentum and angular momentum in classical electrodynamics 
Abraham Lozada and P. l. Torres 
Departamento de Fisica, Facultad de Ciencias, Universidad Central de Venezula, A. P. 20513, Caracas 
J020-A, Venezuela 

(Received 17 September 1987; accepted for publication 13 January 1988) 

The total four-momentum PI' and the total angular momentum tensor M).p. for a classical 
point charged particle and its field are considered. The standard definition of PI-' and M).I-' is 
used as the integrals of their respective densities over a spacelike hyperplane orthogonal to the 
four-velocity of the particle. It is shown that the integral defining PI-' exists and is a conserved 
quantity, but that the integral defining M).I-' does not exist. The last result is due to the 
asymptotic behavior of the Coulomb field at spatial infinity. 

I. INTRODUCTION 

For a point charged particle in classical electrodynam­
ics, given an arbitrary energy momentum tensor e~t, and its 
corresponding angular momentum tensor density M TV, 

(1.1 ) 

the standard definitions for the four-momentum P~ and the 
angular momentum tensor M l' that have been considered in 
the literature 1-8 (for a review on this and related matters, see 
Ref. 8) are 

( 1.2) 

M1'(r) = i MTvdav , (1.3) 

where the integration is performed on the spacelike hyper­
plane a, which cuts the electron world line (EWL) orthogo­
nally at the pointz( r), with rbeingthe proper time at which 
these quantities are evaluated. Here, day = - Vy (r)d 3a. 

In this paper we consider some facts that have been 
overlooked in the literature, and that are related to the infi­
nite range of the electromagnetic field. Specifically, we study 
the integrals ( 1.2) and ( 1.3) corresponding to the total four­
momentum P I-' and the total angular momentum tensor 
M ).1-', for a classical point charged particle in an external 
electromagnetic field. We obtain the following. 

(i) The integral (1.3) for the total angular momentum 
density M ).I-'V is not absolutely convergent. It happens that 
the value of the integral depends on the way that the infinity 
is reached. In other words, the improper Riemann integral 
( 1. 3) does not exist for M ).I-'y. 

This fact is due to the behavior of the Coulomb field at 
spatial infinity. 

(ii) The integral (1.2) for the total energy momentum 
tensor 9I-'v is absolutely convergent. That is, the improper 
Reimann integral (1.2) exists for 9I-'v and hence its value 
does not depend on the way that the infinity is reached. 

(iii) We show explicitly that PI-' is a conserved quantity. 
That is, if a conservation law in differential form is assumed 
for 9I-'V (i.e., av9l-'v = 0, everywhere in space-time), it fol­
lows that the tensor 9I-'v has a good behavior at spatial infin­
ity in order to define a globally conserved quantity by (1.2). 

(iv) Also, through (1.3) we evaluate M ~x, the part of 

the total angUlar momentum tensor associated with the in­
teraction of the particles and the external field. This integral 
is absolutely convergent due to the asymptotic behavior as­
sumed for the external field. 

The infinities associated with PI-' and M).I-' (because of 
the divergences of 9I-'V at the EWL) will be dealt with by the 
standard 1,2.8,9 mass renormalization procedure, We want to 
stress that the nonexistence of the integral for M ).I-'V pointed 
out in (i) is not related to the divergences of the theory at the 
EWL, but rather to the behavior of the Coulomb field at 
spatial infinity. 

With respect to the notation, the metric tensor g will 
have signature + 2, and the speed of the light is taken as 1. 
When it will be convenient, scripts on vectors, and tensors, 
will be omitted and scalar products will be indicated by a dot. 
Parentheses ( . , . ) or brackets [ , , . ] will denote symmetriza­
tion or antisymmetrization, respectively, of the enclosed in­
dices (without a factor of one-half). The EWLisz(r), where 
Tis the proper time, and v( r) =v (v2 = - 1) and a( r) =a 
(v'a = 0) are the four-velocity and acceleration, respective­
ly. The components of the total electromagnetic energy ten­
sor for a point charged particle and an external electromag­
netic field are 

(1.4 ) 

where 

( 1.5) 

The electromagnetic field tensor F':e~ is the one corre­
sponding to the retarded Lienard-Wiechert potential. The 
nons in gular external electromagnetic field F~;; satisfies 
Maxwell's equations for vacuum and vanishes at spatial in­
finity and at the remote past. 10 Specifically, we shall suppose 
that F~;; = 0, V1"E( - co ,ro], where ro is an arbitrary prop­
er time (as small as we want), which means that the particle 
is free V 1"E ( - co, r 0]' This is a very mild simplifying as­
sumption that can even be relaxed. 

Corresponding to the superposition shown in (1.5) we 
obtain (in obvious notation) using ( 1.4), 

( 1.6) 

Retarded coordinates will be used here (see, e.g., Ref. 
8). Then for any space-time point x, we define 
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R=x-z(r), R 2 =0(Ro>0), 

p= - v'R, u=(R/p) - v. 

In these coordinates, 

e2 1 e t =- (!g+ vv- uu)-
re 41T p4 

( 1.7) 

The material properties of the particle will be character­
ized by the standard bare energy momentum tensor K :;V, 
which is given by 

K~t= f molf'(r)v"(r)o[x-z(r)]dr, (1.8) 

where mo is the electron bare mass. 
Hence, for K b" and its associated angular momentum 

tensor density M ~1lV, we obtain its corresponding bare four­
momentum Pb and bare angular momentum M~Il: 

Pb(r)=Pb= i Kb"du" = molf'(r), (1.9) 

M~Il(r)=M~Il= iM~Il"dU" = [zt(r),molf'(r)]. 

( 1.10) 
The evaluation of P':nix has been considered by Ta­

bensky,1O who obtains 

P':nix (r) = i 8':n¥x dO'" 

= - ef~ ",F~~(z(r'»)v,,(r')dr'. (1.11) 

Following a procedure similar to Tabensky's, we obtain (see 
Appendix A) that 

M Ail ( ) = ( MAil" d 
mix 7 - Ju mix U v 

= - e f~ '" [zt,F~~ (z( r') )V" ]dr'. (1.12) 

Since a"e~~ = 0, in all space-time, and ~~ has nice 
properties at spatial infinity, P ~xt and M;~ are independent­
ly conserved quantities. Hence in the following we shall ex­
clude the P~xt and M;~ parts in the total four-momentum 
piland in the total angular momentum tensor MAil, respec­
tively. That is, pil = Pb + pret + P':nix and MAil = M~1l 
+M~ +M~x' 

The plan of this paper is as follows. In Sec. II, we show 
that the integral ( 1.3) for M All" is not absolutely convergent 
but that the integral ( 1.2) for 81''' is. In Sec. III, we show that 
pil is a conserved quantity and also present a way for obtain­
ing a conserved quantity from MAil". In Sec. IV, we discuss 
the obtained results. In Appendix A, we prove ( 1.12) and, in 
Appendix B, some relevant integrals are evaluated. 

II. EXISTENCE OF THE INTEGRALS DEFINING PILAND 
MAIL 

In this section we want to show that even though PI' as 
defined by (1.2) exists, the integral (1.3) defining M All does 
not exist. 
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Let us start by remembering some facts about multiple 
improper Riemann integrals with continuous integrand in 
unbounded regions. 11,12 Let 0' be the unbounded integration 
region, and Un CO', a sequence of bounded regions such that 
Un - 0' (cf. Refs. 11 and 12). If for any such sequence Un' the 
limit when n- 00 ofthe integrals evaluated on Un exists (is 
finite) and is independent of the choice of {un}' then the 
limit is said to be the improper integral on u. We also have 
the following theorems II, 12: (a) the integral on 0' exists if and 
only if the integral of the absolute value of the integrand 
exists (Le., if and only if the integral is absolutely conver­
gent); and (b) the integral of a positive function exists if and 
only if it exists for an arbitrary sequence {un} of bounded 
regions. 

In order to study the existence ofthe integrals ( 1.2) and 
( 1.3) for 81''' and M AI''', respectively, we shall consider, in­
stead of the hyperplane 0', the unbounded hypersurface 
dOl C 0', which coincides with 0' except for a "hole around the 
EWL" defined by the intersection between the light cone 
with apex at r' (r' < r) and u. We do this to avoid the infin­
ites of the fields at the EWL (which can be dealt with later by 
the usual renormalization procedure) and to emphasize that 
the existence of the integrals that we are discussing is related 
only to the asymptotic behavior of the field at spatial infinity. 

Since the integrals defining P':nix and M ~x are absolute­
ly convergent (see Appendix A) we shall consider only the 
following integrals: 

pll[dOl] = ( er;; du", (2.1) 
JdO) 

(2.2) 

First, we want to show that M AI' [dol] does not exist. To 
do this we split our proof into the following parts (i) and 
(ii) . 

(i) Case of a free particle: Here we shall show directly 
that the integral 

( IM~"v"ld3u, (2.3) Jo'O) 

diverges. Without losing generality, we suppose that the par­
ticle is at rest. In this case, 

M~~~v" = 0, k,l = 1,2,3, (2.4 ) 

M~!vv" = (e2/81T) [Zk( r) + puk ]Ip4, k = 1,2,3. 
(2.5 ) 

We obtain that, for k = 1,2,3, 

( IM~!vv" Id 30' = ~ lim (P" dPf dO. I Uk + Zk(;) I, 
JOIOI 81T p"-", Jp• p P 

(2.6) 
where p' = r - r', is the value of the p coordinate corre­
sponding to the intersection between the light cone with 
apex at r' and u. Hence from (2.6), 

( IM~"vvld3U;;;'~ lim {(P" dp fdo.lukl 
Jo'OI 81T p" - '" Jp• p 

- S:" ~ f dOlzk(r)I} = + 00. 

(2.7) 
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(ii) Case 0/ a particle in an externalfield F':~: Here we 
shall show that different choices for the sequence of bounded 
regions {un}, such that Un _dol, throw different results, and 
hence the integral defining M A/J [ dOl] does not exist. In fact 
we shall show that 

lim MA/J(u') == lim r M:~" du", 
E_ 00 E- 00 Jo' (2.8) 

and 

T'~~ 00 MA/J(a-) == T'~~ 00 i M:~" du", (2.9) 

where u' and a- are defined in Appendix B, give different 
results (notice that under the respective limits u' _dOl and 
a-_dol ). 

Using (BI4), (BI6), and the fact that the particle is free 
for r< r 0' we obtain 

= [z"(r')J~(r')] +3..e2iT [ut(r),aIl(r)]dr 
3 To 

2 iT + - e2 [z"( r),zf'( r) ]a2
( r)dr. 

3 To 

(2.10) 

Also, using (B6) and (B7), we obtain that 

lim MA/J(a-) 
r"-.-oo 

(2.11 ) 

We see that the last term of the right-hand side of (2.11) 
being a function of r is not identically zero V r > ro (except 
for the case of the free particle). 

Now we want to show that the integral defining p/J [dOl] 
in (2.1) is absolutely convergent, i.e., p/J[dOl] exists. For 
that, it is sufficient to consider dOl for T <ro. In this case, we 
have that 

&:e~ v" (r) = (e2/41Tp4) [zf'( r)/2 + v( ro) ·v( r)zf'( ro) 

(2.12) 

and that the invariant area element on dOl in retarded coordi­
nates is given by 

d 3u=v"(r)du" = -p2 dpdOl[v(ro)'v(r)], (2.13) 

where dO is the solid-angle element for the inertial frame 
with time axis VV( ro); see, e.g., (AI6) in Ref. 8. The expres­
sion (2.13) is easily evaluated following the standard proce­
dure (cf. Refs. 8, 10, and 13) and the fact that the equation of 
the hyperplane u in retarded coordinates is given by (BI2) 
for r R < ro, with E substituted by p. Hence it follows that 

wherepo(r') is defined in (AI) and IA/JI==p41&.'e~v"l/ 
Iv(ro)'v(r)l, is independent of p. It follows directly that 
(2.14) isjinite, hence the integral defining p/J[dOl] exists. 

p/J[dOl] = lim p/J(u') 
E_oo 

= lim p/J(a-) =/~(T) 
-r"_ - 00 

2 iT +_e2 a2(r)zf'(r)dr. 
3 "-0 

(2.15) 

It should be mentioned that using (2.13) and a proce­
dure similar to the one used in (i), it can be shown directly 
that the integral f 0'0) IMA/J"v"ld 3u for the general case of a 
particle in an external field diverges [this will constitute an 
alternative prooffrom the one given in (ii) ]. 

Finally, using the standard mass renormalization proce­
dure, we discuss the evaluation of the quantities 

p/J[dOl], lim MA.!J(u'), .tim MA/J(a-), 
E- oo .,. --00 

defined on dOl, when dOl _ u. 
Since 

lim {/~(r') - ~zf'(r)/2(r- T)} = - i~a/J(r), 
T_T 

(2.16) 

we perform the renormalization with the bare four-momen­
tum PI; = mozf'( r), obtaining the usual result2,5.8; 

lim {Pl;(r) + P/J[dOl]} 
T-T 

=mzf'(r) --e2a1l(r) +-~ a2 (T)zf'(r')dT, 2 2 iT 
3 3 To 

(2.17) 

where m is the renormalized mass. Then we get for the total 
four-momentum p/J, the usual resultl,5,8; 

p/J = mzf'( r) - 3.. ~aIl( r) + 3.. e2iT a2 ( T)zf'(t ')dT 
3 3 To 

- e iT F~~ (r')v" (T)dr'. 
To 

(2.18 ) 

Similarly, 

lim ([ z"( r'),J~ (T)] - e2[z"( r),zf'( r) )!2( r - r')} 
T_T 

= -i~[z"(r),aIl(r)]. (2.19) 

Then, renormalizing the quantities limE _
oo 

MA/J(u') 
and lim

T
• __ oo MA/J(a-) [see (2.10) and (2.11)], with the 

bareangularmomentumM~/J(r) = [z"(r),PI;(r)], weob­
tain 

~~ [M~/J( r) + l~"!' MA/J(u') ] 

==M:::' = [z"( r),mzf'( r)] - 3.. e2 [z"( r),a/J( r)] 
3 

+_e2 [ut(r'),a/J(r')]dr' 2 iT 
3 To 

+ 3.. e2 rT 

[z"( r'),zf'( r') ]a2
( r')dr', 

3 jTo 

(2.20) 

Then, from (B5), (B7), (B13), and (BI5) we obtain and 
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~~ [M~It(r) + T'~~ '" M"'It(U)] 

=M"'1t + e2 
[v"'(rO),v"(r)] 

cen 6 [v(ro)'v(7)] 
(2.21) 

We have shown that the integral (1.3), defining the total 
angular momentum M"'1t does not exist [see (i) and (ii)]. 
However, we can define the following quantities: 

M"'It(u' -->u) =M~:n + M~x, 
M"'It(u-->u) =M~:n + M~x 

(2.22) 

+ (e2/6) [V-« ro),v"( r) ]![v( 70) 'v( 7)], 

(2.23 ) 

where M~:n is defined in (2.20). The quantity M "'It (u' ...... u) 
is the one found in the literature4

•
5

•
8 (the term M ~x being 

understood) under the name of the total angular momen­
tum. 

III. CONSERVATION LAWS 

Let us define the tensors 

8I'v=Kgv + e~e~ + e::.~x' 
M"'ltv=M~ltv + M~:/ + M~:. 

(3.1) 

(3.2) 

The conservation laws for the energy and the angular 
momentum, expressed in differential form, are 

(3.3 ) 

everywhere in space-time [at the EWL, (3.3) is an assump­
tion about the cancellation of the infinities] . 

As is well-known/· 14
•
15 from (3.3), the Gauss theorem, 

and the vanishing of certain integrals at spatial infinity, the 
conservation laws in integral form for the total four-momen­
tum p It and the total angular momentum M "'It are obtained 
whenever the quantities pit and M"'1t defined by (1.1) and 
( 1.2) exist. As we can see, there are, in principle, two prob­
lems that must be clarified: first, the existence of pit and 
M "'It, and, second, if they exist, their conservation. 

In the following, we shall need the two bounded space­
time regions .0: and n, seen in Fig. 1. Let U 1 and U2 be two 
hyperplanes that cut the EWL orthogonally at z( r l ) and 
z( r 2 ), respectively. Let ~ be the bounded part of the Bhabha 
tube of radius E given by the intersection between this 
Bhabha tube and the hyperplanes U 1 and u2 • Let C be the 
bounded part of the light cone with the apex at r' (r' < 7 0 ) 

given by the intersection between this light cone and the 
hyperplanes U 1 and u2• Then, 0' is determined by the hyper­
surfaces~, u;, and u;, where u;, i = 1,2, is the bounded part 
of U i given by the intersection between ~ and ui • Finally, n is 
determined by the hypersurfaces C, ul , and u2 , where Uo 
i = 1,2, is the bounded part of U; given by the intersection 
between C and u i • 

Now, knowing that pit exists (see, Sec. II), let us show 
that it is a conserved quantity. Applying the Gauss theorem 
and (3.3) in n, we obtain 

i 8I'v duv - i 8I'v duv = f~, (1") - f~, (1"), (3.4) 
0"] U2 

where f~ ( r') is defined in (B7). Hence, under the limit 
r' --+ - 00, we have 
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FIG. 1. Space-time regions used to test conservations laws in integral form. 

(3.5) 

i.e., the total four-momentum is conserved. Let us note that 
the result (3.5) is also obtained if the region 0' is used (as it 
should be). 

Since M "'I' defined by (1.3) does not exist (see Sec. II), 
it is senseless to consider its conservation. However, it makes 
sense to ask if quantities (obtained through a prescription on 
the way that the spatial infinity is reached) like M "'It (0' --> u) 

and M"'P(u-->u), defined in (2.22) and (2.23), are con­
served. 

Then, let us show that M "'I' ( 0' --+ u) is a conserved quan­
tity. Applying the Gauss theorem and (3.3) on 0', we obtain 

{ M"'ltv duv - {. M"'ltv duv = ( M"'ltv ~v. (3.6) 
J~ J~ h 

Under the limit E -+ 00, we obtain from (3.6), (2.22), and 
(BI6) that 

M"'It(u; --+ul ) = M"'It(u; --+(2 ). (3.7) 

That is, M"'P(u' -+u) is a conserved quantity. 
From (2.18) and (2.22),itfollowsthat 

M"'It(u'-+u) = [z"',plt], (3.8) 

which shows that the conservations of pit and M "'It (0' --+u) 
are compatible.5 

Finally, let us show that M"'P(u--+u) is not a conserved 
quantity. Applying the Gauss theorem and (3.3) on n, we 
obtain 

i M"'pvuv - i M"'ltv duv 
0"1 0'2 

= [z"'( r'),J~, (r')] - [z"'( r'),J~, (r')]. (3.9) 
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Under the limit r' -+ - 00, we obtain from (3.9), (2.23), and 
(B7) that 

M"-Il(u\-+O"\) - MAI'(U2-+0"2) 

= e2
{ [v"(ro),zI'(r\)] _ [v"(ro),zI'(r2 )]}. 

6 u(ro)'u(r\) u(rO)'u(r2 ) 

(3.10) 

From (3.10) we see that except for a free particle, 
MAI'(U-+O") is not a conserved quantity [if the particle is 
free, MAl' (0"' -+0") andMAI'(u-+O") are equal because it hap­
pens that in this case the sequence of bounded regions u' and 
u coincide] . 

IV. DISCUSSION 

In Sec. III we showed that the integral (1.3) defining 
the angular momentum tensor for a point particle does not 
converge absolutely, i.e., that the angular momentum tensor 
does not exist. One can ask what is the situation for the case of 
an extended charged body. This question has been consid­
ered in Ref. 16 (p. 398), where it is mentioned that the inte­
gral defining the angular momentum tensor is not, generally, 
absolutely convergent, expecting, however, that in impor­
tant special cases it will converge. Nevertheless, our result 
shows that what it is reasonable to expect, is that the integral 
defining the angular momentum tensor for any extended 
body is not absolutely convergent, because asymptotically 
the behavior of the field of a body is like the corresponding 
one to a point particle. 17 

We believe that we have made it clear enough that the 
nonexistence of M AI' that we have discussed in this paper has 
nothing to do with the infinities at the EWL (as dealt with by 
the renormalization procedure). As is obvious from our cal­
culations, the nonexistence of M AI' is related to the asympto­
tic behavior of the Coulomb part of &.'e~ (in fact, the result 
holds even for a free particle). We want to point out al­
though the Coulomb part of ~e~ is the most singular in p, 
and hence the one from which we expect the best asymptotic 
behavior for the integral, this is not the case, because the 
other parts depend also on the acceleration of the particle, 
which has the asymptotic behavior 

a(r) -+ O. 
T_ - 00 

In order to emphasize the independence of our result of the 
singularity at the EWL, let us note that the nonexistence of 
the integral defining M).I' is also obtained (the calculations 
are straightforward) for the model characterized by the 
four-current (30) in Ref. 18 (essentially a free-spherical 
charged shell). This model does not present any infinity in 
its corresponding 9I'v. 

We have seen that even though the definition (1.2) is 
perfectly consistent, because P I' exists and is a conserved 
quantity (see, Secs. II and III), the invariance ofthe theory 
under the Poincare group cannot be carried on through the 
definitions (1.2) and (1.3) since the definition (1.3) is not 
appropriate to discuss the consequence of Lorentz invar­
iance of the electromagnetic theory. We know that a given 
choice to reach the spatial infinity on 0" leads to a definite 
result, e.g., M).I'(O"' -+0") and M).I'(u-+O") [see (2.22) and 
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(2.23) ]. The point of view of taking a definite choice to 
reach the spatial infinity on 0" in order to define a unique M ).1' 

is not physically consistent since there are no physical reasons 
to choose a particular way to reach the spatial infinity (two 
arbitrary points on 0" are spatially related). 

Summarizing, the definition (1.2) is quite adequate to 
discuss the translational invariance of the electromagnetic 
theory since pI' exists and is a conserved quantity. On the 
other hand, the definition (1.3) is inadequate to discuss the 
Lorentz invariance of the electromagnetic theory. This in­
variance can be considered, however, in the form of a local 
conservation law through M).I'V, as is discussed in Sec. 9 of 
Ref. 8, or in Ref. 19, for a point particle. 

The evaluation of MAp, (0"' -+0") through the region de­
fined in Appendix B has been done in the literature,5 and our 
result is the same as the one found in Ref. 5. Here we present 
an alternative procedure to calculate M).I'(u' -+0") in which 
there is no need to take the limit E -+ 00 inside the integrals. 
As is well-known, this procedure can be invalid. In fact, this 
procedure has been taken in the literature20 (for a different 
purpose) and criticized by the same author.21 

It is worthwhile to mention that in the formalism set by 
Van Dam and Wigner2 for classical relativistic mechanics 
of interacting point particles (which includes Wheeler­
Feynman electrodynamics23 ), an asymptotic interaction an­
gular momentum is present.24 Although their framework 
and ours are different, the root of their unexpected result, 
like ours (i.e., the nonexistence of M ).1',) is the same, that is, 
the long range of the electromagnetic interaction.24 We no­
tice that in their formalism22,24 the total angular momentum 
tensor exists and is a conserved quantity. 

Finally, we want to mention that in the standard formu­
lation of classical field theory, the fields are assumed to van­
ish fast enough, in order for the integrals (1.2) and (1.3) 

(with 0" being, in general, an arbitrary spacelike hypersur­
face) to exist and define globally conserved quantities (see, 
e.g., Refs. 14, 15,25, and 26). Our results show that for the 
very simple model of an electromagnetic field with a source, 
this is not the case for M).I' (even for a free point charged 
particle). 

APPENDIX A: EVALUATION OF MAIlI mx 

In this appendix we want to evaluate M ~x. For this 
purpose (and for some calculations in Appendix B) let us 
introduce the following notation. 

We let C(J (r') stand for the bounded segment of the fu­
ture light cone with apex at z( r'), determined by the inter­
section between this light cone and the hypersurfaces 0" and 
the Bhabha tube of radius E. 

We have that5 

po(r'):=u(r)'[z(r) -z(r')]!u(1')'[u(1") + u], (AI) 

is the set of values of the coordinate p given by the intersec­
tion between C(J ( r') and 0" (for r' < r) . 

In order to evaluate M ~x, we choose the bounded 
space-time region n ( r" ,r') shown in Fig. 2, where Y repre­
sents a segment of the Bhabha tube of radius E 
[E < inf Po ( r') ], and u is the part of the hyperplane 0" deter-
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FIG. 2. Space-time region used in the evaluation of M~., P"(a), and 
MA"(a). 

mined by the intersection between a and the hypersurfaces 
~ ( 1") and 'G' ( 1''' ), with 1''' < 1" < 1'. Since a yM:::': = ° in 
that region, by the Gauss theorem we obtain 

r M:::': day = eM:::': d'J. y + r M:::': dey 
Jq Jl'. J'iff(T") 

(A2) 

where d'J. y =E 2d1'dn(u y + (a'u)R y), and dey 
= -pdpdnRy. 

Performing the required integrations, we obtain that 

eM:::': d'J. y = -....!!..- r' d1'f dO. Jl'. 417' JT' 

X [zA( 1'),F~~ (E,1',n)] Va (1') + EGAP, 
(A3) 

where GAp is a function of good behavior that satisfies 
limE_ o IGAILI < 00 because of the properties assumed for 
F~';-; . If we use again the properties imposed on F~';-;, we have 
that 

lim _1_ f dO. F~~ (E,1',n) = F~~(z( 1'»)==F~~ (1'). 
E-O 417' 

(A4) 

Then, 

~~ L M:::': d'J. y = - e i~ d1'[ zA( 1'),F~~ (1')] Va (1'). 

(AS) 

Also, we find that 

r M:::': dey 
J'C(T) 

e f ipo(T) R 
= - dO. dp [ x'\F ~~ (p, 1" ,0.)] -.::..., 

417' E P 
(A6) 

where poe 1") is defined in (AI). 
Hence from (A6) it is clear that 
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.lim r M:::': dey = 0, (A7) 
T - - 00 J'C(T') 

because of the asymptotic properties of F~';-; . 
Since F~';-; is well defined and bounded on the EWL and 

limT _
T 

poeT') = 0, from (A6), we obtain that 

lim lim r M:::': dey = 0. 
T-T E-O J'iff(T) 

(AS) 

The final result is that 

i M:::':day = -ef~oo d1"[zA(.,-'),F~(1")]va(.,-')' 
(A9) 

Because of the assumed properties of F~';-;, the integral 
of M:::':, pointed out in (A9), is absolutely convergent since 
it is not an improper integral [the same comment is valid for 
P::'ix given by (1.11)]. For the same reason, the limit of 
integration - 00 in (A9) can be substituted by 1'0' 

APPENDIX B: EVALUATION OF P"(a), MA"(a), P"«(J"), 
ANDMA,,«(J") 

In this appendix we want to evaluate some useful inte­
grals. 

First, we shall evaluate the integrals 

PIL(a-) == L e:."e~ day, MAIL(a-) == L M~y day, (BI) 

where a- is the bounded part of the hyperplane a defined in 
Appendix A and already shown in Fig. 2. 

Since, in the region 0. ( 1''' ,1") shown in Fig. 2, 

aye:."e': = 0, ayM;:;y = 0, (B2) 

we obtain, using the Gauss theorem, that 

r e:."e': day = C e:."e~ d'J. y + ( e:."e~ dey 
Jq Jl'. J'iff(T') 

- ( e:."e': dey, 
J'iff(T) 

(B3) 

{ M;:;y day = C M;:;y d'J. y + ( M;:;y dey 
Jq Jl'. J'iff(T") 

- ( M;:;y dey. (B4) 
J'iff(T) 

The evaluation of the integrals in (B3) and (B4) are very 
simple and only the results will be stated. One obtains 

PIL(a-) =f~(1") +~e2r a2(1')if(1')d1'-f~(1'''), (BS) 
3 Jr. 

MAIL(a-) = [zA( 1"),J~( 1">] + ~ e2 (T [if( 1'),alL ( 1') ]d1' 
3 Jr. 

where 

f~( 1") 

2 iT + - e2 [zA( 1'),if( 1') ]a2( 1')d1' 
3 T' 

- [zA ( 1''' ),J~ ( 1''' )] , (B6) 

e2
[ 4v( 1') 'v( 1")if(.,-') + if( 1')] 

6v( 1'). [z( 1') - z( 1")] 
(B7) 

We notice that PIL(a-) and MAP(a-) in Eqs. (BS) and 
(B6) do not depend on E (as it should be). 
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FIG. 3. Space-time region used in the evaluation of P"(cI) and MA,,(cI). 

Second, we shall evaluate the integrals 

pl'(a') == L ~~ du", M).I'(u') == L M~~" du", (B8) 

where a' is the bounded part of the hyperplane u shown in 
Fig. 3 determined by the intersections between u and the 
hypersurfaces CIf (1") and~' (see Refs. 5 and 8). The hyper­
surface ~' is a segment of the Bhabha tube of radius E 
[E> sup poe 1'0)] determined by the intersection of this tube 
and the hypersurfaces CIf ( 1") and u. 

Since, in the space-time region o.'(E,1"), shown in 
Fig. 3, 

a,,~e~ = 0, a"M~~" = 0, (B9) 

we obtain, using the Gauss theorem, that 

r ~~ du" = r ~~ dC" + r ~~ d~", Jo' J'6 (T') Jl:' 
(BlO) 

r M~" d(7" = r M~~" dCv + r M~~" d~". (Btl) 
Jo' J'6(T') Jl:' 

In order to calculate the integral on ~' in Eqs. (BlO) 
and (Btl), we have to evaluate 1'R (E,O,t/J) , that is, the set of 
values of the retarded coordinate l' determined by the inter­
section between u and ~'. The imposed condition, 
E> sup poe 1'0)' implies that the retarded coordinates at the 
intersection are the ones corresponding to a free particle. 
Then, using the equation of u in retarded coordinates and the 
fact that the particle is free for proper times smaller than 1'0 

[and hence z( 1") = z( 1'0) + v( 1'0)( 1" - 1'0)' V1" < 1'0], we 
obtain that 

(E ° 
A.) = _ v( 1'). [z( 1') - z( 1'0) - Eu( 1'o,O,t/J)] 

1'R ,,'f' -1'R -
v( 1') 'v( 1'0) 

- E + 1'0' (BI2) 

The evaluation of the integrals in (BlO) and (BII) is 
very simple and only the results will be stated. One obtains 
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pl'(a') =f~(1") +_e2 a2(1')v"(1')d1'-~v"(1'o) 2 iT' 2 

3 To 2E 

+ E2 f dO. 1:0 

~e~U" d1', (B13) 

M ).1'( a') = [~( 1"),J~ (1")] + ~ e2 r [0( 1'),al'( 1') ]d1' 
3 JTO 

(BI4) 

wheref~ and 1'R are given by (B7) and (Bt2). The double 
integrals appearing in Eqs. (B13) and (BI4) are easy to 
evaluate using the fact that al' ( 1') = 0, V 1'E [ 1'R' 1'0] . It is ob­
tained that 

f dAiT .. au" d = ~[ v"( 1') 
U O'retU" l' 

TR 6E 3 V(1')'V(1'o) 
+ v"( 1'0)]' (B15) 

(BI6) 
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An efficient procedure for the evaluation of the coefficients of fractional parentage (cfp's) for 
L-S coupled wave functions is presented. The cfp's are calculated separately for N particles, 
each with angular momentum I (s), coupled into a total angular momentum L (S). The 
N-particle states formed can belong to any permutational symmetry. The procedure for the 
evaluation of the L and the S cfp's for arbitrary permutational symmetry is a generalization of 
the procedure proposed by Bayman and Lande [Nucl. Phys. 77, 1 (1966)] for symmetric and 
antisymmetric states. It involves the construction and diagonalization of the matrices 
representing the quadratic Casimir operators for the appropriate special unitary and 
symplectic (or orthogonal) groups. The cfp's of the antisymmetric L-S coupled states are 
obtained in terms of products of cfp's for Land S corresponding to conjugate representations 
of the symmetric group. This method is demonstrated to provide cfp's for L-S states for 
systems with a considerably larger number of particles than is feasible using the procedures 
heretofore available. 

I. INTRODUCTION 

The theoretical study of many-particle systems possess­
ing spherical symmetry has been a problem of central inter­
est of both atomic and nuclear physics since the advent of 
quantum mechanics. One of the most efficient methods for 
the construction of many-particle wave functions with well­
defined permutational symmetry and total angular momen­
tum is the iterative procedure, originally proposed by Bacher 
and Goudsmit 1 and extensively developed by Racah.2 In this 
procedure the N-particle wave function is expressed in terms 
of states formed from appropriate (N - 1 )-particle wave 
functions by the coupling of one more particle. The coeffi­
cients in the expansion of the N-particle state in terms ofthe 
(N - 1 )-particle states are known as the coefficients offrac­
tional parentage (cfp's). 

The most common procedure for the evaluation of the 
cfp's is the Redmond iteration procedure.3 This procedure 
was extensively applied in the calculation of j-j coupled 
states in nuclear physics. 4 However, this procedure is limited 
to a relatively small number of particles, because of inherent 
numerical difficulties.5 These difficulties become more se­
vere in the context of L-S coupling and restrict the feasible 
applications to a rather small number of particles. An im­
proved version of this procedure, which enlarges its domain 
of applicability, was recently introduced by Ji and Vallieres.5 

A well-known and very powerful procedure for the 
evaluation of the cfp's for the symmetric and antisymmetric 
states inj-j coupling was introduced by Ginocchi06 and, in­
dependently, by Bayman and Lande.7 This procedure uses a 
group theoretical labeling of the states of interest. It involves 
the diagonalization of the matrices for the quadratic Casimir 
operators of the appropriate special unitary and symplectic 
(or orthogonal) groups in terms of a set of N-particle states. 
These N-particle states are obtained from symmetric or anti­
symmetric (N - 1 )-particle states specified by their total 

a) Pennanent address: Department of Chemistry, Technion-Israel Insti­
tute of Technology, 32000 Haifa, Israel. 

angular momentum and seniority, to which an Nth particle 
is coupled to form a state of well-defined total angular mo­
mentum. Consequently, the common eigenvectors are the 
desired cfp's and the eigenvalues specify the permutational 
symmetry and the seniority. This method was recently used 
by one of us8 for the rapid and accurate computation of cfp's 
for identical particles with integral spin. 

The Bayman and Lande procedure7 was developed for 
j-j coupled states, involving Young frames with either one 
row or one column. In order to construct the L-S coupled 
wave function one has to couple an L function specified by 
an arbitrary Young frame with a corresponding S function. 
As commonly applied in atomic structure theory the con­
struction of L-S coupled wave functions involves spino! par­
ticles. Consequently, the Young frames specifying the per­
mutational symmetry have at most two rows for spin states. 
In the recently developed fermion dynamical symmetry 
model (FDSM) 9 the total angular momentum of a nucleon 
is decomposed into a pseudo-orbital angular momentum k 
and a pseudospin i. This i can assume values up to If, and k 
can be 0, 1, or 2. The construction of the K-I coupled wave 
function in the case of the actinides requires the coupling of 
up to 22 particles. The calculation of the cfp's for such cases 
is certainly beyond the scope of the presently available codes. 

Our objective in this work is to provide a fast and effi­
cient mechanism for computing the cfp's for a relatively 
large number of particles, each with a spin j, possessing an 
arbitrary permutational symmetry. This procedure would 
be applicable to the construction of an L-S coupled state in a 
many-particle system in which each individual particle's I 
and s are not restricted to very small values. 

Figures 1 and 2 serve as a guide through the calculation 
of symmetrized states and associated cfp's, carried out in this 
work. The principal characters are identified in the legend: 
states, cfp's, and quantum numbers for the important 
groups-J for SU (2), r N for SU 2j+ 1 , and v (seniority) for 
the symplectic group SP2j + 1 (j half-integral) or the orthog­
onal group S02j+ 1 (j integral). The sections in this work 
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II { I jN-' a' v· (r,. ___ .r N-' ) J' > ® I j > } 

all allowed a'v'J' 

fixed r, . ___ . f N-' 
....---..&.. 

----~,. C G coeffs (J' j I J ) 

J where IJ'-jl s J S J'+j 

{ I jN-' (a' v· f,. ___ .f N-' J' ) j.L > } 

III IV VI all allowed a' v'J' 

--- V + clp ON-' (a' v· f N-' J') j J Il jN a f N J I 

fN 

{ I jN a (f 1, ... ,f N-' .~) .L>} ~ Phase consistency for SN 

all f~, 

III IV VII for each J, r N 

I jN a.!J.. (f 1,··_,f N-' .r:N).L > 

LEGEND 

I jN a v (f!, ... ,rN_,.fN) J > : state 

ON-, (a' v· f N-' J') j J I} jN a v f N J I : cfp 

jN : configuration 

J : total angular momentum 

f" ...• f N_"f N : permutational group indices 

v : seniority (irrep label of R2i+' (N) ) 

a : additional necessary quantum numbers 

FIG.!. Schematic presentation of the procedure for the evaluation of the 
cfp's for arbitrary permutational symmetry. 

where the particular calculations are carried out are indicat­
ed by a Roman number_ For example, the maximal set of 
quantum numbers generated by these symmetries, and used 
to label the states are identified in Sec. lI_ 

The procedure for computing symmetrized states and 
cfp's is recursive. Beginning with symmetrized states for 
N - I particles, the symmetrized N-particle states are con­
structed by following essentially the same procedure three 
successive times, once for each of the groups SU2 (N), 
SU2j+ 1 (N), and R 2j+ 1 (N) [i.e., SP2j+ 1 (N) or 
S02j + 1 (N)]. These three steps are displayed in Fig. I, each 
identifying one new N-particle quantum number (which is 
underlined in the figure). To initate this succession of calcu­
lations, unsymmetrized N-particle states are constructed by 
taking direct products of symmetrized (N - I)-particle 
states with a single-particle state. All the (N - I)-particle 
states considered have the same value of r N _ 1 (which re­
mains a good quantum number of the symmetrized N-parti­
cle states) and all the values of J I and v' consistent with it. 
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The N-particle states so constructed span a space with the 
multiplicity of N quantum numbers: J, r N' and v. 

States with a good quantum number J can in principle 
be constructed by diagonalizing the total angular momen­
tum operator J~, which is the Casimir operator for SU2(N) 
in this basis. The corresponding eigenvectors are the stan­
dard Clebsch-Gordan (CO) coefficients. In fact, the wide­
spread knowledge of these cfp's for SU2 makes this step un­
necessary in practice. The quantum number J generated in 
this step is indicated below the appropriate box in Fig. I, and 
underlined in the symbol of the resulting N-particle state. 

The second stage in this procedure involves diagonaliza­
tion of the quadratic Casimir operator of SU2j + 1 (N) in the 
basis with fixed J. The subspace of states corresponding to 
each distinct eigenvalue is associated with an irrep of 
SU 2j + 1 ; these irreps may be uniquely identified through the 
eigenvalues of the quadratic Casimir operator. This is a 
somewhat surprising result, which is a consequence of the 
recursive buildup employed, as discussed in Sec. VIII. The 
corresponding eigenvectors are the seniority-free cfp's. The 
states so constructed have r N' in addition to J, as a good 
quantum number (underlined for emphasis). The new 
quantum number r N' constructed using the group SU2j + 1 , 

specifies in fact an irrep of the permutational group SN' This 
comes about because of the duality between SU2j+ 1 (N) and 
SN' The diagonalization destroys two of the (N - I)-parti­
cle quantum numbers (J' and v'), since the corresponding 
operators do not commute. 

The cfp's corresponding to the same r N but distinct 
r N _ 1 result from "distinct" diagonalizations. In conse­
quence, the phase information between the cfp's is an artifact 
of the computational procedure. These cfp's are made phase 
consistent following a procedure elaborated in Sec. X. 

The third stage in this process involves diagonalization 
of the quadratic Casimir operator for R 2j + I (N) in the basis 
of states with good J and r N' The subspace of states corre­
sponding to each distinct eigenvalue belongs to a distinct 
irrep of R 2j + l' The eigenvalue is sufficient to uniquely label 
the irrep of R 2j + I' The irrep label, which is a Young parti­
tion v, is the state's seniority. The states that result have good 
J, r N' and v (underlined for emphasis). The eigenvectors of 
this matrix diagonalization are the cfp's sought. 

® 

XI 

Clebsch - Gordan 

Coefficients for SN 

state : I (Is)N al as Vi v· rN roN r N LS> 

cfp: [(IS)N-' (a'l a'·v'l v '8 rN_' roN_, f ~,) (Is) LSI} (IS)N al as vi v8 r N roN fN LS I 

FIG. 2. Schematic presentation of the procedure for the evaluation of the 
L-S coupled cfp's. 
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The illustration of the procedure continues in Fig. 2, 
displaying the L-S coupling step. To obtain the L-S coupled 
states and cfp's, the procedure presented in Fig. 1 is carried 
out separately for the I coupling and the s coupling. These 
cfp's are then combined by means of SN (permutation 
group) CG coefficients (actually, inner product isoscalar 
factors) to obtain the L-S coupled cfp's exhibiting appropri­
ate permutational symmetry. In the usual case of Bose and 
Fermi symmetries, and the SN CG coefficients vanish except 
when the Land S permutational symmetries involve equiva­
lent and conjugate representations, respectively. 

The procedure described above is presented in this pa­
per as follows: In Sec. II we discuss the state labeling scheme 
adopted in this work and compare it with the Weyl complete 
labeling scheme. In Sec. III we construct the form of the N­
particle quadratic Casimir operators for the groups 
SU2j+ I' SP2j+ I' S02j+ I' and SU2. A result concerning the 
matrix element of a one-body operator between two states of 
arbitrary permutational symmetries, which is needed for the 
evaluation of the matrix elements of the quadratic Casimir 
operators, is developed in Sec. IV. The cfp's themselves are 
defined in Sec. V. The matrix elements for the quadratic 
Casimir operators are constructed explicitly in Sec. VI for 
SU2j+ I and in Sec. VII for SP2j+ I and S02j+ I' These are 
the matrices actually diagonalized in the recursive proce­
dure outlined above and indicated in Fig. 1. The identifica­
tion of the irreps of the special unitary and symplectic (or 
orthogonal) groups by means of the eigenvalues of the qua­
dratic Casimir operators is discussed in Sec. VIII. Section IX 
is devoted to a set of illustrative examples. The procedure 
used to construct a phase-consistent set of cfp's for degener­
ate irreps is discussed in Sec. X. The L-S coupled cfp's are 
constructed in Sec. XI. The overall computational proce­
dure and some detail concerning the performance of the 
computer code implementing it (a copy of which is available 
upon request), are presented in Sec. XII. In Sec. XIII we 
present some concluding remarks. 

II. STATE LABELING SCHEMES 

The purpose of the present section is to describe the set 
of quantum numbers which specify the appropriately sym­
metrized states. As a first step, we determine the symmetries 
present. A single particle of angular momentum j carries a 
representation of the group SU 2j + I . A system of N identical 
particles carries a representation of the group [SU2j + I] ®N 

(N times direct product of the group SU2j+ I)' which can be 
reduced lO to the direct product group SU2j+ I ® SN' where 
S N is the symmetric (or permutation) group on N particles. 
It is useful to introduce a subgroup, R 2j+ I CSU2j+ I' to 
further refine the state classification procedure. This sub­
group is the symplectic group, SP2j + I' for half-integral an­
gular momentum, or the orthogonal group S02j + I , for inte­
gral angular momentum. I I Finally, states are classified 
according to their total angular momentum Jby introducing 
the subgroup SU2 CR2j+ I' The group-subgroup chain is 

N particles 

SU2j+1 -- [SU2j+d®N::)SU2j+I ®SN 

(2.1) 
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The state labels are related to the chain of subgroups 
given in (2.1). For an N-particle system described by the 
subgroup SU 2j + I ® S N they are {A.} Nand r N' where {A.} N is 
an N-box proper Young frame (Le., a Young frame with at 
most 2j + 1 rows) labeling an Nth-order irreducible tensor 
representation ofSU2j + I' and r N is a Young partition label­
ing an irreducible representation (irrep) of SN' The parti­
tions r N and {A.} N must be identical, according to a result by 
Weyl.lO 

The representation labels {A.}N and r N generate inter­
nal indices that describe the individual states within these 
representations. The internal state labels of the symmetric 
group SN are usually denoted by f..LN' A more informative 
labeling of the internal states is obtained by constructing the 
chain of subgroups 

SN ::)SN_I ::) .. 'S3::)S2::)SI' (2.2) 

The corresponding sequence of irreps, r Nr N-I '" r l , is 
equivalent to a Yamanouchi symbol Y( S N ).11 

The irrep {A.} N ofSU2j + I decomposes into a direct sum 
of irreps under the reduction of R 2j + I (cf. Ref. 11): 

(2.3) 

(2.4) 

The branching rules for the reduction are known. 12 The par­
tition {A.} N for SU2j+ I has Nboxes, but the partition (A. ) N 

([A. ] N) for an N-particle representation of 
SP2j + I (S02j + I ) may have fewer than N boxes. In the case 
of the fully antisymmetric (symmetric) representation of 
SU2j+ 1 the number of boxes in (A.) N ([A. ]N) has been 
called the seniority of the state. In general, seniority is the 
representation label for the subgroup R 2j + I , and it is a good 
quantum number. We shall use the generic symbol v for ei­
ther (A. ) N or [A. ] N' depending on whether 2j + 1 is even or 
odd. The seniority v is the permutational symmetry type 
with the smallest number of particles in which the symplec­
tic (orthogonal) symmetry is first encountered. The total 
number of boxes in v, v = l:; A.i> will be referred to as the 
seniority index. For symmetric and antisymmetric states, for 
which v has only one row or column, the seniority index 
specifies the irrep of R 2j+ 1 (Le., S02j+ I and SP2j+ I' respec­
tively) uniquely. 

Under the reduction R 2j+ I ::)SU2 the representation 
(A. ) N or [A. ]N decomposes into a direct sum of irreps of 
SU2 • Their angularmomentumJis a good quantum number. 
This reduction is generally not simple: A given value of an­
gular momentum may occur more than once. 

Besides the good numbers described above, there are 
additional good quantum numbers. We show in Sec. III that 
the SU2j+ I representation labels for (N - I,N - 2, ... ,2,1)­
particle states are all good quantum numbers. The N-particle 
states with the appropriate symmetry may thus be written 

Here j is the single-particle angular momentum, and jN de­
notes the N-particle configuration. The sequence {A.} N' 
{A. '}N-I , ... ,{A. "}1 represents SU2j+ I representation labels 
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for states with N,N - 1, ... ,1 particles. The label {A. '}i+ 1 is 
obtained from {A.} i by proper addition of a single box. In this 
sense, the entire sequence may be summarized by a Yaman­
ouchi symbol Y(SU2j+ 1 )Y The representation label v de­
termines the seniority of the states, and J,M are the angular 
momentum quantum numbers. The symbol a represents all 
other quantum numbers "required" for a complete state spe­
cification. 

The dual roles of the special unity group SU 2j + 1 and the 
symmetric group S N may be emphasized by writing the state 
(2.5) in the form 

IiN;avY(SU2j+ 1 ),Y(SN);JM). (2.6) 

The Yamanouchi symbols for the special unitary and sym­
metric groups are based on the same Young frame. Since the 
duality between the special unitary and symmetric groups 
holds for each pairoflabels{A.}N' and r N' (N' = 1,2, ... ,N), 
the Yamanouchi symbols are actually identical. This proper­
ty is central to the procedure we employ, allowing the use of 
the special unitary Casimir operators to specify the permuta­
tional symmetry characteristics. 

While it is usually assumed that the additional labels 
represented by a can be found "in principle," this is rarely 
demonstrated. It has been established by WeyllO that all the 
states in the Hilbert space for [SU2j+ 1] "N::JSU2j+ 1 ® SN 
are uniquely labeled. The labeling proceeds via the group­
subgroup reduction (2.2) for the permutation group SN as 
well as the dual group-subgroup reduction for the special 
unitary group 

SU2j + 1 ::JSU2j ::J' .. ::JSU3 ::J SU2 ::J U1• (2.7) 

Every state for an irreducible representation of 
SU2j + 1 ® SN is uniquely labeled as follows: 

Ir N,uN{A.}NVN) , (2.8) 

where r N is an N-box frame describing an irreducible repre­
sentation of S N and {A.} N is an N-box frame describing an 
irreducible representation of SU2j+ I' As for (2.5), 
r N = {A.} N and the internallabel,u N is a Yamanouchi sym­
bol for SN' The label VN in (2.8) describes a sequence of 
irreps for the reduction (2.7), which differs from the reduc­
tion {A.}N' {A. '}N-I , ... ,{A. "}l used to describe the state in 
(2.5). The internal labels ,uN and VN, which are not related 
to one another in any rigid way, produce a unique classifica­
tion for all states in the Hilbert space for SU2j+ 1 ® SN' 

The group-subgroup reduction (2.7) is not useful for 
our general purpose, as the physical angular momentum 
group is not contained in any of the subgroups ofSU2j+ I: 

SU2 (phys) CSU2j+ 1 ::JSU2j :PSU2 (phys)' (2.9) 

The failure of this last inclusion is responsible for the com­
plexity in constructing appropriately symmetrized N-parti­
cle states of good angular momentum. 

We have only referred to the Weyl labeling scheme 
(2.8) in order to point out that each state in each component 
Hilbert space can be uniquely identified. The labeling 
scheme which we actually adopt is that specified by (2.5). 
Comparison to the complete labeling achieved in the Weyl 
scheme establishes that the "additional quantum numbers," 
a, introduced in (2.5), exist in principle. 
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III. THE SET OF COMMUTING OPERATORS 
CHARACTERIZING THE STATES 

The various labels specifying the N-particle states were 
introduced in the previous section [Eq. (2.5)]. In the pres­
ent section we discuss some further properties of the groups 
involved and present the operators of interest in a form suit­
able for our further development. 

A. The quadratic Casimir operator of the special unitary 
group SUZJ+1 

The special unitary group SU2j+ 1 is a compact contin­
uous group and has, therefore, a countable set of finite-di­
mensional inequivalent unitary irreducible representations, 
characterized by Young frames with an arbitrary number of 
boxes. What we are really interested in is a realization of this 
group over the space of N-particle states, denoted by 
SU2j+ 1 (N). In terms of Racah's unit tensor operators,2.4 
which satisfy 

(3.1) 

the generators ofthe group are given by 
N 

U~(N) = L u~(i). (3.2) 
;=1 

The quadratic Casimir operator is given by the expression 7 

C 2 [SU. (N)] =_1_ ~ (-I)k(2k+ 1)3/2 
2J+l 2'+ 1 ~ 'J k = 1 

X [Uk(N) Uk(N)]g . (3.3) 

The most important property of the realization 
SU 2j + 1 (N) is that its operation within the N-particle space 
is in very close correspondence with that of the symmetric 
group SN' In particular, as emphasized in the previous sec­
tion, the irreducible basis corresponding to a specific Young 
frame of SN corresponds to the same Young frame of 
SU2j+ 1 (N). 

In order to discuss some properties of the Casimir oper­
ators corresponding to different values of N we note that 

and obtain 

[Uk(N) Uk(N)]g = [Uk(N - 1) Uk(N - 1)]g 

+ 2[ Uk(N - 1 )uk(N)]g 

+ [uk(N)uk(N) ]g. 

(3.4 ) 

(3.5) 

From Eq. (6) of Ref. 7, the last term in Eq. (3.5) is 

[uk(N)uk(N)]g = (-1)2j~2j+ 1 {; ~ ~} ug(N), 

(3.6) 

and from p. 521 of Ref. 4, the middle term in Eq. (3.5) is 

[Uk(N - 1 )uk(N)]g 

= [( -1)k/~2k+ 1](Uk(N-1)·uk(N»). (3.7) 

Using Eqs. (3.4 )-( 3.7) we obtain the following expres­
sion for the quadratic Casimir operator of the special unitary 
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group: 

C 2 [SU2i + \ (N)] 
2 2) 

= C 2 [SU2J+\ (N -1)] +-. - L (2k+ 1) 
2J + 1 k= \ 

X (Uk(N - 1) 'uk(N») + UO (N) 4j(j + 1) . (3.8) 
° 2j+ 1 

From this expression and from the fact that 
C 2 [SU2J+ \ (N - 1)] commutes with U:(N - 1) (Ref. 7), 
it follows that C 2 [SU2J+ \ (N - 1)] and C 2 [SU2i + \ (N)] 
commute with one another. Using the above relation one can 
express C 2[SU2J+ 1 (N)] in terms ofC 2 [SU2J+ 1 (N')] for 
any N' <N and use this expression to show that these two 
operators commute. 

B. The total angular momentum J ~ 

The total angular momentum operator J1 can be ex­
pressed in terms of its Cartesian components 

N 

Ja = L Ja (i), a = x,y,Z, 
i=1 

where the Ja (i) are the single-particle angular momentum 
operators. This operator commutes with S N as well as with 
each one of its subgroups S N' , N' <N. It follows immediately 
that it commutes with each one of the realizations 
C 2 [SU2J+ 1 (N')]. Note, however, that Jz". (N' <N), 
which trivially commutes with Jz", does not commute with 
C 2 [SU2J+ 1 (N)] (or, for that matter, with any 
C 2 (SU2J+ 1 (N")] with N' <N"). An immediate conse­
quence, which is well-known in the context of antisymmetric 
wave functions, is that when an N-particle state with an an­
gular momentum quantum number J is formed from an anti­
symmetric (N - 1 )-particle state with an angular momen­
tum quantum number J' by means of angular momentum 
coupling, the coupled state is a common eigenstate of 
J z" and J 1- l' but it is, in general, not antisymmetric. In 
order to antisymmetrize the N-particle state one has to ex­
press it in terms of (N - 1 )-particle states with several dif­
ferent values of J'. Thus the common eigenstate of Jz" and 
C 2 (SU 2j + 1 (N)] is not, in general, an eigenstate of J z" _ 1 , 

while it is an eigenstate of all C 2 [SU 2) + \ (N') ] with N' < N. 

C. The quadratic Casimir operators of the symplectic 
and orthogonal groups 

When 2j + 1 is even (j is a half-integer), the symplectic 
group SP2) + 1 is capable of providing a further classification 
when a degeneracy remains after classification with respect 
to {SU2i + 1 (N'); N' = 1,2, ... ,N} and J1 has been per­
formed. When 2j + I is odd (j is an integer), the same role is 
assumed by S02) + 1 • As stated in Sec. II, we denote these two 
groups by the generic symbol R 2) + I' the value of 2j + 1 
(even or odd) identifying R as either Sp or SO. 

The quadratic Casimir operator for R 2) + I is 7 

C l
[ R2J+ 1 (N)] 

1372 

1 2[j-\12J + 1 
=-- L (-I)\2k + 1)3/2 

2j + I k= 1,3, ... 

X [Uk(N) Uk(N) ]g. (3.9) 
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Using Eq. (3.5) it can be written in the form 

C 2 [R2J+l(N)] 
2 2U-l/2J + 1 

=C
2

[R 1J+\(N-1)] +~ _L (2k+ l) 
'J + k-l,3 ... 

x(Uk(N - 1) 'uk(N») 

ug (N) 2U - 112J + 1 --- L (2k+l)3/2 
2j+l k=I,3 ... 

k 

j ~} . (3.10) 

The sum in the third term can be shown to be equal to 
- (j + 1)( 2j + I )for half-integralj and to - j (2j + 1 )for 

integralj. 
Since R 2) + 1 is a subgroup of SU 2) + 1 , their Casimir op­

erators commute. Moreover, since C 2 [ R2j + 1 (N)] is sym­
metric with respect to all the permutations in SN' it is sym­
metric with respect to any S N' , N' <N. However, 
C 2

[ R2J+ \ (N')] is not symmetric with respect to SN' for 
N' <N, and, consequently, does not commute with 
C 2 [SU 2) + 1 (N) ]. This is completely analogous to the be­
havior of the angular momentum operators, as presented in 
the previous section. 

D. Maximal set of commuting operators 

The foregoing discussion suggests that the set of qua­
dratic Casimir operators corresponding to SU2J + I (1), 
SU2j+ 1 (2),,,,,SU2J+ 1 (N), as well as to R2J+ I (N) consti­
tute, together with J z" and Jz ' a set of commuting operators. 
Since the sequence of Casimir operators for SU 2) + I specifies 
a sequence of Young frames with one box added at a time, 
the state they characterize can equivalently be designated by 
the corresponding Yamanouchi symbol. 

We stress that the sequence {SU2J+ 1 (N'); 
N' = 1 ,2, ... ,N}, which we use to label the states, differs from 
the Weyl sequence {SUr(N); r=2j+ 1,2j, ... ,I}.1O In our 
labeling the sequence of Young frames corresponding to the 
SU2J+ 1 (N') irreps is identical with the sequence of Young 
frames corresponding to the symmetric groups {S N' ; 

N' = 1,2, ... ,N}, so that a double Young frame notation is not 
needed. 

IV. MATRIX ELEMENTS OF ONE-BODY OPERATORS 

In this section we evaluate the matrix elements of the 
one-body operator 

N 

v= L Vi (4.1 ) 
;= 1 

between two states having intemallabels f.l Nand J.l N' respec­
tively, of the irreps r Nand rN of the symmetric group S N 

[or ofSU1)+ 1 (N)]. Since there are (N - 1)! permutations 
Pin S N that transform any specific index m into some other 
index i, it follows that 

N 

L p-1vmP= (N -1)! LVi' (4.2) 
PeS N i= 1 

Note that m could be any of the indices 1,2, ... ,N. For the 
applications we have in mind it will be convenient to set 
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m = N. The corresponding matrix elements satisfy 

(4.3 ) 

The operation of the permutation P on a state I r;..p;") is 
given by 

n , 
rN 

P Ir ' ') '" Ir' II")D (riv) (P) NPN = LJ Nr-N J1.NJ1.iv ' (4.4) 
J1.N= I 

where{D(:'iv~ (P);p;",p'/v = 1,2, ... ,nr , } are the elements of 
J1.~N N 

the representation matrix of Pin the irrep r;... Hence, the lhs 
ofEq. (4.3) is equal to 

where use has been made of the representation orthogonality 
theorem. II Substituting Eq. (4.5) in Eq. (4.3) we obtain the 
relation 

Note that the only dependence on the internal state labels 
ILN' IL;" is via the Kronecker delta factor. For antisymmetric 
(or symmetric) N-body states, this equation reduces to the 
standard result 

((A)NI;~I V;I(A)N) =N«(A)NlvNI(A)N)' (4.7) 

where (A)N = (IN) or (N). 
If the states of interest are labeled by angular momen­

tum quantum numbers J and J', respectively, in addition to 
their characterization with respect to the symmetric group, 
we obtain the reduced matrix elements 

(4.8) 

v. COEFFICIENTS OF FRACTIONAL PARENTAGE 

The coefficients of fractional parentage (cfp's) are a 
central element in the buildup of N-particle states of well­
defined total angular momentum and permutational sym­
metry from (N - I )-particle states similarly characterized. 

For N particles, each having spinj, the state with total 
angular momentum J and additional labels a can be ex­
pressed in the form 

I jN aJ) = L UN - I ({3J')jJ) UN - I ({3J')jJ I} jN aJ ] . 
J',f3 

(5.1 ) 

Here, I jN - 1 ({3J')jJ) is a state of total angular momentum 

1373 J. Math. Phys., Vol. 29, No.6, June 1988 

J, obtained by coupling of a single particle to a state of N - I 
particles with total angular momentum J' and additional la­
bels {3. The coefficient UN - 1 ({3J')jJ I }jN ajJ] multiplying 
this state in Eq. (5.1) is the corresponding cfp. If both the 
(N - I) -particle state lr - I{3J') and the N-particle state 
lraJ) are assumed to be antisymmetric or symmetric, the 
above relation is the standard defining relation of the cfp's. 
However, if the additional quantum numbers a and {3 con­
tain state labels r NILN and r N- IILN-I' respectively, specify­
ing their permutational (or unitary) symmetry as well as 
group representation labels v and Vi specifying their symme­
try under the symplectic (or orthogonal) group, we obtain 

IjNavr NILNJ) 

= L IjN-I({3vT N-IILN- J')jJ) 
{Jv'J' 

X [jN-I({3vT N-IILN- J')jJ I}ravr NILNJ]· 
(5.2) 

In the last expression we have redefined a and (3 to contain 
the remaining quantum numbers needed to uniquely specify 
the states. 

The ranges of the quantum numbers J', v' are obtained 
directly from the properties of the Clebsch-Gordan series of 
the respective groups. For SV(2), J' ®j = J' ® 0 gives the 
familiar result IJ - jl <1' <1 + j. For SP2j + I and S02j + I , 

v' ® 0 = ~ v, where the partition v is obtained by proper 
addition of a single box to or deletion of a single box from the 
partition v'. Proper addition of a single box to v' may result in 
a partition v with more than the proper number of rows 
( [ j + !] ). In this case the appropriate modification rules 
must be applied. 13-16 These reduce, in the present circum­
stances, to 

SP2j + 1 : if v has (j + ~) + I rows, the partition must be 
deleted; 

S02j + 1 : if v has j + I rows, the last row, of length I, 
must be removed. 

From the modification rules it follows that for j half-integral 
the N-particle states have even seniority index if N is even 
and odd seniority index if N is odd. For integral spin parti­
cles, the N-particle state may have both even and odd senior­
ity indices, when N > j. A well-known example of the S02j + 1 

modification rule, the j = I case, is briefly discussed in Sec. 
IX B. 

The representation and internal labels r N-IILN-I are 
uniquely determined in terms of r NILN' so there is no sum­
mation over these indices in Eq. (5.2). To specify the rela­
tion between r NIL Nand r N _ IlL N _ 1 , we recall that the label­
ing of the N-particle states by the sequence of eigenvalues of 

C 2[SV2j+ I (N')], N' = 1,2, ... ,N, 

corresponds to a sequence of Young frames with one box 
added at a time. The representation label r N corresponds to 
the last frame in the sequence, and the internal label IL N 

consists of a sequence of Young frames leading to r N' Here 
r N-I is the last [(N - I )-particle] frame in the sequence 
IL N' and IL N _ 1 is the sequence obtained from IL N by omitting 
the (N - I )-particle frame. It will be shown in Sec. VI that 
the cfp's depend only on the N- and (N - I )-particle frames 
r Nand r N _ 1 , and not on the preceding frames specifying 
ILN andILN_I' 
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VI. MATRIX ELEMENTS OF CJ. [SU~+1 (N)] 

In the present section we derive the expressions for the 
matrix elements of the quadratic Casimir operator 
C 2 [SU2j+ I (N)]. These matrix elements are evaluated be­
tween N-particle states obtained by coupling one particle to 
appropriate (N - 1 )-particle states. The N-particle states, 
which have a total angular momentum J, are denoted by 

IjN-I(a'Y'J')jJ). (6.1) 

Here Y' is the Yamanouchi symbol characterizing the 
(N - 1 )-particle state with respect to the sequence of com­
muting operators 

{C 2 [SU2j+ I (N')], N' = 1,2, ... ,N - n, (6.2) 

J' is the (N - 1 )-particle angular momentum, and a' is the 
collection of all additional quantum numbers, including the 
seniority. No further labels are necessary since from a given 
(N - 1 )-particle state we obtain a unique N-particle state 
with a definite total angular momentum. 

In Sec. III it was shown that C 2 [SU2H I (N)] com­
mutes with both the N-particle angular momentum operator 
and with the sequence (6.2). Consequently, its eigenstates 
must be linear combinations of all the N.,particle states of the 
form (6.2) with a given J and Y'. The coefficients in this 
linear combinations are the desired cfp's. 

To evaluate the matrix elementsofC 2 [SU2j+ I (N)] we 
startfromEq. (3.S) and treat each one of the three terms on 
the right-hand side of that equation separately. 

(a) For the basis set chosen above, Eq. (6.1), 
C 2 [SU2j + I (N - 1)] is diagonal. Hence 

(jN-I{a'Y'J')jJ IC 2 [SU2j+ I (N - 1)] 

X IjN-I(a" Y"J")jJ) 

= 8 y •y .8u ·u ·8J'J' 

X <r:v_ I IC 2 [SU2j+ dN - 1)] Ir:v- I)' (6.3) 

where the eigenvalue of the quadratic Casimir operator for a 
well-defined eigenstate, appearing in the rhs, is given in Eq. 
(S.I). This eigenvalue depends only on r:v_" the (N - 1)­
particle Young shape, and not on the whole Yamanouchi 
symbol Y'. 

(b) The matrix element of the scalar product 
(Uk(N - 1) 'uk(N») is evaluated using (Ref. 4, p. 522) 

(jN-I(a'Y'J')jJ l(Uk(N - 1) 'uk(N») 

UN-I{a" Y"J")jJ) 

= (_I)j+J+J'~' ~" ~} 
X(jN-Ia'Y'J'llUk(N - 1)lljN-Ia " Y"J") 

x(jlluk(N)llj). (6.4) 

The one-particle reduced matrix element satisfies (jll Uk II j) 
= ( - 1)k-l2j + 1. To evaluate the (N - I)-particle re­

duced matrix element we first note that Uk(N - 1), which 
is one of the generators of SU2j+ I (N), commutes with 
C 2 [SU2j+ I (N - 1)]. Therefore, this matrix element van­
ishes if Y' and Y" correspond to different irreps. The expres­
sion for this matrix element follows from the general result 
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for a one-body reduced matrix element, Eq. (4.S), from 
which 

(jN-Ia'Y'J'llUk(N - 1)IIjN-Ia"y" J") 

N-l -= 8 y •y • --- _ ~ (jN-IaT:V_I YJ' 
nr:v_ 1 YEr N_1 

Ilu\N - I )lIr-'a'T:V_, YJ"). (6.5) 

Here Y, which is an (N - 2)-particle Yamanouchi symbol 
equivalent to a sequence of Young frames of the form 
r I r 2' •• r N _ 2' ranges over the basis states for the the irrep 
r:v_" 

The reduced matrix element in the sum in Eq. (6.5) is 
expressed in terms of cfp's from N - 2 to N - 1 as follows: 

UN-IaT:V_I YJ'lIuk(N _1)IIjN-'a "r:v_, YJ") 

= P'A~'A' [jN- 2(P'YA')jJ'l} jN- 'aT:V_ I YJ'] 

X [jN - 2(P "YA")jJ" l}jN - 'a'TN _ I YJ"] 

X(jN-2(P'YA')jJ'lluk(N - 1) 

IIr- 2(p"YA")jJ"), (6.6) 

and by using Ref. 4, p. 552, we obtain 

(jN-2(P'YA')jJ'llu k (N _ 1)lljN-2(P"YA")jJ") 

A'} k 8p .p- 8 A'A' , 

(6.7) 

where A' and A" are the (N - 2)-particle angular momenta. 
By subtituting Eqs. (6.5)-(6.7) in Eq. (6.4), one ob­

tains 
(jN-I(a'Y'J')jJ l(Uk(N - 1) 'uk(N») 

UN-I(a"Y"J")jJ) 

= ( _ 1) 2j + J + J' + J' + k {J' j J} 2 . 1.£ j J" k (:I + )Uy.y. 

X N - 1 -l(2J' + 1)(2J" + 1) 
nr:V_l 

X I I (- I)A[jN-2(pYA)jJ'l} 
YEr:V_l PA 

jN-'aTN_, YJ'] 

X [jN-2(pYA)jJ"I}jN-'a"r:v_, YJ"] 

{ 
. J' A} 

X~" j k' (6.S) 

Using Eq. (6.S) we find that the sum over k in the sec­
ond term in Eq. (3.S) reduces to 

2j {J' . J} Jj J' A
k

} k~1 (2k+ 1)( _1)k j ~" k lJ" j 

{
J' J' J

A
} = ( - l)J+ A J" 

j 
( _l)2J'+2j +J+A 

- 8 J'J" -'----'------
(U' + 1 )(2j + 1) 

(6.9) 

Using Eq. (6.9), the total contribution of the second term in 
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Eq. (3.8) is 

2( - 1)2j+J+J'+J" ~(2./' + 1)(2./" + I) 6 y'y' N - 1 
n riv _

1 

x I I ( -1)"'UN- 2(,BYA)jJ'l} 
Yeriv_, /3'" 

jN-laTN_
1 
YJ'] 

X [jN- 2 (,BYA)jJ " I}jN- la"rN_1 YJ"] 

X{(_I)J+,.,{J' j J} 
J" j A 

(_ 1)2J'+2j +J+,.,} 
- 6J'J" (2./' + 1)(2j + 1) . (6.10) 

The contribution involving the 6J'J" factor in Eq. 
(6.10) can be simplified by the use of the orthogonality 
property of the cfp's (Ref. 4, p. 522): 

~ ~ 2( 1)4j +4J'+2J 1 N - 1 UJ'J"UY'Y' - -.-----
2] + 1 nr , 

N-l 

xI I ( _1)2"'[jN-2(,BYA)jJ'I}jN-laT N_ 1 YJ'] 
Y /3'" 

X [jN- 2(,BYA)jJ'l}jN-la"rN_1 YJ'] 

=6J'J.6y'y·6a'a·[2(N-l)/(2j+ 1)]. (6.11 ) 

Finally, the contribution of the second term in Eq. (3.8) to 
the matrix element ofC 2 [SUzj+ I (N)] is 

2( _1)2j+2J+J'+J' ~(2./' + 1)(2./" + 1) 6 y'y' 

X [(N -1)lnriv _,] I I (- 1)2'" 
Yeriv_, /3'" 

X [jN-2(,BYA)jJ'I}jN-IaT N_I YJ'] 

X [jN-2<,BYA)jJ"l}jN-Ia ''rN_1 YJ"] e:, 
- 6J'J' 6 y'y·6a'a· [2(N - 1 )/(2j + 1)]. 

j J} 
j A 

(6.12) 

(c) The matrix element of the third terminEq. (3.8) is 
diagonal in the quantum numbers of the (N - l)-particle 
state. Using Ref. 4, p. 522, we obtain 

(jN - I (a'Y'J')jJ lug (N) I jN - I(a" Y" J" )jJ) 

= 6y'y·6a'a·6J'J"' (6.13) 

Adding the contributions of the three terms, Eqs. (6.3), 
( 6.12), and (6.13), we obtain the matrix element of 
C 2 [SU2j+ I (N)] in the form 

(jN- I (a'Y'J')jJ IC 1 [SU2j + I (N)] IjN- I(a" Y" J" )jJ) 

1375 

= 8Y'y.6a'a. 6J'J" [(jN-la 'Y'J'IC 2 

[SU1j+ I (N - 1)] IjN-Ia " Y"J") 

+ 4j(j + 1) - 2(N - 1)] 
2j+ 1 

+6y'y' 2N-l (_1)2j+J'+J" 
nriv 

X~(2./' + 1)(2./" + 1) Yet_, ~ {~ ~ 
X [jN- 2(,BYA)jJ'j}jN- laTN_1 YJ'] 

X [jN-2(,BYA)jJ"I}jN-Ia "rN_1 YJ"]. 
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J' } 
J" 

(6.14 ) 

For the antisymmetric representation this expression re­
duces to Eq. (19) in Bayman and Lande.7 

The following observations can now be made concern­
ing the matrix of C 1 [SU2j+ I (N) ]. First, as expected, this 
matrix is diagonal in the eigenvalues of 
C 1[SU2j+ I (N - 1)], which commutes with 
C 2 [SU1j+ I (N)]. Second, the matrix elements depend on 
the representation rN _ I of C 1 [SU lj + I (N - U], but they 
do not depend on the particular internal state Y within this 
representation. This means that the eigenvectors, i.e., the 
N - I to N cfp's, depend on the Young frames r Nand r N _ I 

but not on the complete sequence of frames 
r I r lr 3' •• r N _ l' This will tum out to result in a consider­
able simplification in the determination of the phase consis­
tent sets of cfp's for degenerate irreps, discussed in Sec. X. 
Even more significantly, this property is crucial in the con­
struction leading to the definition of cfp's for L-S (or 
L-S-T, etc.) coupled states, as discussed in Sec. XI. In view 
of this property we denote the cfp's by 
[r - I (aT N _ J')jJ I }jNar NJ] and define the renormal­
ized cfp's: 

UN-I(aT N- IJ' )}J I}jNar NJ] r 

= ~nrN_,lnrN [jN-I(a'r N_IJ')jJl}rar NJ]. 
(6.15 ) 

These renormalized cfp's are slightly less convenient for the 
representation of N-particle states, but slightly more conven­
ient for the representation of matrix elements of operators. 
Replacing the cfp's by the renormalized cfp's in Eq. (6.14), 
it is modified in two ways: First, the sum over the internal 
labels Yof r N_ 1 should be replaced by a sum over the 
Young frames rN _ 2 obtained from rN _ I by deleting one 
box; and second, division of the sum by the degeneracy fac­
tor has been absorbed into the renormalization. As a conse­
quence of these modifications the expression for the matrix 
element involves unique contributions only and looks more 
similar to the standard expressions for matrix elements of 
antisymmetric states in terms of corresponding cfp's. 

VII. MATRIX ELEMENTS OF CZ[SP2J+1 (N)] AND 
CZ[S02J+1 (N)] 

The matrix elements of the operators referred to in this 
section's heading, which we also denote collectively by 
C 1 

[Rlj + I (N) ], are easily obtained using expressions de­
rived in the previous section. Referring to Eq. (3.10) we note 
that the first and third terms in the expression for the matrix 
element of C 1 [ R 1j + I (N) ] are easily written down using the 
corresponding results for the C1[SU1j+ I (N)] [Eqs. (6.3) 
and (6.13)]. Their sum is 

6y'y' 8a'a·6J'J" [ (jN-la'Y'J'IC 1 [Rlj+ I] 

UN-Ia" Y"J") + (3j - 2U])], (7.1) 

where [j] is the integral part ofj. Note that the last term is 
equal tOjfor integralj (SOlj+ I) and toj + 1 for half-inte­
gralj (SPlj+ I)' 

To obtain the contribution of the second term in Eq. 
( 3.10) we use the results in Eqs. (6.4) - ( 6. 8 ). The sum over 
k, which contains odd terms only, can be expressed in the 
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form 

~ {J' j 2: (2k+ 1)( _1)k. J" 
k= 1.3.... J r ~} 

=J..[ _~+ (_1)J+A {J' 
2 2J+1 J" 

~ ~}]. (7.2) 

Using this result the total contribution of the second term in 
Eq. (3.10) can be separated into that of the Kronecker delta 
term 

_ (_ 1)2j+2J+J'+J" ~(2J' + 1)(2J" + 1) oY'Y. 
2J+ 1 

X N - 1 2: L UN- 2(pYJ)jJ'l} 
n rN _ , YErN_

1 
{J 

jN-IaT~_1 YJ'] 

X [r-2(pYJ)jJ"j}jN-Ia'T~_1 YJ"], (7.3) 

I 

(jN- l(a'Y'J')jJ IC 2
[ R2j+ I (N)] IjN-I(a" Y"J" )jJ) 

and that of the term containing the 6j symbol: 

(_1)2j+2J+J'+J" ~(2J' + 1)(2J" + 1) oY'Y. 

X N - 1 L L (_ 1)2A 
n rN _ I YErN _ I {JA 

(7.4 ) 

The phase factors can be simplified by noting that 2 (J + A) 
and 2 ( j + J + J") are always even. Adding the contribu­
tions of Eqs. (7.1), (7.3), and (7.4), we obtain 

= oy'y· {oa'a.oJ'J" [<r- 1a'Y'J'IC2[ R2j+ I (N - 1)] UN-Ia" Y"J") + (3j - 2U])] 

+ ( _ 1)2J+J' +J" ~(2J' + 1 )(2J" + 1) N - 1 L L {J:, JJ: ~} [jN- 2(pYA)jJ'/}jN- laT~_ I YJ'] 
n r , YEr' {JA J 

N-I N-I 

X [r-2(pYA)jJ"l}jN-Ia'T~_1 YJ"] _ ( _ 1)J' -J" ~(2J' + 1)(2J" + 1) N - 1 
2J + 1 nr , 

N-I 

X 2: L [jN-2(pYJ)jJ'I}jN-laT~_1 YJ'][jN-2(pYJ)jJ"j}jN-Ia'T~_1 YJ"] . (7.5) 
YErN_ 1 (J 

For antisymmetric states this result reduces to Eq. (13b) of 
Bayman and Lande. 7 

VIII. IDENTIFICATION OF THE IRREPS VIA THE 
EIGENVALUES OF THE CASIMIR OPERATORS 

A Lie algebra of rank 1 has 1 Casimir operators that 
collectively label its irreps. However, in our procedure we 
are only using the quadratic Casimir operators of the 
SU2j+ I and R2j+ I (i.e., SP2j+ 1 or S02j+ I) groups. The 
special circumstances that enable the identification of the 
irreps using only these operators are closely associated with 
the recursive buildup of states being employed. 

An irrep of SU 2j + 1 is labeled by the Young frame 
{A 1,A2, ••• ,A2j+1}' where A1>A2>"'>A2j+I>O and 
l:~~+11 A; = N. The corresponding eigenvalue of 
C 2 [SU2j+ I (N)] is 

211 A; (A; _ 2i + 1) + N(2j +.1)2 - N
2 

(8.1) 
;=1 2J+1 

Similarly, for an irrep of SP2j+ I' labeled by 
(A 1,A2, ... ,Aj+ 1/2), the eigenvalue of C 2 [Sp~ + 1 (N)] is 

1 j + 1/2 
- L A;(A;+2j-2i+3), (8.2) 
2 ;=1 
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eigenvalueofC 2[S02j+1 (N)] is 

J.. ± A;(A; + 2j - 2i + 1). 
2 ;= 1 

(8.3 ) 

For the SU2j+ 1 group the situation is particularly 
straightforward because at each stage we add one box in an 
allowed position to a well-defined Young frame. Starting 
from the frame specified by {A 1,A2 , ••• ,A2j+ I}' we have to 
show that any two Young frames generated from it by an 
allowed addition of one box have different values of the qua­
dratic Casimir operator. 

Compare the frame obtained by increasing Ak into 
A k = A k + 1 to the one obtained by increasing 
Al into Al = Al + 1. It is assumed, of course, that 
Ak < Ak_ I and Al < AI _ I' Using Eq. (8.1) we equate the 
eigenvalues of the quadratic Casimir operator of the two 
(N + I)-particle Young frames formed above and obtain 
A k - Al = k - I. This equality cannot hold, because if k > 1 
then A k < AI' This establishes the uniqueness of the charac­
terization of the relevant irreps of SU2j + I in terms of the 
eigenvalues of the quadratic Casimir operator. 

For the symplectic group the situation is somewhat 
more involved because the number of boxes can either in­
crease or decrease by 1, on going from the N- to the (N + 1)­
particle system. Moreover, unlike the SU2j + I case, the sym­
plectic irrep labels for the N-particle system are not good 
quantum numbers for the (N + I)-particle system. How-
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ever, the (N + 1 )-particle symplectic irrep can be uniquely 
identified by inspecting the symplectic irrep of any N-parti­
cle state contributing to it. 

In analogy with the argument presented above for the 
special unitary group, two shapes, which are both obtained 
by subtraction or both by addition from a common N-parti­
cle shape, correspond to different eigenvalues of the sym­
plectic Casimir operator. Let us consider the frame obtained 
by addition of a box to A k and the frame obtained by subtrac­
tion of a box from AI' Clearly, this assumes that Ak < Ak _ I 
and that A I > A I + I . Equating the expressions for the eigen­
values of the quadratic Casimir operator, Eq. (8.2), for these 
two frames we obtain 

A k + AI + 2j + 3 = k + [. 
This equality cannot hold because the maximum number of 
rows in a symplectic Young frame is j +! so that 
k + l<2j + 1. 

For the orthogonal group one can analogously establish 
that two Young frames obtained from an N-particle state by 
the addition or subtraction of one box in any allowed way 
have different eigenvalues of the quadratic Casimir operator. 
As mentioned in Sec. V, one of the (N + 1 )-particle irreps of 
the orthogonal group that can be generated from N-particle 
irrep withj rows has the same Young frame as the one it was 
generated from. The corresponding eigenvalue can also be 
shown to differ from the eigenvalues of all the other N + 1 
frames obtained from the given N-particle frame. 

Stronger statements concerning the sets of irreps gener­
ated for the special unitary, symplectic, and orthogonal 
groups can be deduced from the expressions for the corre­
sponding quadratic Casimir operators, Eqs. (8.1 )-( 8.3). 
Suppose [A] represents a partition identifying an irrep of 
S02j + I and [A + i ], [A _ i] represent partitions with one 
box added to the ith row or removed from it. If C 2 [A] repre­
sents the quadratic Casimir operator S02j + I' we have the 
strict inequalities 

C 2[A_I] <C 2[A_2] < ... <C 2[A_(j_I)] 

<C 2[A_j] <C 2[A] <C 2[A+j] <C 2 [A+(j_I)] 
< ... < C 2 [ A + 2 ] < C 2 [ A + I ] . (8.4) 

Similar inequalities hold for the Clebsch-Gordan series of 
(A) ® 0 and {A} (9 0 corresponding to the symplectic and 
special unitary group, respectively. For the former Eq. (8.4) 
has to be modified by eliminating the term C 2 [A ] . For the 
latter, only the terms with added boxes are present. These 
inequalities imply the uniqueness of the identification by 
means of the eigenvalue of the quadratic Casimir operator, 
and provide a convenient framework for carrying this identi­
fication out. 

IX. ILLUSTRATIVE EXAMPLES 

To illustrate the application of the results of the previous 
three sections we consider in some detail a sequence of sim­
ple cases. The examples presented illustrate the evaluation of 
the matrix elements of the quadratic Casimir operators of 
the special unitary, symplectic, and orthogonal groups, the 
calculation of the cfp's and the identification of the various 
irreps. In Secs. IX A and IX B we present general results for 
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one- and two-particle states, respectively. In Secs. IX C and 
IX D we evaluate the matrix elements of the Casimir opera­
tor of the special unitary group for three- and four-particle 
states withj = 1, identify the corresponding irreps, and ob­
tain the cfp's. In Sec. IX E we illustrate the classification by 
means of the seniority quantum number for four-particle 
states withj =~. 

A. One particle, arbitrary j 

For a single particle, Eqs. (6.14) and (7.5) give 

UIC 2[SU2j + I (1)]lj) =4j(j+ 1)/(2j+ 1), (9.1) 

UIC 2 [R2j+ 1(1)] I j) = j + [1 - ( - 1)2j ]!2. (9.2) 

Equation (9.1) agrees with the case {l} ofEq. (8.1). Equa­
tion (9.2) agrees with the case (1) of Eq. (8.2) for half­
integralj and with the case [1] of Eq. (8.3) for integralj. 

B. Two particles, arbitrary j 

For two particles, 

(lJ IC 2[SU2j + I (2)] IlJ) 

=8j (j+1)-2+2(2'+1){J j J~} 
2j+1 'J OJ 

= 8j(j+ 1) -2 +2( _1)2j -J 

2j+ 1 ' 

(lJIC 2[ R 2j+ I (2)] IlJ) 

= 2j + 1 - ( - 1)2j + (2j + 1) t 
- (2j + 1 )DJ,o 

j J} 
j 0 

(9.3) 

= 2j + 1 - ( - 1) 2j + ( - 1) 2j - J - (2j + 1) D J,O • 

(9.4) 

The values of C 2 [SU 2j+ I ] for the two-particle irreps 
[2] and [1 2], as determined from Eq. (8.1), are in agree­
ment with the values obtained in Eq. (9.3) for 2j - J even 
and odd, respectively. This is a well-known elementary re­
sult. For half-integralj, the relevant irreps of the symplectic 
group are (2), (12), and (0). The corresponding eigenval­
ues, obtained from Eq. (8.2), are 2j + 3, 2j + 1, and 0, re­
spectively. ThesearethevaluesobtainedfromEq. (9.4) forJ 
odd, even, and zero, respectively. For integralj> 1 the rel­
evant irreps of the orthogonal group are [2], [1 2], and [0]. 
The corresponding eigenvalues, from Eq. (8.3), are 2j + 1, 
2j - 1, and 0, in agreement with the value obtained from Eq. 
(9.4) for J even, odd, and zero, respectively. As discussed in 
Sec. V, for j = 1, the Young frames can consist of only one 
row; the frame [12] is modified into [1]. The eigenvalue of 
C2[S02j+ 1(2)] [Eq. (8.3)] is 1, corresponding to the state 
11 2

, J = 1) [cf. Eq. (9.4)]. Thus this state is a two-particle 
state whose seniority index is equal to 1. 

c. Three partlcles,J=1 

Coupling one more particle to the two-particle states 
W{2}0), W{12}1), and W{2}2), we construct the follow­
ing three-particle states: W({2}0)1, J= 1), W({12}1)I, 
J = 0,1,2), and W({2}2) 1, J = 1,2,3). The only value of J 
for which a two-dimensional subspace has to be diagonalized 
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is 1 = I, for which there are two states belonging to the 
Youngframe{2}. The C 2[SU3 (3)] matrix in this subspace 
is 

(
28 4$) ;$ ~}' 

with the eigenvalues 12 and 6 corresponding, according to 
Eq. (S.I), to {3} and {2,t}, respectively. The corresponding 
eigenvectors provide the cfp's as follows: 

W{3}, 1= 1) = ($/3)W({2}0)1, 1= 1) 

+ jW({2}2) 1, 1 = 1), (9.5a) 

W{2,t}, 1= 1) = -iW({2}0)1, 1= 1) 

+ ($/3)W({2}2)1, 1= 1). 
(9.5b) 

The irrep {3} is one dimensional, but {2,t} is two dimen­
sional. The other 1 = 1 state belonging to {2, I} is 
112 ( {12} I) I, 1 = I). The relative phase of these two states 
has to be determined in a manner discussed in the following 
section. 

Each one of the other three-particle states is obtained 
from a unique two-particle state; the corresponding cfp's llre 
equal to I. Evaluating the expectation values ofC2 [SU3 (3)] 
for these three-particle states we identify the corresponding 
irreps as follows: 

(l2({2}2) 1, 1 = 2IC 2[SU3(3)] W({2}2) I, 1 = 2) = 6 => {2,t}, 

(12({2}2)1, 1=3IC2[SU3(3)]W({2}2)1, 1=3) = 12 => {3}, 

(12({12}1) I, 1 = 0IC 2[SU3(3)] W({1 2}1) I, 1 = 0) = 0 => {13}, 

(12({12}1) 1, 1 = 2IC 2[SU3(3)] W({1 2}1) 1, 1 = 2) = 6 => {2,t}. 

(9.6a) 

(9.6b) 

(9.6c) 

(9.6d) 

D. Four particles,j= 1 

Some of the four-particle states are obtained uniquely by coupling of the fourth particle to appropriate three-particle 
states. The expectation values of the SU 3 ( 4) Casimir operator for these states can be used to identify the irreps. The results are 

(13({3}3)1, 1=4IC2[SU3(4)]W({3}3)1, 1=4) =¥ => {4}, 

(13({3}1)I, 1=0IC2[SU3(4)]W({3}1)I, 1=0) =¥ => {4}, 

(l3({3}1) I, 1 = IIC 2[SU3(4)] W({3}1) I, 1 = 1) = ¥ => {3,t}, 

(l3({3}3) I, 1 = 3IC2[SU3(4)] W({3}3) I, 1 = 3) = ¥ => {3,t}, 

(13({2,t}2)1, 1=3IC2[SU3(4)]W({2,t}2)1, 1=3) =¥ => {3,t}, 

(l3( {2, t}1) 1, 1 = 0IC 2[SU3( 4)] W( {2, t}1) I, 1 = 0) = ~ => {22}, 

(13({13}0)1, 1= IIC 2[SU3(4)]W({13}0)1, 1= 1) =~ => {2Y}. 

(9.7a) 

(9.7b) 

(9.7c) 

(9.7d) 

(9.7e) 

(9.7f) 

(9.7g) 

The state W{3,t}3) is triply degenerate. Two of the 
three members of this degenerate state are obtained from 
W{2,t}2), and the third is obtained from W{3}3). While 
the first two states have identical cfp's, the phase of the third 
state relative to the first two has yet to be determined (cf. 
Sec. X). A complete labeling ofthese three states would in­
volve the sequence of Young frames {1}{2}{3}{3,t}, 
{1}{2}{2,1}{3,t}, and {1}{12}{2,1}{3,t}. Similarly, 
114{22}0) is doubly degenerate, the complete labels for the 
two components being {1}{2}{2,1}{22} and 
{1}{12}{2,1}{22}. The states 114{3,t}0), 114{3,t}1), and 
114{2,t} 1) are also triply degenerate but the above list con­
tains only one member of each of these basis sets. The con­
struction of the other two members of each basis requires the 
diagonalization of appropriate 2 X 2 matrices of the SU 3 ( 4 ) 
Casimir operator. 

The simplest case involving the diagonalization of a 

1378 J. Math. Phys., Vol. 29, No.6, June 1988 

2 X 2 matrix results in 

W{4}2)=aW({3}3)l,I=2) 

+~ W({3}I)I, 1=2), 

W{3,t}2) = ~ W({3}3)l, 1 = 2) 

-~W({3}1)l, 1=2). 

(9.Sa) 

(9.Sb) 

In this case the three-particle states involved belong to the 
nondegenerate symmetric representation {3}. 

A more interesting case involves the pair of states 
W({2,t}2)1, 1= 1) and W({2,t}1)1, 1= 1). In this 
case the three-particle states are doubly degenerate and the 
evaluation of the off-diagonal matrix element of 
C 2[SU3( 4)] requires thatthe relative phases of the two com­
ponents of these two representations be determined consis­
tently. This problem was mentioned in connection with the 
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construction of these three-particle states, but it is here that 
it becomes crucially relevant. The appropriate procedure is 
discussed in Sec. X. 

E. An illustration of the seniority classification 

In all the cases encountered so far the resultant angular 
momentum and the sequence of realizations of the quadratic 
Casimir operator for the SU2j + t group provide a complete 
classification of the states. While the states discussed could 
have been (and some were) characterized with respect to 
their seniority, this was unnecessary for their classification. 
To encounter a simple example in which the seniority classi­
fication is needed, we consider a system of particles with 
j = ~. The results for one and two particles were already pre­
sented in Secs. IX A and IX B. For three particles the states 
are still completely classified by e 2 [SU 4 (3)] and the total 
angular momentum. 

The four-particle states I (~)3( {3H)~,J = 1) and 
I (~)3( {3H)~, J = 1) present a case in which classification by 
means of the symplectic Casimir operator is necessary. 
These two states both belong to the {3,l} irrep ofSU4( 4), as 
one finds by evaluating the matrix of the appropriate Casi­
mir operator. However, upon diagonalizing e 2 [SP4 ( 4) ] we 
obtain the seniority 4 state (3,1) whose Casimir operator 
eigenvalue is 12, as well as the seniority 2 state (2) whose 
eigenvalue is 6. The corresponding eigenstates are 

1(~)4(3,1){3}{3,l}, J= 1) 

=/j; 1(~)3({3}~)~, J= 1) 

+j/; 1(~)3({3H)~, J= 1), 

I (V4(2){3}{3,l}, J = 1) 

=j/; 1(~)3({3H)~, J= 1) 

- /j; I (~)3( {3H)~, J = 1) 

(9.9a) 

(9.9b) 

x. GENERATION OF CONSISTENT BASES FOR SN 
REPRESENTATIONS 

The procedure for the generation of the N-particle wave 
functions and cfp's proposed in the preceding sections is re­
cursive. Assuming that the states for N - 1 particles have 
been constructed, we form the set of N-particle states 
I jN - t (a'v' Y' J')jJ ) for all a' v' and J' allowed for given Y' 
and J. While these states have well-defined angular mo­
menta, they do not, in general, belong to irreps of the special 
unitary and symplectic (or orthogonal) groups. Diagonaliz­
ing the matrices for the Casimir operators e 2[SU2j + t (N)] 
and e 2

[ R 2j+ t (N)] within the space specified above, we 
obtain the set of states IjNavYJ). Recall that Yis a Yama­
nouchi symbol equivalent to the sequence of Young frames 
r tr 2··· r Nand Y' is equivalent to r tr 2··· r N-t. 

Basis sets for irreps of S N labeled by Yamanouchi sym­
bols can be split into subsets, each one of which is specified 
by an irrep of S N _ t . It was shown in Sec. VII that the N - 1 
to N cfp's depend on r N _ t and r N' which also specify the 
irreps of SU2j+ t (N - 1) and SU2j+ t (N). These cfp's do 
not, however, depend on the internal labels of the r N _ t ir­
rep. This is a source of considerable simplification, since it 
implies that we have to generate only one representative of 
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each subset in order to obtain all the cfp's needed to span a 
particular N-particle irrep. On the other hand, the genera­
tion of states labeled by the same r N but different r N _ t has 
to be performed in a consistent way. This guarantees that the 
corresponding representation matrices conform to some 
standard form. 

To clarify the issue discussed above let us consider the 
irrep {3, l} ofSU2j + t (4). The three-dimensional irrep (3,1) 
of S N associated with this representation is spanned by the 
states 

( 1) (2) (3) (3, 1 )~( 2111), 

( 1 ) (2) (2, 1 ) ( 3, 1 ) ~ ( 1211 ), 

(1) (12) (2,1) (3,1 )~( 1121). 

(10.1 ) 

The Yamanouchi symbols of the sequences ofY oung frames 
in (10.1) are denoted to the right of the corresponding se­
quences. In this example the first state belongs to the one­
dimensional irrep (3) of S3 and the other two belong to the 
two-dimensional irrep (2,1 ). The states belonging to the sec­
ond and third sequences have the same cfp's. However, these 
cfp's have to be generated with the correct phase relative to 
the cfp's of the state belonging to the first sequence. 

Recalling that all the relevant (N - 1 )-particle Young 
frames are generated by the removal of one box from the N­
particle frame, it will now be demonstrated that we only have 
to consider transpositions (N - 1,N) of the last two indices 
in order to construct a complete phase-consistent set of cfp's. 
Let Yt = r t r 2' .. r N be a Yamanouchi symbol ofthe form 
(ab' .. ) and Y2 a Yamanouchi symbol of the form (ba' .. ), 
related to Yt by the transposition (N - 1,N). Let us further 
assume that N - 1 and N appear in different rows and co­
lumns. The state labeled by Y2 is generated from the corre­
sponding state labeled by Yt with the standard phase con­
vention, by using the relation II 

(10.2) 

where rand s are the indices of the rows in which Nand 
N - 1 are placed in Y I , Ar and As are the lengths of these 
rows, and U rs = l/(Ar - As + s - r). A Yamanouchi sym­
bol having N - 1 and N in either the same row or the same 
column is an eigenstate of the transposition (N - 1,N), and 
is consequently of no interest in the present context. 

The state I jN a YIJ ), where a contains the seniority la­
bel, is given in terms of the appropriate cfp's: 

IjNaYtJ) = L [jN-t(a'rN_tJ')jJl}ljNarNJ] 
a'J' 

x Ir-t(a'Y;J')jJ). (10.3 ) 

We would like to determine the cfp's for the state I jNa Y ~) 
by means ofEq. (10.2). This is achieved by writing the origi­
nal state, Eq. (10.3), using the N - 2 to N - 1 cfp's and a 
recoupling transformation. As a consequence, the particles 
N - 1 and N are coupled into well-defined angular momen­
tum states, which, for two particles, have unique permuta­
tional symmetry characters. The resulting expression for the 
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state (10.3) is 

IjNar l ••• r N_2r N-I r NJ) 

= I [r-l(a'rN_IJ')jJl}ljNarNJ] 
a'J' 

x I [jN-2(a''r N- 2J")jJ'l}jN-Ia'r N- IJ'] 
a"J" 

x ( - I) 2j+ J+ J" ~2J' + I 

X f hJ + I {~" j :'} 
)=0 J J J 

xl (jN-2a ''r1 ... r N_2 J ")(fr2 (J)'J)J), 
(10.4) 

where 

J = 2j,2j - 2, ... ,0 or 
J = 2j - 1,2j - 3 ... ,1 or O. 

Using the form of the N-particle state obtained in this way, it 
is a simple matter to apply the operator specified in Eq. 
(10.2), since (N - I,N)(2) = (2) and 
(N - I,N) (12) = - (12). 

Application of the operator (10.2) to the state in Eq. 
(10.4) generates the state IjNaY~), expressed in terms of 
the already available cfp's of the state 1 jNaY1J). To extract 
the cfp's of IjNaY~), we note that the sequence of Young 
frames corresponding to Y2 differs from that for Y1 only by 
the Young frame for N - 1 particles. Thus, an expression for 

W{2}{2,I}, J = 2) = W{2}2) I, J = 2) 

this state can be obtained by replacing r N _ I by r~ _ I in Eq. 
( 10.4 ). This expression involves the still unknown N - I to 
N cfp's of the state 1 jNa Y2J). Equating the coefficients of 

1 (jN-
2r l •.. r N- 2 J ")(fr2 (J)(J»)J) 

in the two equivalent expressions for the state 1 jN a Y ~ ) 
whose derivation was described above, we obtain a set of 
linear equations for the cfp's desired. 

To establish that the number oflinear equations is suffi­
cient to determine all the cfp's, we note that the number of 
terms of the form 

1 (jN - 2a ''r N _ 2J")( fr 2 (J)J)J) 

is equal to the number of ways of getting J from J" by cou­
pling two more particles, disregarding permutational sym­
metry. The number of cfp's 

is equal to the number of (N - 1)-particle states from which 
a particular symmetry N-particle state can be obtained. The 
(N - I )-particle states were obtained from the set of 
(N - 2)-particle states {I jN - 2a ,'r N _ 2J")} by coupling of 
one particle and selecting according to the permutational 
symmetry. Therefore, there are at least as many linear equa­
tions as there are unknown cfp's. 

As a simple illustration we note that starting from Eq. 
(9.6a) and using Eq. (10.4), we obtain 

=~1(11{I}1)(12{2}2), J=2) + (~/2)1(11{I}1)(12{12}1), J=2). (10.5) 

Application of Eq. (10.2) yields 

W{12}{2,I}, J = 2) = (2/~)[ (2,3) +!1 W{2}{2,I}, J = 2) 

= (~/2) 1(11{I}I) (12{2}2), J = 2) - !1(11{I}I) (12{12}1), J = 2). ( 10.6) 

To extract the cfp's for the latter state we use Eqs. (9.6d) and (10.4) to write 

W{12}{2,I}, J = 2) = [(12{12} 1) I, J = 21} 13{12}{2, I}, J = 2] W( {12}1) I, J = 2) 

= [(12{12}1) I, J = 21}1 3{12}{2,I}, J = 2] (10.7) 

X(~/2)1(11{I}1)(12{2}2), J=2) _~1(11{I}1)(12{12}1), J=2»). 

Comparison of the last two equations shows that [( 12{ 12} I ) I, J = 21} 13{ 12}{2, I}, J = 2] = I. In this case it was only the 
phase of the cfp that had to be determined. 

A somewhat more interesting case is obtained by using Eq. (10.4) to yield 

W{12}{2,I}, J= 1) = 1(12{12}1)1, J= I) 

= - (~/3)1(11{I}1)(12{2}0), J= I) + (Ji5/6) 1 (11{I}1) (12{2}2), J= I) 

+~1(11{I}1)(l2{12}1), J= 1). 

Applying Eq. (10.2), 

W{2}{2,I}, J = 1) = (2/~)(2,3) - !)W{12}{2,I}, J = 1) 

= _jl(1I{I}I)(l2{2}0), J= I) + ($16)1(11{1}1)(l2{2}2), J= 1) 

- (~/2)1(11{1}1)(l2{12}1), J= I). 

On the other hand, using Eq. (10.4), 
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W{2}{2,l}, J= 1) = [1 2 ({2}0)1, J= 11}13{2}{2,l}, J= 1] I (12{2}0), J= 1) 

+ [1 2 ({2}2)1, J= 11}13{2}{2,l}, J= l]I(12{2}2)1, J= 1) 

= [1 2({2}0)1, J= 11}13{2}{2,l}, J= 1WI(1I{l}1)(12{2}0), J= 1) 

+ ($/3)1(11{l}1)(12{2}2), J= 1) - (1/~)1(11{l}1)(12{12}1), J= 1») 

+ [12({2}2)1, J= 11}13{2}{2,l}, J= 1]($/3)1 (11{l}1) (12{2}0), J= 1) 

+il(1I{l}1)(12{2}2), J= 1) + (~/6)1(11{l}1)(12{12}1), J= 1)). ( 10.10) 

Equating coefficients of appropriate terms in Eqs. (10.9) and (10.10), we obtain the (redundent) set of linear equations 

(10.11 ) 

These equations have a consistent solution which yields the state 

W{2}{2,l}, J= 1) =jW({2}0)1, J= 1) - ($/3)W({2}2)1, J= 1). (10.12) 

Note that the same state, with reversed phase, is presented in Eq. (9.5b). The phase presently obtained is consistent with that 
of the state presented by Eq. (10.8). These two states span the (2,1) irrep. 

XI. THE L-5 COUPLED WAVE FUNCTION 

To obtain the L-S coupled wave function with any desired permutational symmetry, we couple an L and an S state using 
the appropriate Clebsch-Gordan (CG) coefficients for the symmetric group. Consider a state consisting of N particles, each 
one having an orbital angular momentum I and a spin s. The orbital angular momenta are coupled into a resultant angular 
momentum L and into a permutational irrep r~, and the spins are coupled into a resultant spin S and a permutational irrep 
r~. The state with a total permutational symmetry r N and internal state label IL N can be written in the form 

I (Is)NalaSr~r~r NILNLS) = I (r~IL~r~IL~lr~r~r NILN) I/Nalr~IL~L;sNaSr~IL~S), 
Jt~'N 

01.1 ) 

Since we are usually interested in totally antisymmetric (or totally symmetric) wave functions, we note that the corre­
sponding CG coefficients have the very simple forms II 

(r~IL~r~IL~!r~r~ON») = 0r~~(r~:.,)tC 1/ ~nr,)Ar~',/ 

(r~IL~r~IL~lr~r~(N») = or' , r' , 01 ~r' ) . 
Nf.lN' Nf.lN -V "r:-, I 

(11.2) 

Here, Ar , , is a phase factor. It is equal to 1 when the parity of the permutation from the highest Yamanouchi symbol (i.e., 
Nf.lN 

the Yamanouchi symbol represented by the largest "number") in the irrep r~ to the Yamanouchi symbol of the state with an 
internal label IL ~ in that irrep is even, and to - 1 otherwise. Here (r NIL N ) t denotes the state conjugate to r NIL N' Thus if 
I r NIL N) = I r I r 2' .. r N) then I (r NIL N ) t) = I rt rI ... r1,), where rr is the Young frame obtained from r i by interchanging 
rows and columns. The integer nr , is the dimension of the irrep r~. The internal state label ILN for the symmetric and 

N 

antisymmetric irreps obtains a single value and was, therefore, suppressed in the CG coefficients in Eq. (11.2). 
Using the Land S N - 1 to N cfp's, we write the state in the rhs of Eq. (11.1) in the form 

II Nalr~IL~L;sNasr~IL~S) 

I [IN-I(a'lr~_IL ')IL I}/Nalr~L ] [sN-I(alSr~_IS')SS I}~asr~s] 
a,IL'a'sS' 

x I/N-I(a'irl "I L ')IL-~-I(a'SrS II' S')sS). 
N-I~N-I' N-I~N-I 01.3 ) 

Substituting Eq. (11.3) in Eq. (11.1), setting r~IL ~ = (r~IL~) t, and using the CG coefficient for the totally antisymmetric 
state in (11.2), we obtain 

I (Is)Nalasr~(r~ )t( I N)LS) 

= _1_), A I/Nairl "I L'~aS(rl "I )tS) 
~.,. r~~ N~N , N~N 

-V nr~ f.LN 

= _1_ ~ Ar~dIN-I(a'lr~_IL ')IL I}/Nalr~L] [~-I(a'S(r~_1 )ts')SSI}~a(r~)tS] 
rn-; f.L'"cx'L'a"S' -V '"r:-, 

XI/N-I(a,lr l "I L')IL-~-I(alS(rl "I )ts')sS). 
N-I~N-I' N-I~N-I 
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In order to introduce the L-S coupled cfp's we have to write the L-S coupled N-particle function in terms of L-S coupled 
(N - 1 )-particle functions. We recall that the L and the S cfp's for all the states spanning the same irrep of the (N - 1)­
particle system are equal. Using this property we split the sum over j.tt,. in Eq. (11.4) into a summation over the irreps rt,. _ 1 
belonging to rt,., and over their internal labels j.tt,. _ 1 . Each N-particle CG coefficient can be written as an (N - 1) -particle 
CG coefficient multiplied by a factor which depends only on the N- and (N - 1 )-particle irreps and not on their internal 
labels. Using the factorization, we obtain 

I (ls)Na1aTt,.(rt,.)t(1N)LS) = L [(ls)N-l(a,la'T;;_1 (r;;_l )tL 'S'( I N- 1»)lsLS I} 
a"a'SL 's'rj.J._ I 

(11.5 ) 

In this expression the N-particle L-S state is written as a linear combination of (N - 1)- to N-particle L-S coupled cfp's 
multiplying appropriate N-particle wave functions. The L-S coupled cfp's are related to the Land S cfp's by 

[(lS)N - l(a'h'T;;_ 1 (r;; _ 1) tL 'S'( 1 N - 1) )lsLS 1}(ls)NalaSr N (rt,. )t(1 N)LS] 

HereArl rd is the parity of the permutation from the high-
N N-I 

est Yamanouchi symbol in rt,. to the highest Yamanouchi 
symbol in the subset of the rt,. basis which spans the r;;_l 
irrep. In obtaining the phase factor in Eq. (11.6) we use the 
straightforward relation 

Art I=A r/rt I =A t t ·A I I • (117) 
Nf'N N N- If'N- 1 rNrN_1 rN_ If'N- I • 

The phase factor Arl rl is easily evaluated as follows: 
N N-l 

Assume that the Young frame corresponding to rt,. _ 1 is 
obtained from that corresponding to rt,. by deleting a box in 
row a. The set of N-particle Yamanouchi symbols with a as 
their leading index spans a basis set for rt,. _ 1 . The parity of 
the permutation from the highest symbol in that set to the 
highest symbol in rt,. is equal to the number of indices larger 
than a, or, equivalently, to the total number of boxes in rows 
a + 1 and down, in either rt,. or rt,. _ 1 . 

As a simple example of the determination of the phase 
factor Art rl ,consider the two-dinensional irrep r~ 

N N-l 

= (2,1). The Yamanouchi symbols spanning the basis set 
for this irrep are (211) and (121). The first spans the r~ 
= (2) irrep and the second spans the r~ = (12) irrep upon 

deletion of a box from the row denoted by the leading (left­
most) index. Since for the symbol (121), the index of the box 
deleted first is a = 1, there is one box with a> 1, so that the 
phase of this state relative to the state (211) (whose Yaman­
ouchi symbol is the largest) is - 1. Similarly, the three­
dimensional irrep (3,1) is spanned by (2111), (1211), and 
(1121). The first state, whose Yamanouchi symbol is the 
largest of the three, spans the irrep (3) upon deletion of the 
leading index, and the other two span the irrep (2, 1 ). Of the 
two (2,1) states, (1211) is higher, and it can be obtained 
from (2111) by one transposition, i.e., A(3.1)(2.11 = - 1. 

To illustrate the evaluation of the L-S coupled cfp's for 
a totally antisymmetric state, consider the three-particle 
state with 1 = s = 1, L = S = 1, and r~ = (2,1). Substitut­
ing the appropriateL (S) cfp's [Eqs. (10.8) and (10.12)] in 
Eq. (11.6), we obtain the following L-S cfp's: 

[ ( 11 ) 2( (2) 0 ( 12) 1) ( 11 ) Ill} 

(11)3(2,1)(2,1)(1 3)11] =v113, (11.8a) 
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[ ( 11 ) 2( (2) 2 ( 12) 1) ( 11) Ill} 

(11)3(2,1)(2,1)(13)11] = -.j513v'1, 

[ ( 11 ) 2( ( 12) 1 (2) 1) ( 11 ) Ill} 

(11)3(2,1)(2,1)(13)11] = -v'113, 

[ ( 11 ) 2( ( 12) 1 (2) 1) ( 11 ) Ill} 

(11 )3(2,1 )(2,1)( 13) 11] = .j513v1. 

(11.6 ) 

(11.8b) 

(11.8c) 

(11.8d) 

The factorization of the N-particle CG coefficient of the 
symmetric group into a product of an (N - 1 )-particle CG 
coefficient and a factor which only depends on the N- and 
(N - 1 )-particle irreps holds for arbitrary total symmetries 
[Ref. 11, Eq. (7-226)]. This enables the immediate general­
ization of Eqs. (11.5) and (11.6) to introduce L-S coupled 
cfp's for arbitrary total permutational symmetries. These, in 
turn, can be used to construct L-S-T coupled states and to 
calculate their cfp's. 

XII. THE COMPUTATIONAL PROCEDURE 

A computer code implementing the formalism de­
scribed above for the evaluation of the L(S) and L-S cou­
pled cfp's was developed. The input parameters accepted by 
the code are the number of particles N and the individuall 
and s values. As a preliminary step the program constructs 
all Young frames with up to Nboxes. The Young frames are 
ordered according to the number of particles. For a given 
number of particles, we follow a reversed lexicographic or­
der, i.e., a Young frame precedes any other Young frame 
with a smaller number of boxes in the first row in which they 
are not equal. This ordering is illustrated in Fig. 3. For each 
Young frame the dimension of the corresponding irrep ofS N 

is evaluated. The eigenvalues of the quadratic Casimir oper­
ators of the special unitary and symplectic or orthogonal 
groups are also evaluated, using Eqs. (8.1 )-( 8.3). 

The following steps are indicated in Fig. 1. First, the 
cfp's are calculated for Land S separately. The procedure 
employed in this step is recursive, starting from the one­
particle cfp [/(O)j,jl}j'j] = 1, wherej = lor s. Assuming 
that all the cfp's up to N - 1 particles were calculated, the 
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FIG. 3. Branching diagram for the Young frames, up to four particles. The 
arrows indicate Young frames connected by the addition of one box. The 
ordinal numbers of the Young frames, explained in the text, are written 
below each frame. 

program calculates the (N - 1)- to N-particle cfp's as fol­
lows: For each (N - 1) -particle state, labeled by its angular 
momentum J', permutational Young frame, and seniority, it 
constructs sets of N-particle states with specific total angular 
momenta J = L or S, obtained by coupling of one more par­
ticle. For each such set of states the code constructs and 
diagonalizes the matrix of the operator C 2 [ SU 2j + 1 (N) ] , 
using Eq. (6.14). The eigenstates obtained belong to well­
defined irreps {A}N ofSU2j+ 1 (N). TheSU2j+ 1 (N) irrep of 
each eigenstate is identified by comparison of its eigenvalue 
with the list of eigenvalues of C 2 [SU2j+ 1 (N)] for all the 
frames which can be constructed from the original (N - 1)­
particle frame by adding one box. This is facilitated by the 
fact, demonstrated in Sec. VIII, that each of the eigenvalues 
in the above list is unique. 

The step of the computation described above exploits 
the following two features. 

( 1 ) The diagonalization of the matrices for the quadrat­
ic Casimir operator of the special unitary group generates 
states that belong simultaneously to the irreps 
{A.} 1 , ••• , {,H N _ 1 , {,H N ofthe realizations 

C 2 [SU2j+ 1 (l)], ... ,C 2 [SU2j+ 1 (N -1)], 

C 2 [SU2j+ 1 (N)]. 

(2) The Weyl duality between the special unitary and 
the symmetric group, discussed in Sec. II, enables the identi­
fication of these states with states which belong simulta­
neously to the irreps r I, ••• ,r N _ 1 ,r N of the symmetric 
groups SI"",SN_I,SN, where r N , = {A}N', 
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N' = 1, ... ,N - I,N. We are primarily interested in the per­
mutational symmetry properties of N-particle states-these 
are extracted from our knowledge of their properties under 
the special unitary group. 

In the procedure as so far described we start from a set of 
states belonging to a particular irrep r N _ 1 and obtain a state 
belonging to the irrep r N' While the original irrep r N _ 1 

could have a dimension larger than 1, all the cfp's connecting 
the states spanning that irrep to the irrep r N are equal (cf. 
Sec. VI). If, however, the dimension of r N is larger than that 
of r N _ I' then the procedure described in Sec. X for the 
generation of a complete set of cfp's with mutually consistent 
phase relations is invoked. 

The N-particle states obtained at this stage have definite 
total angular momenta and belong to definite irreps of 
SU2j+ 1 (N) [as well as of all the realizations SU2j+ 1 (N') 
with N' = 1,2, ... ,N - 1]. Each one of these states is a linear 
combination of N - 1 to N cfp's multiplied by appropriate 
N-particle states, of the form of Eq. (5.1). These states are 
assembled into sets, each containing all the states with the 
same total angular momentum and the same irrep of 
SU2j+ I' The further classification by means of the seniority 
quantum number is accomplished by diagonalizing the ma­
trix ofC 2 [R 2j + 1 (N)] within the set of states with a particu­
lar r N _ 1 and using the transformation matrix generated for 
all the other sets of states with the same r N' as well. The 
identification of the irrep of R 2j + 1 (N) for the newly formed 
eigenstates is achieved by an analogous procedure to that 
described above for the SU 2j + 1 irreps. The group theoretical 
basis ofthis procedure is presented in Sec. VIII for the sym­
plectic and the orthogonal groups. The states generated at 
this stage are ofthe form ofEq. (5.2). 

In Appendices A and B we present the renormalized 
cfp's computed using the code described above, for up to 
three particles, for j = 1 andj =~, respectively. The states 
generated for each value of j are numbered consecutively, 
starting with the one-particle state. Each state is labeled by 
its total angular momentum, the Young diagram specifying 
its irrep with respect to SU2j + 1 (and SN)' its seniority index 
and the Young diagram specifying its irrep with respect to 
R 2j + 1 • Each cfp is labeled by a set of quantum numbers for 
the (N - 1 )-particle state, analogous to the set of quantum 
numbers specifying the N-particle state. The appendices list 
renormalized cfp's as defined in Eq. (6.15). The cfp for each 
r N _ 1 is listed once. 

The last step in the code is displayed in Fig. 2. It involves 
the enumeration of the L-S states and the evaluation of their 
L-S coupled cfp's. The L-S coupled cfp's are obtained by 
means of Eq. (11.6), using the Land S cfp's calculated be­
fore. For totally antisymmetric L-S states the limitation on 
the number of rows in the Young diagrams for I imposes a 
limitation in the number of columns in s, and vice versa. Our 
procedure allows the inclusion of these limitations, so as to 
calculate only the Land S cfp's required. 

Appendix C lists the cfp's for the totally antisymmetric 
L-S states obtained from the states in Appendices B and A, 
interpreted as Land S states, respectively. Each L-S state is 
labeled by the sets of Land S quantum numbers mentioned 
above. So is each cfp. 
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The computer code (which is available upon request) 
has so far been tested on a V AX-750 computer and has been 
optimized. It has been demonstrated to be very rapid in com­
parison with existing state-of-the-art codes. A comparison 
with the improved GENESIS code5 was carried out for 1= 3/2 
and s = 1, for four- and five-particle systems. For the four­
particle case, our program yields all the L-S cfp's in less than 
1 min CPU time on the VAX-750, compared to about 15 min 
with the GENESIS code. For five particles the respective times 
are 3 and 90 min. These results suggest that the relative im­
provement achieved with the present code increases with 
increasing number of particles, and also for higher values of I 
and s. It follows that the present code offers the possibility to 
considerably extend the size and complexity of the systems 
that can realistically be studied. 

XIII. CONCLUSIONS 

In the present article we present a procedure for the 
evaluation of the cfp's for systems consisting of N identical 
particles with arbitrary permutational symmetry. This pro­
cedure is a generalization of the very efficient and powerful 
method proposed by Bayman and Lande? more than 20 
years ago for symmetric and antisymmetric N-particle 
states. 

The procedure presented is recursive, generating the 
symmetrized N-particle states using symmetrized (N - 1)­
particle states. It involves a fortunate combination of a nu­
merical method for the computation of the cfp's and an ana­
lytical method for the identification of the corresponding 
irreps. The numerical method consists of the diagonalization 
of the matrices of the special unitary and symplectic or or­
thogonal quadratic Casimir operators, and the analytical 
method provides an identification of the irreps of the rel­
evant groups. 

The identification of the irreps of both the special uni­
tary and the symplectic or othogonal groups is achieved us­
ing the eigenvalues of the above matrices and a group theo­
retical result guaranteeing the uniqueness of these 
eigenvalaues for the set of N-particle irreps accessible from 
any particular (N - 1 )-particle state. This is a remarkable 
circumstance because in general the quadratic Casimir oper­
ator is not sufficient for the identification of the irreps. In 
addition, the state classification achieved is more detailed 
than is common in similar contexts, because the seniority 
label we use is the full irrep label of the symplectic or orthog-

THE STATES FOR 1 PARTXCLB 

onal group, rather than an index specifying only the total 
number of boxes in the corresponding irreps. 

The computational efficiency of the procedure devel­
oped here has been demonstrated by means of a computer 
code implementing it for the evaluation of the L-S coupled 
cfp's for totally antisymmetric states. Further extensions, to 
L-S coupled states with arbitrary total permutational sym­
metry as well as to L-S-T type coupling states, etc., are feasi­
ble and relatively straightforward. 
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APPENDIX A: cfp's FORj= 1 UP TO THREE PARTICLES 

A slightly edited copy of the computer output for the 
states and cfp's for j = 1, up to three particles, is presented 
below. The states are numbered consecutively and each one 
of them is labeled by its total angular momentum quantum 
number J, its permutational Young frame r N' which is de­
noted in the output by Y, its seniority index v denoted by SE, 
and the corresponding Young frame v denoted by YSE. The 
Young frames are numbered consecutively (cf. Fig. 3). 
These numbers, along with the explicit symbols for the 
Young frames, appear for Y and YSE. 

The list below presents the renormalized cfp's defined 
by Eq. (6.15). For each N-particle state, the cfp's from all 
the irreps r N _ 1 obained from r N by subtraction of one box 
are listed. Each cfp is labeled by the ordinal number of the 
(N - 1 )-particle state, denoted by INIT, and the quantum 
numbers of that state: its angular momentum INITJ, the 
ordinal number of its permutational Young frame, YINIT, 
its seniority index SINIT, and the ordinal number of the 
corresponding Young frame YSINIT. In this edited version 
of the computer output, the squares of the cfp's are presented 
under the heading CFP**2 in terms of rational fractions. An 
asterisk denotes that the negative square root has to be taken. 

1) J- 1 Y- 1 1) SE- 1 YSE- 1 [ 1] 

CFP**2 
1 

2) 

CFP**2 
1 

J- 0 Y- 2 

DfXT 
o 

DfXT 
1 

DfXTJ 
o 

nNIT 
o 

2) sz- 0 YSE- 0 

DfITJ 
1 

YDIIT 
1 

1384 J. Math. Phys., Vol. 29, No.6, June 1988 

SDfXT 
o 

1 

SDfU 
1 

YSDfXT 
o 

YSDfX'% 
1 
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3) J- 2 y- 2 2) 0- 2 ya· 2 [ 2J 

CFP**2 IXI! IXI!J TIKI! SIXI! nIX%! 
1 1 1 1 1 1 

4) J- 1 y- 3 1 1) 0- 1 ysz- 1 ( lJ 

CFP**2 IX%! IXI!J 1'IHI! SIXI! DIXI! 
1 1 1 1 1 1 

THE STADS FOR 3 PARUCLES 

----------------------------------
5) J- 1 y- 4 3) ss- 1 YSS- 1 ( lJ 

CFP**2 IXI'!' IXI'!'J 1'IHI! SIXI! YSIXI! 
*5/9 2 0 2 0 0 
*4/9 3 2 2 2 2 

6) J- 3 y- 4 3) u- 3 ysz. .. 3J 

CFP**2 IXI'!' IXI'!'J YDlI! SIXI! nIXI'!' 
1 3 2 2 2 2 

7) J- 1 y- 5 2 1) ss- 1 YO- 1 [ lJ 

CFP**2 IXI! IXI'!'J TIKI! SIXI! DIXI! 
*2/9 2 0 2 0 0 

5118 3 2 2 2 2 
*1/2 4 1 3 1 1 

8) J- 2 Y- 5 2 1) ss- 2 ysz. 2 [ 2J 

CFP**2 INI'!' INI'!'J YDlI! SIBI'!' nIBI'!' 
1/2 3 2 2 2 2 
1/2 .. 1 3 1 1 

9) J- 0 Y- 6 1 1 1) ss- 0 YSS- 0 

CFP**2 INI'!' INI'!'J YINI'!' SIBI'!' YSIBI'!' 
1 .. 1 3 1 1 

APPENDIX B: cfp's FORi=-i UP TO THREE PARTICLES 
A slightly edited copy of the computer output for the states and cfp's forj =~, up to three particles, is presented below. 

For the notation used see Appendix A. 

THE S'!'ADS I'OR 1 PAR'!'ICLK 

----------------------------------
1) J- 3/2 Y- 1 1) a- 1 ysz. 1 < 1> 

CFP**2 IXI'!' INI'lJ YDlI! SIXI'!' YSIBI! 
1 0 0 0 0 0 

THE S'!'ADS FOR 2 PAR'!'Ic:r.aS 

----------------------------------
2) J- 1 Y- 2 ( 2) a- 2 ysz. 2 < 2> 

CFP**2 IHI'!' IXI'lJ YDlI! SIXI! DIXI'!' 
1 1 3/2 1 1 1 

3) J- 3 y- 2 ( 2) 0- 2 ysz- 2 < 2> 

CFP**2 IXI'!' IXI'!'J YIXI': SIXI'!' YSIXI'!' 
1 1 3/2 1 1 1 

4) J- 0 Y- 3 1 1) ss- 0 ysz. 0 < > 

CFP**2 IXI'!' IXI'l'J TIKI! SIXI! YSIXI! 
1 1 3/2 1 1 1 

5) J- 2 Y- 3 1 1) sz- 2 ysz. 3 < 1 1> 

CFP**2 IXI'!' IHI!J YDlI! SIXI! YSIXU 
1 1 3/2 1 1 1 
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THE STATES FOR 3 PARTICLES 

-----------------------------------
6) J- 3/2 Y- 4 3) SB- 3 YSB- 4 < 3> 

CFP**2 INIT INITJ YINIT SINIT YSINIT 
*7/10 2 1 2 2 2 

3/10 3 3 2 2 2 

7) J- 5/2 Y- 4 3) SE- 3 YSE- 4 < 3> 

CFP**2 INIT INITJ YINIT SINIT YSINIT 
*8/15 2 1 2 2 2 
*7/15 3 3 2 2 2 

8) J- g/2 Y- 4 3) SE- 3 YSB- 4 < 3> 

CFP**2 INIT INITJ YINIT SINIT YSINI'!' 
1 3 3 2 2 2 

g) J- 1/2 Y- 5 2 1) SE- 3 YSBa 5 < 2 1> 

CFP**2 INIT INITJ YINIT SINI'!' YSINI'!' 
1/2 2 1 2 2 2 

*1/2 5 2 3 2 3 

10) J- 3/2 Y- 5 2 1) SE- 1 YSZ- 1 < 1> 

CFP**2 INIT INITJ YINIT SINI'!' YSINI'!' 
3/20 2 1 2 2 2 
7/20 3 3 2 2 2 
5/12 4 0 3 0 0 
1/12 5 2 3 2 3 

11) J- 5/2 Y- 5 2 1) SB- 3 TSZ- 5 < 2 1> 

CFP**2 INIT INITJ YINIT SINIT YSINI'!' 
*7/30 2 1 2 2 2 
8/30 3 3 2 2 2 

*1/2 5 2 3 2 3 

12) J- 7/2 T- 5 2 1) SBa 3 YSBa 5 < 2 1> 

CFP**2 INIT INITJ YINIT SINI'!' YSDfI'!' 
1/2 3 3 2 2 2 
1/2 5 2 3 2 3 

13) J- 3/2 Y- 6 1 1 1) SE- 1 TSBa 1 < 1> 

CFP**2 INIT INITJ YINI'!' SINI'!' YSINI'!' 
*1/6 4 0 3 0 0 
5/6 5 2 3 2 3 

APPENDIX C: L-5 cfp's FOR '=1, $= 1 UP TO THREE PARTICLES 
A slightly edited copy of the computer output for the L-S coupled states and cfp's for I = ~, s = 1, up to three particles is 

presented below. The states are numbered consecutively, and each one is labeled by the ordinal number and list of quantum 
numbers for both the Land S factors, as defined in Appendix A. So is each cfp. The notation used is the logical extension of 
that described in Appendix A. 

TO STATES !'OR 1 PARTICLZ IN I.-S 

1) SBal YSZ-l 

CFP**2 
1 

INITLS ; INIT DfI'l'L YINI'r SDfIT YSINIT INIT INITS YINI'!' SINIT YSDIIT 
00000 0 0 0 000 

'rBB S'!'ATES !'OR 2 PARTICLZS IN I.-S 

2) 1-2 L-l Y-2 ( 2) SBa2 YSZ-2 
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CFP**2 
1 

CFP**2 
1 

CFP**2 
1 

CFP**2 
1 

CFP**2 
1 

CFP**2 
1 

INITLS INI': INI'lL YINI': SINI'! 'DINI'! ; INI': INITS YINI': SINI': 'DINI'! 
1 1 3/2 1 1 1 1 1 1 1 1 

2) 0-2 T0-2 

INITLS ; INI': INX'lL YINI': SINI'! TSINI'! INI'! INI':S YINI'! SINI'! 'DINI'! 
1 1 3/2 1 1 1 1 1 1 1 1 

1 1) 5&-0 TSK-O 2) sz-o TSZ-O 

INITLS ; INI'! INI'lL YINI': SINI'! TSINX'! ; INI'! DrI':S YINI': SINX'! TSINI'! 
1 1 3/2 1 1 1 1 1 1 1 1 

1 1) 0-0 Tn-O 2) SZ-2 TSZ-2 

INITLS ; DrI': INX'lL TINI': SINI': TSINI'! ; INI': INX'!S YINI': SINI'! TSINI'! 
1 1 3/2 1 1 1 1 1 1 1 1 

1 1) SZ-2 T0-3 2) SZ-O TSZ-O 

INI'!LS ; INI'! INI'lL TINI': SINI'! TSINI'!"; DrI'! DrI'!S TINI'! SINI'! TSINI': 
1 1 3/2 1 1 1 1 1 1 1 1 

1 1) SZ-2 TSE-3 2) SE-2 TSE-2 

INI'!LS INI'! INI'l'L TINI'! SINI'! TSINI'! INI'! INI'!S TINI'! SINI'! TSINI'! 
1 1 3/2 1 1 1 1 1 1 1 1 

'!HZ S'!A'l'ES FOR 3 PAR'!ICLES IN L-S 

8) 1-6 L-3/2 T-4 

CFP**2 
*7/10 
3/10 

CFP**2 
*8/15 
*7/15 

INITLS 
2 
3 

INITLS 
2 
3 

10) I-a L-'/2 T-4 

INI': INI'lL TINI'! SINI'! 'DINI'! 
21222 
3 3 222 

3) 0-3 Tn-4 

INI': INI'lL TINI'! SINI': 'DINX'! 
21222 
3 3 222 

3) 5&-3 Tn-4 

1 1 1) SE-O TSE-O 

INI'! INITS TINI'! SINI'! TSINI'! 
41311 
41311 

1 1 1) sz-o YSZ-O 

INI': INX'!S TINI'! SINI': 'DINI': 
41311 
41311 

1 1 1) Sz-o YSZ-O 

CFP**2 
1 

INITLS ; INI'! INI'lL TINI': SINI'! 'DINI'! ; INI'! INI'!S YINI': SINI'! YSINI'! 
3 3 322 2 413 1 1 

11) I-' L-1/2 T-5 

CFP**2 
*1/2 
*2/' 
5/18 

INITLS 
2 
6 
7 

12) 1-' L-1/2 T-5 

INI': 
2 
5 
5 

2 1) 0-3 Tn-5 

INI'lL TINI': SINI'! 'DINI': 
122 2 
232 3 
232 3 

2 1) 0-3 TSE-5 

CFP**2 
1/2 
1/2 

INXTLS 
2 
7 

INI': INX'lL YINI': SINI': TSINX": 
2 122 2 
5 232 3 

13) X- 10 L-3/2 T-5 

CFP**2 
*3/20 
*7/20 
5/27 

*25/108 
1/27 

*5/108 

INXTLS 
2 , 
4 
5 
15 
7 

; INI': 
2 
3 
4 
4 
5 
5 

14) X- 10 L-3/2 T-5 

CFP**2 
3/20 
7/20 

*5/12 
*1/12 

INITLS 
2 
3 
5 
7 

INI': 
2 
3 
4 
5 

DII'lL TXHI'! SINI": TSINI'! ; 
122 2 
322 2 
030 0 
030 0 
232 3 
232 3 

2 1) 0-1 Y5&-l 

INI'lL TINI": SINI": TSINX'! ; 
1 2 2 2 
3 2 2 2 
o 3 o 0 
2 3 2 3 
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INI": 
4 
2 
3 

INI":S TINI'! SINI'! TSINI'! 
131 1 
020 0 
222 2 

2 1) SZ-2 TSE-2 

INI'! INI'!S YINI'! SINI'! TSINI'! 
41311 
3 2 2 2 2 

INI': 
4 
4 
2 
3 
2 
3 

INI': 
4 
4 
3 
3 

INITS 
1 
1 
o 
2 
o 
2 

YINI'! 
3 
3 
2 
2 
2 
2 

INI'!S YINI'! 
1 3 
1 3 
2 2 
2 2 

2 1) SE-1 TSE-1 

SINI'! 
1 
1 
o 
2 
o 
2 

YSINI'! 
1 
1 
o 
2 
o 
2 

2 1) 0-2 TSZ-2 

SINI": 'DINI": 
1 1 
1 1 
2 2 
2 2 
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IS) I- 11 L-5/2 Y-S 2 1) SZ-3 YSZ-5 

CFP**2 INITLS INIl' INIl'L YINIl' SINIl' YSINIT 
7/30 2 2 1 2 2 2 

*4/15 3 3 3 2 2 2 
*2/9 6 5 2 3 2 3 
5/18 7 5 2 3 2 3 

16) I- 11 L-5/2 Y-5 2 1) SZ-3 Yn-S 

CFP**2 INITLS INIT INITL TINIl' SINU YSINU 
*7/30 2 2 1 2 2 2 
8/30 3 3 3 2 2 2 
1/2 7 5 2 3 2 3 

17) I- 12 L-7/2 Y-5 2 1) 0-3 YSE-5 

CFP**2 INITLS IRIT INITL T.Df%T SINIT YSINU 
*1/2 3 3 3 2 2 2 
2/9 6 5 2 3 2 3 

*5/18 7 5 2 3 2 3 

18) I- 12 L-7/2 Y-5 2 1) SE-3 YSE-5 

CFP**2 INITLS INIT INITL TINIT SINIT YSINIT 
1/2 3 3 3 2 2 2 

*1/2 7 5 2 3 2 3 

19) I- 13 L-3/2 Y-6 1 1 1) SE-l YO-l 
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A relativistic quantum mechanical harmonic oscillator without space-time 
variables 

F. A. Blood 
Physics Department, Rutgers Unversity, Camden, New Jersey 08102 

(Received 18 September 1987; accepted for publication 27 January 1988) 

Solutions of a linear harmonic oscillatorlike second-order differential equation in a set of 
complex variables are investigated. This equation has an invariance group homomorphic to the 
inhomogeneous Lorentz group, IG !. Because of this, it has solutions with particlelike 
properties-mass, energy, momentum, and spin. These results are interesting for an equation 
without space-time variables. 

I. INTRODUCTION 

We will investigate solutions of the linear second-order 
"harmonic oscillator" differential equation 

&\11 = 0, 

& = - (a~li a~2i - a~li a~2i 
+ a a _~~) 

au Ii Ov2i Ovli aU2i 

+ (U li V2i - Vli U2i + UliV2i - Vli U2i )· (1) 

A summation is implied over repeated indices, with i run­
ning from 1 to n. The Ubi' Vbi (b = 1,2) are complex vari­
ables, with the bar denoting complex conjugation. This 
equation has a large group of transformations, with a sub­
group ISL(2) being homomorphic to the inhomogeneous 
Lorentz group, IG !. The infinitesimal generators of the ho­
mogeneous Lorentz group SL(2) (homomorphic to G!) 
are 

J I =.!. (Ubi~ + Vbi~ - Ubi~ - Vbi~) , 
2 aVbi aUbi Ovbi aUbi 

(2) 

K i( a a - a - a) 3 = - Ubi-- - Vbi-- + Ubi-_- - Vbi-- , 
2 aUbi aVbi aUbi Ovbi 

and those of translations are 

(3) 

These infinitesimal generators obey the usual commutation 
relations of IG ! : 

[J;.J.;] = iCijJk' [J;.Kj] = iCijkKk' 

[Ki,Kj] = - iCijkJk' [Ji,Pj ] = iCijkPk' 

[Ki,Pj ] = iDijPo, [Pi,Pj ] = 0, 
(4) 

[Po,~] =0, [PO,Pi ] =0, [PO,Ki ] = -iPi. 

One reason we are interested in Eq. (1) is that it has two 
of the primary properties of the theory of quantum mechan­
ics: linearity and Lorentz invariance. This has interesting 
consequences. We know that solutions of linear equations 
can be classified according to the irreducible representations 
of the invariance group of the equation. We also know that 
the irreducible representations of IG! are classified accord­
ing to their mass and spin, and that basis vectors for the 
representations can be chosen as eigenfunctions of the PI" 
Thus we expect to, and indeed do, find solutions of Eq. (1) 
with particlelike properties-mass, spin, energy, and mo­
mentum. 

A second reason for examining this particular operator 
is to emphasize that it is not necessary to have space and time 
as independent variables in order to have Lorentz invariance 
(and the resulting mass, momentum, etc.). This leads us to 
consider what roles space and time play, if they are not inde­
pendent variables. We find that there are two possible ways 
in which they can be used. In one usage, the xI' clearly serve 
as labels. In conventional quantum field theory, for example, 
the xI' in the field operator tf;* (xI' ) is simply a label telling us 
which operator we are looking at. The same is true for the 
functions tf;o (xI') [see Eq. ( 16) ] in Sec. III. The other usage 
is one in which the xI' are functions of the independent vari­
ables which are conjugate to the PI" This role is discussed in 
Sec. VI. 

But the most important reason for considering Eq. (1) 
is that it provides us with a simple example from which we 
hope to generalize. We find here that solutions of the equa­
tion possess a few of the characteristics (mass, etc.) of our 
quantum mechanically described physical world. This sug­
gests we consider the hypothesis that there exists a more 
complex linear equation from which all of quantum mechan­
ics follows. Such an equation, if it exists, would have the 
following properties. 

( 1 ) It would be invariant under ISL (2), so that it would 
have particlelike solutions. 
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(2) It would have a solution with the properties of the 
vacuum state. 

(3) The vacuum and particlelike states, closed under 
the linear operator, could be used to form a vector space in 
which field operators would be defined. 

( 4) Because of closure the linear operator would be 
reexpressible in terms of the field operators and would ap­
parently correspond to the action integral in conventional 
quantum field theory. The linear equation would force the 
particlelike solutions to interact in such a way that the field 
operators would have equations of motion identical to the 
usual equations of quantum field theory. 

Another way to state the thesis is to say that the equa­
tions of quantum mechanics as we know them are represen­
tations of a particular linear equation. The vector space used 
for the representation consists of particle like functions of the 
independent variables (analogous to the u, v of our exam­
pIe), so that the kets and bras, in terms of which quantum 
mechanics is given, are to be thought of as representing func­
tions of the independent variables. Our motivation for sug­
gesting this is the observation that in the momentum repre­
sentation, all the "variables" of quantum mechanics can be 
viewed as labels on group representation basis vectors. Mass, 
spin, energy, momentum, and parity are labels associated 
with ISL(2); color, charge, hadron number, and lepton 
number with SU(5) (Ref. 1); and flavors with a flavor 
group. This suggests that one should at least entertain the 
hypothesis that the variables of quantum mechanics-the 
labels-are labeling solutions of a linear equation (which is 
given in terms of independent variables whose nature is not 
currently known). 

There are two further general points to be made about 
this proposal. First, the underlying theory we are searching 
for is not to be viewed as being in competition with conven­
tional quantum mechanics. It is a theory from which the 
usual quantum mechanics is to be derived. The usual prob­
ability interpretation is still to hold. That is, the average val­
ue in state I t/!} of the quantity associated with operator A is 
(t/!IA 1t/!};andtheaveragevalueofA,(t/!IA It/!) = I (t/!li)jZ,for 
the particular case when it is a projection operator, 
A = Ii} (ii, for state Ii), is to be viewed as the probability that 
the system is observed in state Ii}. We also note that this 
theory is not a "hidden variable" theory in the sense that the 
phrase is normally used. That is, the independent variables 
are not variables that would determine the outcome of an 
experiment if their values were known. They are simply vari­
ables such that the vectors representing physical states are 
functions of them. 

Second, this hypothesis forces one to consider the rela­
tionship between the physical world--or our mental picture 
of the physical world-and its mathematical description. 
This is not the proper place to fully consider this question, 
but we would like to point out what may be obvious. Our 
scheme is apparently not compatible with the metaphysical 
position that particles "exist independently" in space and 
time, with quantum mechanics being the best possible math­
ematical description of their behavior. We maintain, how­
ever, that the incompatibility is not troublesome because the 
"independently existing particle" mental picture does not 
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appear to be a necessity; it does not add anything to the 
interpretation of quantum mechanics which is not already in 
the mathematics.2 

The search for the underlying equation-assuming one 
exists-will almost certainly prove difficult. This paper is an 
early phase of that search in which we consider simple exam­
ples to see what the possibilities are. Several single particle 
equations (i.e., equations with no interactions) were de­
scribed in a previous publication.3 However, they all used 
space-time-like independent variables. The absence of such 
independent variables here--in what is also a single-particle 
equation-allows us to see more clearly how the group prop­
erties enter. In Sec. II, we give a solution to Eq. (1) which 
has just the Gaussian form we would expect from a harmon­
ic oscillator problem. Then in Sec. III, we show how to ob­
tain momentum eigenfunctions from the solution of Sec. II 
by the use of momentum projection operators. This allows us 
to build up the basis for a mass-m, spin-O representation of 
ISL(2). In Sec. IV, we show how to construct a basis for 
spin-( #0) representations from the spin-O basis functions 
by the use of raising and lowering operators. We look briefly 
at the construction of vacuumlike states and the attendent 
normalization problems in Sec. V, and show how to con­
struct xI' in Sec. VI. Finally, we summarize in Sec. VII. 

We now start our investigation of solutions of Eq. (1) 

by considering a single simple solution. 

II. A SIMPLE SOLUTION 

There is one solution ofEq. (1) that is relatively easy to 
find. It is 

_ (2 )2n c- - , 
1T (5) 

where c is a normalizing constant. It can be verified that this 
is a solution by simply putting it into Eq. (1) and performing 
the derivatives. This solution was found by separation of 
variables. Let 

u;+ = (u li + v2; )I{i, u;- = (u li - v2; )I{i, 

v/ = (Vii - u2;)I{i, v;- = (Vii + u2;)/{i. 
(6) 

Then [with mu = (u + u)12, ~u = (u - u)/2i] 

+ a
2 

+ a
2 

) 
a(mv/ )2 a(~v/ )2 

+ «mu/)2 + (~U/)2 + (mv/)2 + (~v/ )2) 

+ +---( 
a2 a 2 

a(mu;- )2 a(~u;- )2 

+ +---a2 a2
) 

a(mv;- )2 a(~v;- )2 

_ «mu;-)2 + (~U;-)2 + (mv;-)2 + (~v;- )2) } . 

(7) 
Since tJ factors, it is easy to find product solutions. Ifwe use 
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exp ( - x2/2) as the solution to the eigenvalue problem for 
each single-variable problem, then the total solution is a 
product which, when translated back to Ubi> Vbi variables, is 
just ;Po. 

As an aside, we note that the form ofEq. (7) makes it 
easy to find the full invariance group of tJ . It is the real group 
G:~ (where, to illustrate the notation, G! is the set of all real 
transformations which leave t 2 - X2 - Y - ~ invariant). 

It is necessary to have a scalar product for functions of 
the Ubi' Vbi' We use 

(!Ig) = f_+ooOO" JJJI iDld4UbJg= f dufg, (8) 

where 

d 4u = d(!Ru)d(',Ju)d(!Rv)d(',Jv). (9) 

The C of Eq. (5) is found by requiring that (;Pol ;Po) = 1 un­
der this definition of the scalar product. If we make a trans­
formation from SL(2) on the dummy variables of integra­
tion from u to u', 

(u:) = (all a12)(u) , 
v a21 a22 v 

( 10) 

det(A) = alla22 - a12a21 = 1, 

then 

(11 ) 

so that the scalar product is invariant. We find that it is also 
invariant under translations, exp(iP'x), so that it is invar­
iant under the full ISL(2). 

In the next section, we need to know how ZObi behaves 
under the Lorentz transformations of Eq. ( 10). We find that 
it is invariant under the unitary subgroup, SU(2), ofSL(2), 
and is one of four vectors in a (i, n representation of 
SL(2). These four vectors transform in the same way as the 
PI' of Eq. (3); their form, without subscripts, is 

Zo = uu + VV, Z3 = UU - vv, 

ZI = UV + vu, Z2 = i(vu - uv). 
(12) 

We will show how to construct solutions of Eq. (1) 
which are basis vectors for irreducible representations of 
ISL(2) by modifying the;Po ofEq. (5). 

III. SPIN-O BASIS FUNCTIONS 

The particlelike irreducible representations of ISL(2) 
are labeled by mass and spin. Basis vectors for these repre­
sentations can be chosen as eigenfunctions of PI" 

PI' tP(p) = PI' tP(p) , (13) 

where the PI' are numbers. If our functions form a basis for a 
representation of mass m, then 

PI'PI' = p'P = p~ - pop = m 2
• (14) 

The spin is defined using the p = 0 vector by 

JoJtPj(po=m,p=O) =j(j+ l)tPj(m,O), (15) 

where the J are defined in Eq. (2). An alternative way of 
specifying zero spin is to say that tP(m,O) is invariant under 
the trans~ormations ofEq. (10) when A belongs to SU(2). 

The tPo of Eq. (5) does not obey Eq. (13), so it is not a 
particlelike solution. In order to construct such solutions 
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from it, we first define "position" functions, 

tPo(x) = eiP'X;Po. (16) 

These functions obey the equations 

p. .1. ( ) _ • atPo(x) 
O'f'O x - -/ , 

axo 

PjtPo(x) = + i a~(x) , 
Xj 

(17) 

because a[exp(iP'x)!(u,v) ]lax = iPexp(iP·x)!(u,v). 
Since PI' and therefore exp(iP' x) commute with tJ, the 
tPo(x) are solutions ofEq. (1). 

Next, we form the set off unctions 

tPo(p) = f e-iP·xtPo(x). (18) 

Then 

Pl'tPo(p) = f d 4x e - iP'XPI' tPo(x) 

= + ifd 4X e- ip-x atPo(x) 
- axl' 

= +Jd4x(a~::'X)tPo(X) 

= PI' tPo(p) , (19) 

provided that taking the derivatives with respect to u, v (in 
PI' ) within the integral sign and the integration by parts can 
be justified. Thus we have momentum eigenfunctions; and 
since they are linear combinations of solutions, they are also 
solutions of Eq. (1). 

If we combine Eqs. (16) and (18), we see that what we 
have done is to define projection operators, 

9(p) = fd4xei(P-p),x, (20) 

which project out momentum eigenfunctions from an arbi­
trary function (provided their action on the function is well 
defined). 

The conditions under which we can take the derivatives 
associated with PI' are that tPo(x,u,v) is an integrable func­
tion of x for each value of u, v, and that the partials with 
respect to u, v exist and are continuous functions of x, u, v 
(Leibniz's rule). To see that these properties hold, we note 
first that because PI' is a first-order differential operator, 

(21) 

where u stands for all the variables Ubi> Vbi' As an example of 
the action of the translation operators, 

e - iP'XU2i = U2i -WIiXO + luliX I - UliX2 -WIiX3• (22) 

We see from this example that the exponent in tPo(x) will 
continue to be quadratic in the u, v, and will contain terms 
linear and quadratic in the xI" This function is certainly 
integrable and derivatives with respect to u, v exist and give a 
continuous function. 

The integration by parts is justified if tPo(x) ..... 0 as x ..... 00 

in any direction. In order to see that this holds, consider the 
part of the exponent quadratic in the xI" It has the form 

2(z'x)(c'x) - (z'c)(x'x), (23) 
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where Co = 1, c = 0, zl' = l:iZl'li' By means ofa linear non­
singular change of variables from x to x', we can put this 
quadratic part in the diagonal form 

- (U1iU 1i ) (X~2 + X;2 + XZ
2) - (VliVli ) (X~2 + X;2 + X)2). 

(24) 

Now when xl' -+ 00 in any direction, at least one of the x~ 
must go to 00. This impliestpo(x) -+0 as X-+ 00 if the coeffi­
cients on thex are nonzero. Thus the functions t/Jo(p,u,v) are 
eigenfunctions of PI' at all points in (u, v) space except 
where UliU li or VliV Ii equals zero. 

We have considered the action of translations on ¢o and 
must now look at transformations from SL(2). Define an 
operator U (A) such that 

U(A)j(u,v) =j(u',v'), (25) 

where the matrix A and the u', v' are given in Eq. (10). We 
can show that 

U(A)(P'x) = A -lp·X = P'Ax, 

U(A) (c'z) = c·A -IZ = Ac'z, 

so that 

U(A)¢o = e- AC'z=.¢(Ac), 

(26) 

(27) 

again, with Co = 1, c = O. The A are real 4 X 4 matrices from 
the homogeneous Lorentz group G! (with a 2 to 1 mapping 
of the set of A 's onto the set of A's). Note also that A belongs 
to &(3) when A belongs to SU (2). 

We see from these formulas that 

U(A)t/Jo(p) = J d 4x e-iAP"YU(A)eiP'X¢o 

= J d 4x e - iAP"YeiP'Y¢(Ac) , (28) 

withy = Ax and d 4y = d 4x. 
Now suppose that Po = m, P = 0 and that A belongs to 

SU(2). Then U(A)t/J(m,O) = t/J(m,O). Since spin is defined 
for the p = 0 basis functions of an irreducible representation, 
we see that we are building a basis for a spin-O representa­
tion. 

Next, we define a standard As(p) such that 

As(p) [m,O] = [E,p] , E=~m2+p.p. (29) 

This A is defined as the product of two Lorentz transforma­
tions in the following way: First, there is a unique A, involv­
ing only the 0 and 3 components, such that 
A [m,O] = [E,O,O,p]. Then there is a unique rotation about 
an axis perpendicular to both the Z axis and p that takes 
(O,O,p) into (Px,Py,Pz). Here As (p) is the product of these 
two transformations, with As (p) being the A which gives 
As (p). [The choice of As (p) is not unique because of the 2 to 
1 mapping. It can be made so by requiring that As (p) be a 
continuous function ofp which goes to the identity matrix as 
p goes to 0.] 

Consider now the set of functions 

U (As (p) )t/Jo(m,O) -=t/J(E,p) -=t/J(p). (30) 

They are eigenfunctions of PI' with eigenvalues E, p, since 

PI'U(As(p» = U(As(p»(As(p)P)w (31) 

This set off unctions is also closed under SL(2) because 
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(32) 

where A is the G! matrix associated with A. Thus these 
vectors form the basis for a mass-m, spin-O irreducible repre­
sentation ofISL(2). They are also solutions ofEq. (1), since 
exp(iP'x) and U(A) commute with &. 

Finally, we consider the scalar product of these func­
tions, using Eq. (8), with the two masses not necessarily 
equal: 

(P'lp) = (t/J(p')It/J(p» 

= (U (As (p) )t/Jo(m,O) IV (As (p» t/Jo(m,O» 

= (t/Jo(m',O) I U(A)t/Jo(m,O», (33) 

where A = A s- (p')As (p), and we used the Lorentz invar­
iance of the scalar product. We can further reduce this re­
sult: 

(P'lp) = J du J d 4y d 4y' eiM"YeiP'Y¢oeiM'Y'eiA-'P'Y'¢(Ac) 

= J d 4y d 4y" eiM"Y- AM'Y' J du eiP'(Y-Y") ¢o¢o(Ac), 

(34) 

where M' = [m',O], M = [m,O], y" = Ay'. Now 

M "y - AM'y" = (M' - AM)' (y + y") 
2 

+ (M' + AM) . (y _ y") (35) 
2 ' 

so that if we change variables to (y + y" ) 12, W = Y - y" , 
then [remembering that ~(p) = ~(Ap)] 

(P'lp) = (21T)4~(M' - AM)f(m) 

= (21T)4~(p' - p)f(m), 

j(m) = J d 4w eiM'W(¢ole- iP'wl¢o). 

(36) 

(37) 

In order to examine the behavior ofj(m), we note that 
¢oe - iP'W¢O is an exponential in u,v. Thus the function and 

the scalar product will factor, with an identical factor for 
each value of i. We therefore need to do the scalar product 
only for n = 1. Since the exponent is quadratic, we can 
change to a new set of u, v in which the exponent is diagonal, 
and then easily perform the integrals. The details are not 
interesting. The result is 

(¢ole-iP'wl¢) = cI(4 + (wo-r)2)(4+ (wo+r)2), 

r = ~w·w , (38) 

where c is a constant of no consequence. For n > 1, thef(m) 
is just that ofEq. (37) raised to the nth power. 

For n > l,f(m) is a well-behaved function ofm. But for 
n = 1, the scalar product goes to zero sufficiently slowly in 
wo, r that one has problems with the Fourier transform. We 
conclude from this that the functions in the n = 1 case can­
not be considered a good set of basis vectors. The reason is 
that, in the n = 1 case-and only in that case-the four­
momentum operators are not independent, but satisfy 
z· P = o. Since the PI' are linearly dependent, we do not ex­
pect to be able to construct valid basis functions. 

The result ofEq. (36), that (t/J(p) I t/J(p') ) is proportion-
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al to ft(p - p'), is not what one expects. The scalar product 
of basis vectors for a given irreducible representation (fixed 
mass, spin) is normally taken to be proportional to 
{P (p - p'). The reason we get the ft here is that Eq. (1) has 
a continuum of possible mass values associated with its solu­
tions, rather than having a discrete spectrum. The cause of 
this, in turn, is that there is a part of the total invariance 
group G:~ which does not commute with the ISL(2) invar­
iant operator P·P. 

We have seen in this section how to construct functions 
which serve as basis vectors for mass-m, spin-O representa­
tions. We turn now to the construction of bases for represen­
tations with nonzero spin. 

IV. NONZERO SPIN REPRESENTATIONS 

We will expand the problem to be solved from that of 
Eq. (1) to the eigenValue problem 

O'rPA = ArPA' (39) 

Solutions with m = 0, spin#O exist, but there is not addi­
tional insight to be gained by treating this special case, so we 
confine ourselves to m # O. It is easiest to obtain nonzero spin 
solutions by using raising and lowering operators. That is, 
we find operators AA' such that 

(40) 

Then if we have one solution, rPA ofEq. (39), we can obtain 
another, AA' rPA' which has eigenvalue A + A '; 

O'(AA'rPA) = (A + A ')AA'rPA' (41) 

The 8n raising operators, having A = + 1, for & can be cho­
sen as 

R(I'~)=UI; -~, 
2 aV2i 

R (1, - ~) = V\j + ~ , 
2 aU2i 

R (2, ~) = VI; + ~ , 
2 aU2i 

R(2,-~)= -UI;+~' 
2 tJV2; 

R(3'~)=U2; +~, 
2 aV\j 

R(3,-~) =v2; -~, 
2 aU\j 

R(4'~)=V2; -~, 
2 aU\j 

R(4 -~)= -u-~. '2 21 = uV\j 
(42) 

The lowering operators, having A = - 1, are obtained from 

L(m,jz)=R*(m,-jz), (43) 

where the asterisk indicates the Hermitian adjoint operator 
[u*=u, (a/au)*= -a/au)]. 

Consider now the construction of basis vectors, 
rPl (m,j: p,jz) for a j = ! mass-m representation associated 
with A = 1. The zero momentum vectors can be chosen as 

(44) 

where rPo(m,O) is the zero spin and momentum rP of Eq. 
(18), and i = lor 2 [R(3), R( 4) do not commute with PI']' 
The rPl (m,!: 0, ±!> form a two-dimensional, spin-! repre­
sentation of SU (2). If we want rP _ I' we use L instead of R. 
There are no A = 0 spin-! basis vectors. 

The p#O basis vectors are obtained by using a Lorentz 
transformation in the same way as they were for spin 0; 
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rPA(m,j:p,jz) = U(AS(p»rPA(m,j:O,jz)' (45) 

where here j = !, j z = ±!, A = ± 1, but the equation ap­
plies more generally for any (allowed) A,j,jz' 

Consider next the construction of a spin-l basis; 

rP2(m, 1 :0, 1) = R (i,!)R (j'!)rP(m,O) , 

rPo(m,I:0,l) = R(i,!)L(j,!)rP(m,O), (46) 

(i,j = 1,2) with a very similar construction forjz = 0, - 1 
The P#O vectors are obtained as in Eq. (45). Spin-O basis 
vectors can also be constructed from quadratic products of 
raising and lowering operators. 

If we use the product of three raising and/or lowering 
operators, we can, by taking suitable linear combinations, 
obtain both spin-! and spin-~ basis vectors. Thus there are 
many different possible A 's for each spin. These examples are 
sufficient to indicate the possibilities for constructing j # 0 
representations. 

V. AN INVARIANT STATE 

In addition to particlelike states, which are specified by 
Eqs. ( 13 )-( 15), there is one other type of state that occurs in 
elementary particle physics. It is the ground or vacuum 
state, qto, which is an ISL(2) invariant, 

J;qto = K;qto = 0, 

PI' qto = o. 
(47) 

(48) 

It is possible to construct solutions to Eq. (1) with these 
properties. As an example, suppose we have eight sets of 
variables (n = 4). We construct spin-O rPl (PI') as in Eq. 
( 30) from the first four sets of variables, and rP2 (PI') from 
the second four. From these, we then construct 

(49) 

where g is an arbitrary function of pi. This function is an 
ISL(2) invariant; and because rPl (PI)rP2( - PI) is a solution 
of Eq. (1), the linear combination of Eq. (49) is also a solu­
tion. Thus we see that we can construct solutions of Eq. (1) 
that have the properties of a vacuum state. 

If we take the norm of this state, using Eq. (8), we find a 
difficulty inherent in the construction of vacuumlike states; 

(qtolqto) = f d 4
pi d 4PIIgl 2 

X(rPI(pi)rP2( -pi)lrPl(PI)rP2( -PI» 

= fd 4Pi d4PI(ft(pi _PI»2IgI 2 1!(m)12
, (50) 

where!(m l ) =!(JPI'PI) is from Eq. (37). This will be infi­
nite for two reasons. One is that we have two 8 functions with 
the same argument, resulting from the translational invar­
iance. The other is that, even if we could ignore the 82

, we 
would still get infinity, because Sd 4pf(p) = 00 when the in­
tegrand is an SL (2) invariant. Thus we see that the norm of 
the vacuum state will always be infinite in a scheme like ours. 
This need not be viewed as a weakness of our theory, how­
ever, for when particle states are superimposed on the vacu-
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urn, and the ISL(2) invariance broken, the norm ofthe par­
ticle plus vacuum state need not be infinite. 

It is of interest to build up particle states from this \110 

instead of the ;Po ofEq. (5), because it shows the beginning of 
the construction of a vector space where creation and anni­
hilation operators can be defined. This construction is most 
easily done by using a "pseudocreation" operator in the bra­
ket form, 

o*(p:l) = Jd 4p'IP' +p:l)h(p'2)(p':II, (51) 

where IJJ: 1) represents the function ofEq. (30) with variable 
set 1 (b = 1,2, i = 1,2). Here h(p,2) is an arbitrary function 
put in so the scalar product will converge. It is a degree of 
freedom which will probably not be present when we go to 
interacting systems. We note that, because 
O'lp:l) = (p':) & =0, we have 

[ & ,0* (p: 1 ) 1 = o. 
Because of this and &\110 = 0, the single-particle state 

'I'(p:l) = a*(p:l )\110 

= fd4PI ¢I(PI +p)g(Pi)¢2( -PI) 

is a solution of Eq. (1). 

(52) 

(53) 

The scalar product of this single-particle state is now 
well-behaved provided h 2 converges sufficiently rapidly, for 

(\11 (p':l ) )'I'(p:l» 

= J d 4pi d 4pJ(p; »)(pI)h(p;l)h(p~ )i(p~) 

X(¢I(P; +p')¢2(pi I¢I(PI +P)¢2(PI» 

= {f(p' - p) f d 4pdfCPI) 14 Ih(pDI 2i(pn, (54) 

where we expect the {)4 by analogy with Eq. (36). We see 
that \11 (E,p = 0: 1) is an SU (2) invariant, so that if 
p'P = m2, then the \11 (p: 1) form the basis for a mass-m, spin­
O representation of ISL (2). 

VI. SPACE·TIME VARIABLES 

We are concerned here with how space and time enter in 
a theory where they are not independent variables. One way, 
as was mentioned in the Introduction, is as labels on solu­
tions, like those of Eq. (16). A second way they can enter is 
as dependent variables, that is, as functions, xI" of the inde­
pendent variables (we use the hat to differentiate functional 
xI' from xI' 's used as labels) conjugate to the PI" so that they 
obey 

[Po,xo] = - [Pj,Xj ] = i, [PI' ,xv] = 0, J-t=/:.v. (55) 

We will give an example for the n = 2 (four sets of u, v) case. 
To have the correct SL( 2) transformation properties, the xI' 
must have the form of the zl' of Eq. (12), so we try 

xo =aij(u li u2j +vliu2j) +c.c. (56) 

The sums on i,jrun from 1 to 2, we assume theaij are SL(2) 
invariants which do not depend on u2j , vlj ' u2j , v2j , c.c. means 
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complex conjugate, and we have made Xo real. To satisfy 
Eqs. (55), we must have 

[P3,XO] = aij (UIiV lj + vliuij) - C.c. = 0, 

[Po,xol = aij( - UliV lj + VIiU lj ) - c.C. = i. (57) 

These condtions do not uniquely determine the a's (and so 
the X I' are not unique). We choose 

a21 = il[2(u I2 v II - u ll v 12 ) + 2(u 12v II - UIIV12 ) I, 
(58) 

If we define i as in Eq. (56), using the form ofthe z of Eq. 
(12), and the a's of Eq. (58), we find that they obey all of 
Eqs. (55). So, at least in the sense that they have the correct 
transformation properties under ISL(2), these are accepta­
ble xI" 

One possible use for these xI' is in the construction of an 
operator & with interactions. Suppose our independent vari­
ables consist of sets of four-set variables, with each set la­
beled by 1]. We will have 

(59) 

We construct x~ conjugate to the P~, as in Eqs. (56) and 
(58). An ISL(2) invariant form for an interaction is then 

& 1= L V(X'1'1'2) , (60) 
'1#'1' 

where X'1'1'2 = (x'1 - x'1') (x'1 - x'1') We note that this 
I' I' I' 1" 

form for the interaction is only one among many possibili-
ties. We will simply have to try the different forms to see if 
they give the familiar equations of qUlintum mechanics. 

Also note that the Po of Eqs. (3) and (59) is not the 
Hamiltonian. Rather, it is identically equal to i(a lat). The 
Hamiltonian is associated with a method of solving &\11 = 0 
in which \11 is given on one "constant t" surface and &\11 = 0 
is used to integrate forward in time. This method is equiva­
lent to using a Hamiltonian; the form of the Hamiltonian is 
determined by the form of & , and it will contain the interac­
tion. This method is analogous to using the variational prin­
ciple in quantum field theory to obtain a Hamiltonian from 
the action integra1.4 

VII. SUMMARY 

We have seen that the solutions of Eqs. (1) or (39) 
include functions which can serve as basis vectors for irredu­
cible representations with any spin and (nonzero) mass. In 
constructing these representations, we have used methods 
that should be applicable to other linear, Lorentz invariant 
equations. These include the construction of ¢(xl') in Eq. 
(16); the construction of momentum eigenfunctions by the 
use of the projection operator of Eq. (20); the use of stan­
dard Lorentz transformations in Eqs. (29) and (45) to con­
struct p=/:.O basis functions from p = 0 functions; the con­
struction of single-particle states from the vacuum using 
Eqs. (51) and (53); and the construction of functions x I' 
from Eq. (55). 

The switch to the problem with interactions will be quite 
difficult. The most basic difficulty is that we do not know the 
form of the linear operator in terms of the independent vari-
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abIes (although we have suggested a possibility in Sec. VI); 
we will simply have to experiment. The next problem is that 
we do not expect an operator which produces interactions to 
separate, as does the one here. So there will almost certainly 
be no exact solutions. Because of this, the procedure that one 
will apparently be forced to follow, in order to carry out the 
program outlined in the introduction, is as follows. 

( 1) Construct an "appropriate" set of particlelike func­
tions from each set of independent variables. These "bare 
particle" functions-the same for each set of variables-are 
to be closed under the action of the linear operator. 

(2) Construct an approximate vacuum state solution to 
&'11 = 0 from sums of products of the bare particle func­
tions, in analogy to the construction of Eq. (49). 

(3) Introduce single- and multiple-particle states in a 
manner similar to that of Eqs. (51) and (53). From these 
states, construct a basis for occupation number space, and 
define creation and annihilation operators for bare particles. 

1395 J. Math. Phys., Vol. 29, No.6, June 1988 

From the closure property, we should then be able to reex­
press & in terms of these creation and annihilation opera­
tors. 

(4) Finally, we look at the equations of motion of the 
field operators and see if they match those used in the cur­
rent conventional quantum field theory. If they do, we have 
chosen the correct operator & and we have derived quantum 
mechanics from a single underlying equation. 

'See. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974), for an 
SU (5) -based theory which apparently unifies the weak, electromagnetic, 
and strong interactions. There are other candidate groups, but the idea of 
labels remains the same. 

2See H. Everett, III, Rev. Mod. Phys. 29, 454 (1957). He shows that the 
state of a system under observation and the states of the detectors of the 
results of the observation are, of mathematical necessity, correlated in such 
a way that one has the appearance of "independently existing" particles. 

3F. A. Blood, J. Math. Phys. 22, 67 (1981). 
·S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harp­
er and Row, New York, 1962), Sec. 7g. 
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A time-dependent extension of a Morse potential is formulated. Both the bound and unbound 
state wave functions are obtained algebraically for the resulting time-dependent Schrodinger 
equations, based upon the representations ofsu(2) and su( 1,1), respectively. The method of 
R -separation of variables is instrumental in the analysis. 

I. INTRODUCTION 

The time-independent Schrodinger equation for the 
bound states of the Morse potential I has been solved exactly 
by a number of authors using symmetry techniques. 2

-
5 The 

Morse potential has been applied to the analysis of anhar­
monic vibrations, molecular energy transfer, atom surface 
scattering, and inelastic collisions.4

•
6

•
7 Recently, a group ap­

proach has also been applied to generate and solve for the 
unbound or scattering states of the Morse potential. 8-11 The 
relationship between the bound states of the Morse oscillator 
and the time-independent harmonic oscillator has been well 
established.9•12,13 A presentation of the unbound states was 
generated by the analytic continuation of the compact group 
SU(2), describing the bound states, to the noncompact 
group SU (1,1).8-11 Problems involving time-dependent po­
tentials are useful in the study of reaction dynamics. 14-17 In 
this paper, an extension to a time-dependent Morse potential 
for the bound and unbound states is made. 

There appear to be two distinct classes of evolution 
equations for the quantum mechanical Morse potential. The 
first type is 

[app +EI + (i12)e- p a t -g2(t)e- 2p ]'I'(p,t) =0. 
(1.1 ) 

We call this type of equation a class I Schrodinger equation 
for the Morse oscillator. Class II equations have the form 

[app + (i/2)a t -{g2(t)e- 2P +go(t)e- p}]'I'(p,t) =0. 
( 1.2) 

The functions g2(t) and go(t) in Eq. (1.1) are piecewise 
continuous and differentiable, but otherwise arbitrary func­
tions of time. The authors know of no transformation of 
variables connecting the two classes of equations. When g2 
and go are constant, both classes can be reduced to time­
independent Schrodinger equations of similar form. Class I 
equations can be derived from a time-dependent harmonic 
oscillator equation; class II cannot. In class I equations, the 
energy spectrum is given by E I' where E I is a separation 
constant obtained by reduction of the dimensionality of the 
harmonic oscillator equations by one or more variables. In 
class II equations, the energy E II is tied to the quantum 
mechanical energy operator i at. 

Although Eq. (1.1) appears to be somewhat more com­
plicated, class I equations are those which extend the time­
independent case and are solved below. Analytic solutions to 
class II equations are, as yet, unknown. Class I equations 
may prove useful in modeling problems with anharmonic 
time-dependent potentials. 

Symmetries of a differential equation map solutions of 
the equation into solutions. The set of such symmetries 
forms a Lie algebra. There exist explicit methods for finding 
the symmetry operators of differential equations. For exam­
ple, the symmetries of the Schrodinger equation with arbi­
trary time-independent potentials have been worked 
OUt. 18

-
20 Methods for time-dependent potentials are more 

complicated. 21
-

23 The symmetries and exact solutions for 
the Schrodinger equation for a time-dependent harmonic os­
cillator with a time-dependent field have been calculated by 
Truax22

,23 and we adopt that approach in this paper. 
In Sec. II we calculate the symmetry operators of the 

two equations, 

Q(il 'I' (x,t) 

= [(Eih i ) -1/2 ± {aj ( (Eihi) -1/2h{kak )} + 2i at 
},k= I 

where the two equations differ in the definition of their met­
rics: 

(h~k) = [~ ~], (h~k) = [~ ~ J ' 
EI = + 1, Ez = - 1, hi = det(h{k) . 

(1.4) 

The symbols used are 

a a 
a· =-., at =-, X= (X

I
,X

2
). 

} ax} at 

When i = 1, the equation Q(I) 'I' = 0 will lead to the bound 
states for the class I Morse oscillator; when i = 2, the equa­
tion Q(2) 'I' = 0 will lead to its unbound states. 

In Sec. III we obtain the bound states of the time-depen­
dent class I Morse oscillator. In Sec. IV we treat its unbound 
states. In each case we employ an algebraic approach based 
on procedures similar to those of Alhassid et al.9 The exten­
sion of this method to the time-dependent regime is not auto­
matic, however, since we are dealing with evolution equa­
tions. We develop a novel technique to connect the algebraic 
structure of the Morse potential with the evolution equation 
(1.1). This treatment leads naturally to R-separation ofvari­
abIes 18 in which time is an ignorable or cyclic variable. Final­
ly, in Sec. V, we compare briefly the algebraic approach that 
we have taken to those employed by Gerry24 and Dattoli et 
al. 25 
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II. CALCULATION OF SYMMETRY OPERATORS 

A first order symmetry operator L of a differential equa­
tion like Eq. (1.3) can be expressed as a combination ofthe 
first order partial derivatives of the independent variables, 18 

L = A (x,t)at + B I (x,t)a l + B 2(x,t)a2 + C(X,t) , (2.1) 

where each coefficient depends upon the independent vari­
ables. The operator L must obey the commutation relation, 

[L,Q(i) ] = A(i) (x,t)Q(i) ' i = 1,2, (2.2) 

where A (i) (x,t) is an arbitrary function of x I , x2, and t. The 
condition on L ensures that if 'IJ (x,t) is a solution of ( 1.3), 
then L'IJ (x,t) is also a solution. The set of all such operators, 
L, forms a Lie algebra. 18 Indeed the set of operators (1.2) 
generate a multiplier representation of the corresponding 
Lie group. The set of symmetry operators for (1.3) will be 
calculated for the case where i = 1 in Sec. II A, and for i = 2 
in Sec. II B. The symmetry algebra for Q(i) is given the sym­
bol e j • By examining the commutation relations between 
the elements of the algebra, the structure of the symmetry 
algebra e j is determined. 

A. Symmetries of Q(1) 

When i = 1, the differential equation (1.3) is the two­
dimensional Schrodinger equation, 

Q(I) 'IJ(x,t) = [all + a22 + 2i at - 2V(x,t)] 'IJ(x,t) = 0, 
(2.3 ) 

where, for the moment, we have allowed the potential to 
have a more general form than in ( 1.3). We look for symme­
try operators of this equation which obey the commutation 
relation (2.2). 

When Eqs. (2.1) and (2.3) are substituted into Eq. 
(2.2), and the coefficients of like partial derivatives are col­
lected, the following set of coupled partial differential equa­
tions is obtained: 

Al =A2 =0, 

All +A22 + 2iA t = 2iA(I) , 

2BII=2B22=A(I) , 

B 2
1+B I

2=0, 

B \ I + B 122 + 2iB It + 2CI = 0 , 

B211 + B222 + 2iB 2
t + 2C2 = 0, 

CII + C22 + 2iCt + 2B I VI 

+2B 2V2+2AVt +2A.(I) v=o, 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.4f) 

(2.4g) 

where A I = (aA I axl), etc. Solving for the coefficients 
A, B I, B 2, and C, we have 

A (x,t) = A(t) , 

B I (x,t) = yi(t)x l + bx2 + d l(t) , 

B 2(x,t) = yi(t)x2 - bx l + d 2(t) , 

C(x,t) = - i{!A (t)[ (XI)2 + (x2f] 

+ d 1(t)XI + d2(t)X2} + f(t) . 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

Differentiation with respect to time of a purely time-depen­
dent term is denoted by a dot above the term symbol. 

Substituting Eqs. (2.5) into Eq. (2.4g) gives an equa-
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tion that restricts the form of the potential V(x,t), 

AV +AVt + {~Xl + bx2 + dl}VI 

+ {~X2 - bxl + d 2}V2 

= (i/2)A - !A [(XI)2 + (X2)2] 

_(jIXI _{j2X2_{f. (2.6) 

The most general solution to Eq. (2.6) is a potential of the 
following form: 

V(x,t) = V(x,t) +g/(t)(XI )2 +g/(t)(X2)2 

+gll(t)XI +gI2(t)X2+g0 (t) , (2.7) 

where V(x,t) solves the homogeneous equation obtained 
from Eq. (2.6). The g2(t) terms represent an anisotropic 
harmonic oscillator, the g I (t) terms represent a time-depen­
dent linear potential, and go(t) is a purely time-dependent 
potential. For our purposes, we can set V(x,t) = 0, and take 
gll(t) =gI2(t) =go(t) =0. Thus 

(2.Sa) 

and we obtain Eq. (1. 3) for i = I, where 

Q(I) = all + a22 + 2i at - 2{g21 (t) (XI)2 + g/(t) (X2)2} . 
(2.Sb) 

Substituting Eq. (2.Sa) into Eq. (2.6), and collecting 
the coefficients of like powers of Xl and x 2

, we obtain 

4Ag/ + SAg/ + A = 0, j = 1,2, 

(jj + 2d jg/ = 0, j = 1,2, 

i=~. 

(2.9a) 

(2.9b) 

(2.9c) 

Equations (2.9a) imply that either A = 0, or g/ = g21. Since 
the former condition eliminates the time dependence of L, it 
is of little interest here. Thus the harmonic oscillator is iso­
tropic. Equation (2. 9a) is a third order differential equation, 
so the general solution for A can be written as a linear combi­
nation of its three linearly independent solutions <l>j' 

3 

A(t) = I {3j<l>j , (2.10) 
j~ I 

where the{3 's are arbitrary constants. For closure of the alge­
brael, 

(2.11 ) 

must also be a solution to Eq. (2.9a).22 Furthermore, as 
shown in Ref. 22, if X I and X 2 are linearly independent solu­
tions to Eqs. (2.9b), then we can choose 

<1>1 = (XI)2, <1>2 = (X2)2, <1>3 = 2XIX2' (2.12) 

where the value of the Wronskian of the solution to Eq. 
(2.9b) is 

Jr(XI,X2) = XIX2 - XIXz = 1 . (2.13 ) 

The solutions to Eqs. (2.9b) are then 

d
j 

= {3jxI + {3iX2' j = 1,2. (2.14 ) 

If the expressions for A, d I, and d 2, Eqs. (2.10) and 
(2.14), are substituted into Eq. (2.9c), and the resulting 
equation for j( t) is integrated then 

1 3 • • 
f= - I {3j<l>j + i{36' (2.15) 

2 j~ I 
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Substituting the relevant expressions for A, d " d 2, and! 
into Eqs. (2.5) gives the final expressions for the coefficients 
of L. Here, A (t) is given by Eq. (2.10) and 

B' (x,t) = ± f3j {~<i>x'} + f3/X, + f35'X2 + bx2 , 
j=' 2 

(2.16) 

B 2
(x,t) = ± f3j {~<i>x2} + f3/X, + f3/X2 - bx' , 

j=' 2 
(2.17) 

C(x,t) = -i[± f3j{~<I>j[(X')2+ (X2)2] +~<i>j} 
j=' 4 2 

+ {f3/K, + f3s',K2}x' 

(2.18 ) 

A basis for the symmetry algebra e, can be found by 
setting, in turn, each of the nine arbitrary constants equal to 
one and all others equal to zero. The resulting basis is 

. { , 2} Lj = <l>j at + ~<I>j x al + x a2 

- (i/4)<I>j[(X')2 + (x2f] + !<i>j, j= 1,2,3, 
(2.19) 

L4 = x 2 a, - x' a2 , (2.20) 
.' , . , 

L 5=x,al -1X,X, L 6 =X2 a,-iX2X , 
.' 2 . 2 

L7 = x, a2 -IX,X, L8 = X2 a2 - iX2X , (2.21 ) 

L9=E=i. 

[LI,f!(J II] = 0, [Lz,f!(J II] = +.%'2 1, [L3"@II] = 
[L I,.%' 12] = 0, [Lz,.%' 12] = + .%' /, [L3'.%' 12] = 

[L"f!(J2 1
] = - .%' II, [L2,.%' 21] = 0, [L 3'.%'2'] = 

[L"f!(J /] = _.%',2, [L2,.%' /] = 0, [L3'.%' /] = 

Since the commutation of any element in e, with any ele­
ment in 1112 generates an element in 1112, the Heisenberg-Weyl 
algebra 1112 is an invariant subalgebra ofe,. Thus the struc­
ture of the algebra e, can be written as 

{sl(2,R) EBo(2)}0I112 , 

where EB denotes a direct sum, while 0 denotes a semidirect 
sum. e, is called the Schrodinger algebra. 

Now we have a set of symmetries for the time-dependent 
Schrodinger equation for the two-dimensional isotropic har­
monic oscillator. Note that each of the operators in Eqs. 
(2.19)-(2.21) is skew-adjoint. It is more advantageous to 
work with a subalgebra23 S, of e" namely 
{M3,J + ',J _ ',J + 2,J _ 2,I}, where the elements of S, are a 
complexified form of the symmetry operators, Eqs. (2.19)­
(2.21): 
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The algebra e, is nine dimensional. 
To determine the structure of algebra, the commutation 

relations must be examined. The operators {L"L2,L3} satis­
fy the commutation relations, 

[L"L2] = L3 , [L"L3] = 2L" [L2,L3] = - 2L2 , 

(2.22) 

forming an sl(2,R) Lie algebra. '8.20 Note that for the case 
whereg2 = 0, these generators can be interpreted as a space­
time dilation, a conformal symmetry, and time translation.22 

The generator L4 belongs to 0(2), representing symme­
try with respect to rotation. Since 

(2.23) 

the structure of the algebra includes the direct sum of 
sl(2,R) with 0(2). 

It is convenient to define the generators, 

f!(J,' = - (X, a, - iX,x') = - L 5, 

f!(J2' = + (X2 a, - iX2X') = + L 6 , 

f!(J / = - (X, a2 - iX,X2) = - L 7, 
.' 2 

f!(J / = + (Xz a2 - lXzX ) = + L8 . 

The new operators obey the commutation relations, 

[f!(J, "f!(J z'] = E, [f!(J ,2,f!(J /] = E, 

[f!(J ,',f!(J ,2] = [f!(J2',f!(J/] = 0. 

(2.24) 

(2.25) 

The generators {f!(J ,',f!(J 2',f!(J /,f!(J /,E} with commutation 
relations (2.25), form a two-dimensional Heisenberg-Weyl 
algebra 1112, With respect to the operators {L"L2,L3,L4 }, the 
commutation relations are 

-'@II, [L 4 ,.%' II] = +f!(J1 2, 
.%'2 

- 'I' [L4 ,.%' 12] = - ,qj,', 

+ .%'2', [L4'.%'2 1
] = + f!(J /, 

+ .%' /, [L4 ,.%'/] = - .%' 2 I 

M3 = i(L, + L 2) 

= i{cp at + !tjJ{x' a, + x2 a2} 

- (i/4)ip [(X')2 + (X2)2] + !tjJ}, 

J+' = (2-'/2){f!(J,' + if!(Jz'} = - 5* a, + it*x', 

J_' = (2-'/2){ - f!(J,' + if!(J2'} = 5 a, - itx', 

J+ 2 = (2-'/2){f!(J,2 + if!(J/} = - 5* a2 + it*X2, 

J_ 2 = (2-'/2){ - f!(J ,2 + if!(J/} = 5 a2 - itx2, 

I=-iE=I, 

where 

5(t) = (2-'/2)(X,(t) + iX2(t)), 

5*(t) = (2-'/2)(X,(t) - iX2(t»), 

cp=255*, r(5(t),5*(t») = -i. 
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With this choice M3 is now Hermitian, and each pair 1 ± \ 

k = 1,2, are adjoints. 
The commutation relations are 

[ M 3,1 ± k] = ± 1 ± k, 

[/+\/_k] = -1, k= 1,2, 

[1+ 1,/+2] = [1+ 1,/_2] = [1+ 2,1_ I] = 0 . 

(2.29) 

Also, we shall need the Casimir operator Cf5 (I) , of the 
subalgebra SI' It is defined as 

Cf5(1) =1+1/_1 +1+2/_2_M31= -~(tpQ(1) +2). 
(2.30) 

The Casimir operator has the property that it commutes 
with each ofthe elements of the subalgebra SI' 

B. Symmetries of Q(2) 

When i = 2, the differential equation (1.3) is 

-2g2(t)[(XI)2- (X2)2]]\fI(X,t) =0, 
(2.31) 

where the spatial form of the potential has been specified. 
FromEq. (2.1),asymmetryoperatorofEq. (2.31) has the 
form 

and obeys the commutation relation 

(2.33) 

Block letters have been used here to distinguish the symme­
tries of Q(2) from those of Q(1) • Substitution of Eqs. (2.31) 
and (2.32) into Eq. (2.33) generates the following set of 
coupled partial differential equations: 

AI =A2=0, 

All - A22 + 2iA, = 2iA(2) , 

2BII = 2B22 =.1(2) , 

B21 - BI2 =0, 

Bll1 - BI22 + 2lB I, + 2CI = 0, 

B211 - B222 + 2lB2
, + 2C2 = 0, 

CII - C22 + 2iC, 

+ 4BIg2XI - 4B2g2X2 + 2Ag2[ (XI)2 _ (X2)2] 

= -2g2[(XI)2- (x2)2]A(2). 

(2.34a) 

(2.34b) 

(2.34c) 

(2.34d) 

(2.34e) 

(2.340 

(2.34g) 

Following a procedure similar to the one in Sec. II A, the 
solutions to these coupled equations are 
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A(t) = I Pj 4>j , 
j=1 

BI (X,f) = ~ I pj 4>j x
l + bX2 + P41X I + P5 1X2 , 

2 j 

B2(x,t) = ~ Ipj 4>j x2 + bXI + {3/XI +P/X2' 
2 j 

(2.35) 

C(x,t) = - i[ ~ PJ {~ <l>j [(XI)2 - (X2)2] + ( ~ )4>j} 

+ {a/KI + P/K2}X
I 

- {a/XI + P/XJX2 - P6] . 

The 4>j are solutions to a differential equation for A identical 
in form to Eq. (2.9a). Furthermore, X I and X2 solve the same 
homogeneous equation (2.9b), with Wronskian (2.13) and 
we have, as in Eqs. (2.12), 

4>1 = (XI)2, 4>2 = (X2)2, 4>3 = 2XIX2' (2.36) 

A basis for e2, the symmetry algebra of Q(2) , is 

1.j = 4>j a, + !4>j [Xl al + X2 a2] 

- (i/4)<I>j[(XI)2 - (X2)] + ~4>j' j= 1,2,3, 

(2.37) 

(2.38 ) 1.4 = X2 al + Xl a2 , 

1.5 = XI al - iXIXI, 

IL7 = XI a2 + iXIX2, 

IL6 = Xl al - iX2XI , (2.39) 
.' 2 

ILg = X2 a2 + IX~, ~ = E = i . 

The operators {1. I ,1.2,1.3} satisfy the commutation relations 
(2.22) and so form an sl(2,R) Lie algebra; {1.4 } is a basis for 
o ( 1,1) and {1.5,1.6,1.7,1.g,E} is a basis for a two-dimensional 
Heisenberg-Weyl algebra, 1U2• We have e2 

= {sl (2,R) Ell 0 ( 1,1 ) }OIU2, and as Lie algebras, e2 is not iso-
morphic to e l . 

As above, we confine ourselves to the subalgebra 
S2 of a complexified symmetry algebra 
{M3,H + 1,H_I,H+ 2,H_ 2,l}, 

M3 = i(1.1 + IL2) 

= i{tp a, + ~tP [Xl al + X2 a2 ] 

- (i/4)ip [(XI)2 - (X2)2] + ~tP} , 
H+I = (2- 1/2 )( - 1.5 + i1.6) = - 5* al + it*XI, 

H_I = (2- 1/2 ) ( + 1.5 + IL6) = 5 al - itxl, 

H+2= (2- 1/2 )( -1.7 + ILg) = -5*a2-it*x2, 

H_2 = (2- 112 )( + IL7 + ILg) = 5 a2 + itx2 , 

1= -iE=l, 

(2.40) 

where 5(t),5 *(t), and tp are defined in (2.28). The commu­
tation relations are 

[M3,H ± k] = ± H ± \ k = 1,2, 

[H+I,H_I] = -1, [H+2,H_2] = +1, 
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The operator M3 is self-adjoint and the H ± k are adjoints. 
The Casimir operator of S2 is 

e(2) = H+ IH_I - H+ 2H_ 2 - M31 = - ~('1'Q(2l + 2) . 
(2.42) 

III. THE BOUND STATES 

A procedure3
,9 for generating the one-dimensional 

Schr6dinger equation with a time-independent Morse poten­
tial is to select a pair of creation, at, b t, and annihilation a, b, 
operators that obey the commutation relations 

[at,a] = -1, [bt,b] = -1, 

[at,b] = [b t,a] = [b t,at ] = o. 
(3.1 ) 

The operators are realized on a two-dimensional harmonic 
oscillator space, 

a = (2- 112 )(XI + al)' at = (2- 1/2 )(XI - al) , 

b= (2-1/2)(x2+a2)' b t = (2-1/2)(x2_a2)' 
(3.2) 

and then recast in such a way that linear combinations of 
their bilinear products generate the group SU(2). In their 
analysis, Alhassid et al.9 look for simultaneous eigenfunc­
tions of one of the generators of SU ( 2 ) , and of a fourth oper­
ator, the number operator JV. In the realization of su(2) 
which they use, the Casimir operator Ctff = !JV(JV + 2), 
and so JV commutes with each of the elements of su(2). 
However, note thatJV is not a member of su (2). A change of 
variables in the eigenvalue equation for JV produces the one­
dimensional time-independent Schr6dinger equation for a 
Morse potential. 

To derive the SchrOdinger equation with a time-depen­
dent Morse potential, we use an analogous procedure to that 
of the time-independent case. From the calculation of the 
symmetries of Q(ll in Sec. II A, we have the operators 
{J + I,J + 2,J _ I,J _ 2}, which will serve as the creation and 
annihilation operators {at,b t,a,b}. From Eq. (2.29), the 
J ± k satisfy the same commutation relations as in Eq. (3.1). 
In fact, when g2 = !, 5 = (2-1/2)eit, 5 * = (2- 1/2 )e - it, and 
from Eq. (2.27), 

J+ I = (2-1/2)e-it(xl_al) =e-itat, 

J_ I = (2-1/2)eit(xl + al) = eita, 

J + 2 = (2- 1/2 )e - it(X2 _ a2) = e- itb t , 

J_ 2 = (2-1/2)eit(x2 + a2) = eitb. 

(3.3 ) 

In the limit when t-+O, the operators J ± k agree with defini­
tion (3.2). 

According to Alhassid et al.,9 the combinations of the 
generators J ± \ 

1400 

Fx = ~(J+ IJ_ 2 + J+ 2J_ I) 

= ~( - '1'al2 + i~q:,(X2 al + Xl a2) + 2tt *X IX2) , 

Fy = - (i/2)(J + IJ _ 2 - J + 2J _ I) 

(3.4 ) 

Fz =!(J+IJ_ I -J+2J_ 2) 

= - ('1' 12)(all - a22 ) + (i12)q:,(x l a l - x2 a2) 

+tt*[(XI)2- (X2)2], 
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lead a realization of the su (2) Lie algebra, with commuta­
tion relations 

[Fx,Fy] = iF., [Fy,Fz ] = iFx, [Fz,Fx ] = iFy . 
(3.5) 

For the time-independent harmonic oscillator with g2 = ~, 

the function '1' = 255 * = 1 and the time dependence of these 
three operators vanishes. 

The number operator JV commutes with each element 
in su(2), and may be expressed as 

JV=J+IJ_ I +J+2J_ 2 

= - ('1' 12)(all + a22 ) + 2is *t 

+ (i/2)q:,(x l a l + X2 a2) 

+tt*[(XI)2+ (X2)2]. (3.6) 

Using the definition of'1' and the Wronskian, Eq. (2.28), the 
following substitutions can be made in Eq. (3.6): 

2s*t=(q:,/2)+i, tt*=(ipI4)+g2'1" (3.7) 

Thus 

JV = - (cp 12)(all + a22 ) 

+ (i/2)q:, - 1 + (i/2)q:,(x l al + X2 a2) 

+ {(ipI4) +g2'1'}[(XI)2 + (X2)2] . (3.8) 

Following the procedure of Alhassid et al. 9 we construct 
simultaneous eigenvalue equations for the operators JV and 
Fy. Let their eigenstates be denoted by In,m), where n is an 
integer, and 

JVln,m) = nln,m) , (3.9a) 

Fyln,m) = mln,m), - (nI2)..;;m..;;(n/2) . (3.9b) 

Transforming to polar coordinates, 

Xl = rcos e, X2 = rsin e, O";;r< 00, 0..;;e<21T, 
(3.10) 

the two operators of interest become 

JV = - ('1'12){(llr)ar (rar ) + (l/r)aoo } 

+ (i/2)q:, - 1 + (i/2)q:,rar 

+ {(ipI4) +g2'1'}r, 

Fy = - (i/2)ao . 

Next, make the substitution 

r = (n + l)exp( -p), - 00 <p< 00 , 

(3.lla) 

(3.llb) 

(3.12) 

into the first eigenvalue equation (3.9a). Then we obtain 

[ - ('1'/2){4(n + l)-Ie"app + (n + l)-Ie"aoo } 

- iq:, ap + (i/2)q:, - 1 

+ (n + 1){(ipI4) +g2'1'}e- P ]'II nm (p,e,t) 

=n'llnm(p,e,t). (3.13) 

Taking into account Eq. (3.11 b), the second eigenvalue 
equation (3.9b) permits 'IInm (p,e,t) to be written as 

'IInm (p,e,t) = (p,e,t In,m) = e2imORn m(p,t) . (3.14) 

Using this form of the wave function in Eq. (3.13), and mul­
tiplying through by (2'1') - I (n + 1) e - p , we have 
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{ -a - (n+l) [iliJe-pa + (n+1)(iP +g2lp)e- 2P 
PP 2lp P 4 

+ (~ liJ - n - 1 )e-
p
} ]Rn m(p,t) 

= - m2Rn m(p,t), - (; )<m«;). (3.15) 

One can easily show that Eq. (3.15) reduces to the standard 
time-dependent equation by setting the coefficient g2 = ~. In 
this case, Eq. (3.15) becomes 

[ - app + (n + 1) 2He- 2p - 2e- p} ]Rn m(p,t) 

= - m2Rn m(p,t) , (3.16) 

which has the form of the SchrOdinger equation with a 
Morse potential as given by Alhassid et al.9 

We are now faced with the task of solving Eq. (3.15). In 
the time-independent case, the two eigenvalue equations 
(3.9) allow full separation of the wave function into p-de­
pendent and O-dependent functions. Equation (3.16) is solv­
able in terms of confluent hypergeometric functions. How­
ever, the time-dependent equation (3.15) is a complicated 
mixture ofp- and t-dependent variables. Normally, one does 
not view an equation like Eq. (3.15) as an evolution equa­
tion. The evolution equation can be obtained by making the 
variable substitutions of Eqs. (3.10) and (3.12) into Eq. 
(2.8b); thus 

[a _m2 + (i/2)(n+ l)e- pa, pp 

- (g2/2 )(n + 1)2e -2p]Rn m = o. ( 3.17) 

We have called Eq. (3.17) the Schrodinger equation for a 
class I time-dependent Morse potential. 

To make the connection between Eqs. (3.15) and 
(3.17) we must deviate from the procedure outlined by AI­
hassid et al. 9 We need to remove the explicit time depen­
dence in Eq. (3.15). To do this, we find a similarity variable 
t, which depends on both p and t. This change of variables 
will permit both Eqs. (3.15) and (3.17) to be transformed 
into the same ordinary differential equation in t. We can find 
such a similarity variable by exploiting the relationship 
between ff and Q(1) . Recall from Eq. (2.30), 

(3.18 ) 

where we have used Eq. (3.6). Furthermore, we have 

[ff,lpQ(I) ] = o. (3.19) 

Since ff and Q(1) commute, we can require that they have 
common eigenfunctions Rn m(p,t). Thus Rn m(p,t) lies on 
the solution space of Q( I) : 

Q(1)Rn m(p,t) = o. (3.20) 

From Eqs. (3.9a), (3.18), and (3.20) we can write 
• 

(ff + ~lpQ(I) )Rn m(p,t) = - (M3 + I)Rn m(p,t) 

(3.21 ) 

We have replaced the second order differential operator ff 
with a first order symmetry operator M3 which contains the 
partial derivative with respect to time. Explicitly, Eq. (3.21) 
is 
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{ - iliJ ap + (i/2)liJ - 1 

+ !(n + 1 )iPe- P + ilp a,}Rn m(p,t) 

= nR" m(p,t) . (3.22) 

Now, we have a first order partial differential equation 
that may be solved by the method of characteristics (see Ref. 
23 ). The similarity variable is 

t= (lllp)e- P, (3.23) 

and the solution has the form, 

R" m(p,t) = a" (t)e ,1ll 
, (3.24) 

where a is a function of the similarity variable t. Here,!R is n 

defined by 

!R = ipn lp + !(n + l)liJt - (n + 1)'Y', (3.25) 

where 

(3.26) 

Equation (3.21) implies that the time variable is an ignor­
able variable. Integration ofEq. (3.22) leads not only to the 
similarity variable tbut also to the R-factor!R in Eqs. (3.24) 
and (3.25). Thus the differential equation (3.17) is R-sep­
arable. IS 

Expressing !n in terms of the similarity variable t, we 
have 

!n= -2(n+ 1)-lt-l{ta~ +t2a~~ -m2}+iliJta~ 

+ (n + 1){(iP/4) +g2lp}tlp+ (i/2)liJ-l. (3.27) 

Substituting Eqs. (3.24) and (3.27) into the eigenvalue 
equation (3. 9a), and multiplying from the left by e - tllt gives 

e- tlltffetllta" (t) 

= [ - 2(n + 1)- lt -1{t 2 a~~ + ta~ - m 2} 

+ ~(n + 1)t{2iPlp + 8g2lp 2 - liJ 2} - 1 ] 

Xa" (t) = nan (t) . (3.28) 

Then by the definition of lp and the Wronskian, Eq. (2.28), 
the explicit time dependence vanishes since 

2iPlp + 8g2lp 2 - liJ 2 = 4 . (3.29) 

Rearranging Eq. (3.28) and dividing through by 
- 2 (n + 1) - It - I leaves 

[t2d~~ + td~ - m 2 - !(n + 1 )2{t 2 - 2t} ]a" (t) = o. 
(3.30) 

We have a second-order ordinary differential equation in 
one variable t. Equation (3.30) can also be obtained from 
the relationship 

e -11lIQ(I) e'1lla" (t) = 0 . 

If we let 

a" (1]) = {1]I(n + 1)}mexp{-~1]}W(1]), 
1] = (n + 1)t, 

then the equation reduces to 

{1] a."." + (a. -1])a." - 81}W(1]) = 0, 

a l = 2m + 1, 8 1 = m - (n/2) . 

( 3.31) 

(3.32) 

(3.33 ) 

Equation (3.33) is Laplace's equation, and the solutions 
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W( 11) are confluent hypergeometric functions which de­
pend implicitly on time through the variable 
11 = (n + 1); = (n + 1)e- P Irp(t). Combining Eq. (3.32) 
and the solution to Eq. (3.33), we get 

an (;) =;m exp{- (n+ 1)(;/2)} 

X W(m - (n/2),2m + l,(n + 1);). (3.34) 

The wave function Rn m(;,t) is then 

Rn m(;,t) 

= n exp i{ (i/2) In rp + !(n + 1)tP; - (n + 1 )'Y'} 

X;m exp {- (n + 1)(; 12)} 

X W(m - (n/2),2m + l,(n + 1);). (3.35 ) 

The constant n can be determined by normalization of the 
wave function. 

Observe that Eqs. (3.30) and (3.33) are identical in 
form to those obtained by Alhassid et al.9 for the time-inde­
pendent case. However, in contrast to these results, the wave 
function (3.35) contains not only the time-dependent factor 
em, but the confluent hypergeometric functions Ware impli­
citly time dependent as well. In the event that g2 = ~, we 
recover the usual time-independent Schrodinger equation 
for the Morse potential and its solutions. 

In the time-independent case, the depth of the well de­
termines the number of energy levels, n. See Eq. (2.25) of 
Ref. 9. In the time-dependent case, the depth of the well is 

D= - [(i/2)rp-n-lf/[Srp{(¢/4) +g2rp}]. 
(3.36) 

Therefore, the depth of the well varies with time, as does the 
number of energy levels. 

IV. THE UNBOUND STATES 

To generate the Schrodinger equation for the unbound 
states of the time-independent Morse potential, Alhassid et 
al.9 recast the bilinear products of the creation and annihila­
tion operators, {a t,b t,a,b} to form the generators of the 
su ( 1,1) Lie algebra. The unbound states form a representa­
tion space of su ( 1,1 ) algebra, viewed as the analytic continu­
ation ofsu(2). 

In the time-dependent case, we shall work with the ele­
ments {H+I,H_I,H+2,H_2} from Eq. (2.40). If we set 
g2 = !, t = (2- 1/2 )eit , and t * = (2- 1/2 )e - it, we can com­
pare the operators H ± k to the time-independent creation 
and annihilation operators {at,b t,a,b} as follows: 

H+ 1= (2-1/2)e-it(xl - al) = e-itat , 

H_I = (2-1/2)eit(xl + al) = eita, 

H+2= _ (2-1/2)e-it(x2_a2) = -e-itb, 

H _ 2 = _ (2-1/2)eit(x2 + a2) = _ eitb t . 

(4.1 ) 

Following the procedure of Ref. 9, we construct the prod-
ucts, 

Kx =~(H+IH_2+H+2H_I), 

Ky = - (i/2)(H+IH_2_H+2H_I), (4.2) 

K z =!(H+IH_I +H+2H_2). 
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The operators {Kx,Ky,Kz} with their commutation rela­
tions 

[Kx,Ky] = - iKz, [Kz,Kx ] = iKy, 

[Kz,Ky ] = - iKx 
(4.3) 

form the algebra su(1,1). In this realization, the Casimir 
operator C(J = ! (.@ + l)(.@ - I), where .@ is called the 
difference operator and .@ commutes with each of the ele­
ments in su ( 1,1 ). Here, .@ is not a member of su ( 1,1) and 
has the form 

(4.4 ) 

Now we construct the simultaneous eigenvalue equa­
tions 

.@ IJt,k ) = Jt IJt,k ) , 

Ky IJt,k ) = k IJt,k ) . 

( 4.5a) 

(4.5b) 

Since su ( 1,1 ) is noncompact, the spectra of the operators .@ 
and Ky are continuous. In Cartesian coordinates, the opera­
tors of interest are 

.@ = - (rp/2)(a ll - a22 ) + (i/2)tP 

+ (i/2)tP(x la l + x2 a2) 

+ {!¢ + g2rp}[ (XI)2 _ (X2)2] , 

Ky = ( - i/2) (X2 al + Xl a2 ) . 

(4.6) 

Instead of transforming to polar coordinates, we transform 
to hyperbolic coordinates 

Xl = rcosh 0, x2 = rsinh 0, O";;r< 00, 0..;;0< 00 • 

(4.7) 

In these coordinates, 

.@ = - (rp 12) (arr + (l/r}ar - (l/r}a99 ) 

+ (i/2)tP + (i/2)tPr ar + {!¢ + g2rp}r , 

Ky = ( - i/2}a9 . 

(4.Sa) 

(4.Sb) 

Substituting Eq. (4.Sa) into the eigenvalue equation (4.5a), 
and making the transformation 

r =Jte- P, - 00 <p< 00 , 

we have 

[ - (rp/2){(4/Jt)eP app + (l/Jt}eP a99 } - itP ap 

+ (i/2)tP- 1 +Jt{!¢+g2rp}e- P]'I'J.tk(P,O,t) 

= Jt 'I' J.tk (p,O,t) . 

(4.9) 

(4.1O) 

From Eq. (4.Sb), the second eigenvalue equation (4.5b) 
permits the wave function 'I' J.tk (p,O,t) to be written as 

'I' J.tk (p,O,t) = (p,O,t IJt,k) = e2ik9R/(p,t) . (4.11) 

Using this form of the wave function in Eq. (4.10) and rear­
ranging, gives 

{-app - ~ [itPe-pap +Jt(! +g2rp )e- 2P 

+(~ tP-Jt)e-p]}R/(P,t) 

(4.12) 

If g2 =!, then rp = 1, and Eq. (4.12) reduces to the time-
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independent Schrodinger equation describing the unbound 
states of a Morse potential, 

[ - app + (Jt2/4)(e- 2p - 2e- P) ]R/(p) 

(4.13) 

Analogous to the procedure of Sec. III, we can solve 
( 4.12) by taking advantage ofthe relationship between the 
difference operator ~ and Q(2) . From the Casimir operator 
of the subalgebra S2' Eq. (2.42), 

(4.14 ) 

In p and t variables, Q(2) is 

Q(2) = a pp + k 2 + (i/2 )Jte - p at - (g2/2 )Jt2e - 2p . 
(4.15 ) 

Furthermore, since 

[ ~ ,rpQ(2) ] = 0 , (4.16) 

we can require that Rp. k(p,t) lies in the solution space of 
Q(2)' Thus 

Q(2)Rp.k=O, (4.17) 

and, from Eq. (4.14) and the eigenvalue equation (4.5a), 

M 3R/=JtR/. (4.18) 

Explicitly 

[ - iq; ap + irp at + (iq; /2) + !iPJte-P]R/ = JtR/. 
( 4.19) 

Solving Eq. (4.19) by the method of characteristics, 23 
we obtain the similarity variable 

(l/rp)e-P=~, 

and the ~-factor, 

~ (~,t) = (i/2) In rp + (Jt/4 )q;~ - Jt"'f , 

where "'f is defined in Eq. (3.26). Hence 
k i&? Rp. (~,t) = e ap' (~) , 

( 4.20) 

(4.21 ) 

(4.22) 

where ap' (~) is a function of ~. To determine the specific 
form of ap' (~) we perform the transformation 

e - i&? ~ ei&? ap' (~) 

= [ - 2(Jt~) -1{~2 a" + ~ a, + k 2} 

+ (Jt/2)~ lap. (~) = Jtap. (~) . 

Rearranging Eq. (4.23), we have 

(4.23) 

[~2 a" + ~ a, + k 2 - (Jt2/4){~2 - 2~} ]ap. (~) = O. 
(4.24) 

We have a second order differential equation in one variable 
~ with solutions 

ap.(~) =~ ±ik exp{_ (1J/2)}W± (1J), 1J=Jt~, 
(4.25) 

where W( 1J) solves 

{1Ja7J7J + (a2-1J)a7J -82}W± (1J) =0, 

a2 = ± 2ik + 1, 82 = ~{ ± 2ik + 1 - Jt} . 

Thus 
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(4.26) 

ap.(~) = U~ikexp{ - (Jt/2)~}W+ 

X (H2ik + 1 - Jt},2ik + I,Jt~) 
+ V~ -ik exp{ - (Jt/2)~}W_ 

X q{ - 2ik + 1 - Jt}, - 2ik + I,Jt~) . (4.27) 

The ratio of constants V / U can be determined by imposing 
the boundary condition that ap' (~- 00 ) = 0, since as ~ - 00, 

p- - 00, and the Morse potential goes to infinity. Thus 

~ _ r(2ik + I)r(H - 2ik + 1 - Jt}) 
U - rc - 2ik + I)rH{2ik + 1 - Jt}) . 

The reflection coefficient is (1V12/1U12) = 1. 

(4.28) 

As we found in Sec. III for Eq. (3.17) for the bound 
states, Eq. (4.15) for the unbound states is also R -separable. 
The time variable is ignorable because of Eq. (4.18). 

v. DISCUSSION 

It is ofinterest to compare the approach we have adopt­
ed to algebraic methods employed by others24.25 in solving 
time-dependent problems. 

The evolution of a quantum system26 may be given by 
I¢,(t» = U(t,to) I¢,(to», where U(t,to) is the evolution op­
erator and is usually expressed in terms of the system Hamil­
tonian. If the Hamiltonian can be written as a linear combi­
nation of SU (l, 1) or SU (2) generators, in which the 
coefficients are time dependent, then the technique of Dat­
toli et al.25 or the propagator approach of Gerry24 are appro­
priate. In the method we have used, the Schrodinger equa­
tion for the Morse potential of both the bound states is 
related to the Casimir operators for su (2) and su ( 1,1 ), re­
spectively, and is not realized as a linear combination of the 
group generators. The finite number of bound states for the 
Morse oscillator are described by the irreducible unitary rep­
resentations of su(2). The spectrum of unbound states is 
described by the continuous series 10 Ck 1/2, one of the contin­
uous irreducible unitary representations of su ( 1,1 ). The dis­
crete series for su(l, I) in which the spectrum is bounded 
below, does not playa role in our approach. However, the 
discrete series is the irreducible representation exploited by 
Gerry24 and Dattoli et al.25 The common ground of the two 
approaches is an interesting area for possible future research. 
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Nonlinearly coupled oscillators in quantum mechanics: A normal form 
approach 
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Quantum mechanical Hamiltonians of the form or n harmonic oscillators coupled via an 
interaction of the form € times a polynomial in the position and momenta variables are studied 
in a rigorous Hilbert space setting. In particular, normal form theory is used to define the mth 
approximation to the associated Schrodinger initial value problem and it is shown that it 
deviates in norm from the exact solution by a term of order €m + II t I (t = time) provided only 
that the initial vector is confined to an appropriate dense subspace. The main concentration is 
on the case in which there exist no resonances of order <:;m between the frequencies of the n 
oscillators, but the case of two oscillators in I: I resonance is also taken up. 

I. INTRODUCTION 

In recent years normal form theory has become a very 
versatile tool in the study of the flow that a classical Hamil­
tonian induces in those regions of phase space in which it is 
predominantly deterministic (e.g., periodic or quasiperiod­
ic) rather than "chaotic." Pioneered by Birkhoffl and Siegel 
(e.g., see Ref. 2) normal form theory has been the subject or 
tool of investigation in so many works in recent years that it 
is impossible to quote all of them. Besides mentioning some 
we feel are representative3

-6 we refer to the recent works by 
van der Meer7 and Sanders and Verhulst8 and the bibliogra­
phies contained therein. 

It seems that the study of the corresponding quantum 
mechanical theory, although known on a purely formal level 
[see Ref. 10 (a) ], has not been given the attention it deserves 
in the mathematical literature. The present paper attempts 
to fill this gap. Our work was stimulated by the pioneering 
work of Lemlih and Ellison9 who, by presenting a rigorous 
analysis of the time averaging method in a quantum mechan­
ical model problem, set the stage for an elevation of quantum 
mechanical normal form theory from a purely formal theo­
rylO to a rigorous mathematical theory (see, however, 
Ref. II). 

Rather than developing the theory in the framework of 
an abstract Hilbert space formalism, as has been done by one 
ofthe present authors, 12 in the present paper we confine our 
discussion to the class of quantum mechanical Hamiltonians 
that describe n harmonic oscillators with polynomial inter­
action. Working within the framework of the Heisenberg 
algebra JYn of creation and annihilation operators ak' Ck 

(k = 1,2, ... ,n) a Hamiltonian of our class has the following 
explicit form: 

H=Ho+€V, (1.1) 

where 

( 1.2) 

and V is a polynomial in the ak's and Ck ·s. 
In Sec. II we bring the interaction into a "standard" 

form, which is characterized by the property that each Ck is 

paired off with the corresponding ak to yield the number 
operator Nk : = Ckak whenever this is possible and the opera­
tors that stay "single" in the process are moved to the left. 

In Sec. III we discuss normal form theory, first abstract­
ly and then in the context of our class of Hamiltonians, under 
the assumption that the perturbing interaction potential Vis 
already in standard form. As in the corresponding classical 
theory (see, e.g., Refs. 6 and 13) we find that the theory of 
graded Lie algebras provides an adequate setting for our dis­
cussion. 

Using the coefficients in a formal € expansion of the 
normal form as well as those of the normalizing transforma­
tion we define the mth-order approximation tPm (t) to the 
exact solution 1/J(t) of the Schrodinger initial value problem 

(1.3 ) 

and in Sec. IV we formulate conditions under which an esti­
mate ofthe form 

(1.4) 

holds for € varying in some small interval [O,€o). 
It turns out that an appropriate framework for the rigor­

ous study of our family of Hamiltonians is provided by a 
certain Hilbert space of analytic functions described by 
Bargmann l

4-16 (see, also, Ref. 17). The simplest case for 
which this approach allows us to obtain estimates of the form 
( 1.4) is the case in which the frequencies OJ k (k = 1,2, ... ,n) 
of the harmonic oscillators are subjected to some nonreso­
nance condition. Of course, as in the time averaging tech­
nique, studied by means of a model problem described by 
Lemlih and Ellison,9 the validity of an estimate of type ( 1.4 ) 
requires that the initial vector 1/Jo be confined to a suitable 
dense linear submanifold of our Hilbert space. This subman­
ifold will be referred to as "initial domain." 

Quite different from the nonresonant case are the low­
order resonances, in particular the resonance in which the 
frequencies of the n harmonic oscillators all agree. In the 
case of n = 2 this is called the 1: 1 resonance and the classical 
counterpart has been studied by one of the present authors in 
Ref. 5 (see, also, Ref. 18). We briefly sketch this case at the 
end of Sec. IV by exhibiting a suitable initial domain. The 
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one remarkable feature of this case, however, is the fact that 
the Hilbert space under the time evolution operator of its 
normal form breaks up into invariant subspaces exactly the 
same way as under the natural representation of the group 
SU(2) (see Ref. 16), namely, into a direct sum of (2j + 1)­
dimensional invariant subspaces (j = O,p, ... ). 

Finally, in Sec. V we touch upon an alternative method 
of approximation also based on the normal form technique: 
The difference consists in the form in which we write the 
normalizing transformation. Whereas in the first normal 
form method we write the normalizing transformation as an 
infinite product of exponentials, in the alternative method 
we write it directly as a formally unitary transformation. 
There is a trade-off between these two methods. Whereas in 
the alternative method the explicit expressions for the ap­
proximants are much simpler than in the first normal form 
method, the initial vector tPo in the alternative method has to 
be restricted more severely. 

The reader might question how our rigorous approach 
to time-dependent quantum mechanical perturbation theory 
fits in with those approaches existing in the literature, nota­
bly with the extensive work of Kato l9: It appears to us that 
Chap. IX, Sec. 6 (p. 506) ofthe second edition of his work 
bears some relationship to our work. However, since 
Kato'sl9 asymptotic formulas are based on straightforward 
perturbation theory rather than on normal form theory, they 
are already different in the first approximation. It would be 
an interesting task to make a detailed comparison between 
Kato's 19 and our approaches. However, such a comparison 
would lead us in a different direction and could be the subject 
of a separate study. 

II. PREPARATION OF THE HAMILTONIAN 

Our goal is to find approximate solutions of the Schro­
dinger equation associated with the quantum mechanical 
Hamiltonian 

(2.1 ) 

which describes n nonlinearly coupled oscillators. Here 
P(q,p) is a polynomial in the position and momentum vari­
ables (qk'Pk) (k = 1,2, ... ,n) and the coupling parameter Eis 
sufficiently small so that we can view the interaction term as 
a perturbation of the Hamiltonian HO which results from 
(2.1) by setting E = a and which describes n uncoupled har­
monic oscillators with frequencies lUl,lU2""'lUn. 

The position and momentum variables (qk)~ ~ I> 

(Pk ) ~ ~ I satisfy the Heisenberg commutation relations. 
This means that they all commute, with the exception of q k, 

Pk (k = 1,2, ... ,n) which are subjected to the commutation 
relations 

[Pk,qk] = - i. 

The well-known transformation of variables 

qk = (2MklUk) -1/2(ak + ck ), 

Pk = (MklUk12) 1/2 (1/i) (ak - ck ) 

transforms our Hamiltonian into the form 
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(2.2) 

(2.3 ) 

H = HO + EV(a,c), HO = ± lUk (Nk + l..-), (2.4) 
k~ I 2 

where N k: = ckak (k = 1,2, ... ,n) and V is a polynomial in 
the noncommutative variables ck,ak . The latter are com­
monly known as creation and annihilation operators and the 
particular combination Nk = ckak is known as k th number 
operator. As a consequence of the Heisenberg commutation 
relations the ak's commute among themselves, and so do the 
ck's, whereas the commutation relations 

[ak'Cj ] = 8kj (kj = 1,2, ... ,n) 

hold. 

(2.5) 

In the following the free algebra over C, generated by the 
2n + 1 elements a l ,a2, ... ,an, CI 'C2' ... ,cn, 1 modulo the com­
mutation relations (2.5) will be denoted by J¥'n and referred 
to as Heisenberg algebra (for a quantum mechanical system 
of n degrees offreedom). Clearly, the complex conjugation 
extends to the involutive antiautomorphism denoted by the 
dagger which interchanges ak and Ck , i.e., 

at = Ck , c! = ak (k = 1,2, ... ,n) . (2.6) 

We find it convenient to introduce the notation 

b~ = t for 1=0, (2.7) 
{

C
1 for 1>0, 

a k- I, for I < O. 

Here on the rhs c~ is the I th power of the variable C k, whereas 
ak 1 is the Illth power of the variable ak' For 
a = (a l ,a2, ••• ,an )EZn, we set 

(2.8) 

Note that since in b a for k = 1,2, ... ,n either ak or Ck , but not 
both, occur, there are no relations between the b a,s so that 
the Heisenberg algebra contains the free right module over 
the ring C[N] of polynomials in the number operators 
N = (NI ,N2, ... ,Nn ), generated by the b a,s, i.e., elements of 
the form 

V= L b a Pa(N), PaEC[N], (2.9) 
aE.:l. 

where tl. is a finite subset ofzn. In fact, it is not difficult to see 
that every element of the Heisenberg algebra J¥'n has a 
unique representation (2.9). In order to see this we simply 
use the commutation relations to pair off the operators a k' C k 

in any product of annihilation and creation operators and 
move all those operators that remain "single" in the process 
to the left. The fact that there are no relations among the 
b a's implies that the representation (2.9) is unique. We now 
list some formulas that help to bring a given algebra element 
into the form (2.9), which we shall call "standard." For this 
purpose we first confine ourselves to the case n = I, taking 
up the case of general n later. 

By induction we easily prove the following pairing off 
formula: 

amCm = Zm (N) (2.10) 

(m;>O), where Zm (N)EC[N] is the polynomial 

Zm (N) : = (N + I)m = r(N + 1 + m)r(N + I)-I. 
(2.11 ) 

M. Kummer and R. Gompa 1406 



                                                                                                                                    

Here (N+ 1)m:= (N+ I)(N +2)"'(N+m) is the 
Pochhammer symbol. Using our definition (2.7) we can 
write (2.10) in the form 

(2.12) 

Formula (2.11) remains valid for m<O if we extend the def­
inition of Zm (N) as follows: 

Zm (N) = [nN + 1 + m)nN + 1)-I]sgnm, (2.13) 

where 

sgnm= {
I, m>O, 
- 1, m.;;;O. 

We note that Z _ m (N) for m > 0 is also a polynomial, name­
ly, 

Z _ m (N) = N(N - 1) ... (N - m + 1): = mt(~) (2.14) 

in obvious notation. Also, for all mEZ we have 

Z_m(N+m) =Zm(N). (2.15) 

In bringing a given element of the algebra into standard form 
the following formula, whose verification we leave to the 
reader, turns out to be useful: 

bkbl=bk+lbk,/(N). (2.16) 

Here the polynomial bk,/EC[N] is given by the following 
formula: 

for kt~O, 

for kkO and 1/1;;;.lk I, (2.17) 

for kkO and Ik 1;;;.1/1. 
If the nonlinear part ofthe potential V(a,c) happens to be a 
Hermite polynomial its standard form is especially simple. 
This follows from the Weyl identity of/onnal power series, 
valid on the Heisenberg algebra jy'l : 

exp[ - c/2]exp[E(a + c)] = exp(Ec) 'exp(Ea), (2.18) 

which can be written in the form 

00 1 (a + C) ( E )m 
m~o -;;;! hm Ii Ii 

00 rs 00 br-sb (N) 
= L ~Er+s= L r,-s Er+s . 

r,s = 0 ns! r,s = 0 ".s! 

Here br, _ s was defined in (2.17) and hm is the Hermite 
polynomial of order m. Comparing terms of order m, we 
have 

(m!) -lhm«Mw) 1/2q)2 - m/2 

_ ~m, b k b(m+k)/2,(k-m)12(N) 
- k=~m (m + k)/2)!(m - k)/2)!' 

(2.19) 

On the rhs of (2.19) the prime following the summation 
symbol indicates that the sum has to be extended only over 
all those values of the running index which have the same 
parity as the upper limit. This convention will be in force 
throughout this paper. 

We now turn to the standard form of a simple power of 
q, or what is the same up to a numerical factor of a power of 
(a + c). For this purpose we abbreviate expression (2.19) 
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by C m and then verify that by comparing equal powers of E in 
the relation that results from multiplying (2.18) byexp(c/ 
2) we obtain 

(a + c)m = m! r~o' Cr [( m ~ r }r 1 (! ym - r)12 . 

(2.20) 

Inserting expression (2.20) into (2.19) and changing the 
order of the two sums we obtain 

+m 
(a + c)m = L ' b k P,!:(N), (2.21) 

k= -m 

where the polynomial P,!:(N) is given by the expression 

m (1 )(m - r)12 
P,!:(N) =m! )' -r*1 2 

X [( m - r ),] - 1 b(r+ k)12,(k - r)/2 (N) 
2 . «r+k)/2)!(r-k)/2)! 

For k;;;.O we set !(r - k) = p, !(r + k) = p + k;;;.p and we 
realize that, in view of (2.14) and (2.17), bp+k,_p(N) 
= Z_p(N) = p!(:). Hence, for k;;;.O, 

P,!:(N) = L -(m - k)12( 1 )(m - k)/2 - p 

p=o 2 

X [(m-k)/2~P]!(P+k)! (;). (2.22) 

For k < 0 a similar argument shows that 

(2.23) 

Example: 

(a+c)4=b- 4P!(N-4) +b-2P~(N-2) +P~(N) 

+ b 2Pi(N) + b 4P!(N). 

Here 

P!(N) = 1, 

Pi (N) = l: - ------1 (1)1 -p 4! (J 
p=o 2 (l-p)!(p+2)! p 

1 4! 4! 
=--+-N=6+4N 

2 2! 3! ' 

Pri(N) = ~ (~)2-P 4! (N\ 
p=o 2 (2 - p)!p! pJ 

= _. 4! + ~ '4!N + 4! . N(N - 1) 
4 2! 2 2! 2 

= 3 + 12N + 6N 2 - 6N = 3 + 6N + 6N 2. 

Hence 

(a + C)4 = a4 + a2(4N - 2) 

+ (3 + 6N + 6N 2) + c2(6 + 4N) + c4. 

Another useful formula for bringing an expression into 
standard form is that for any mEL and any polynomial 
.PeC[N] the identity 

b mp(N + m) = P(N)b m (2.24) 

holds. In the proof of formula (2.24) one has to treat the 
cases m>O (i.e., b = c) and m <0 (i.e., b = a) separately. 
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In both cases the proof proceeds by induction on m, as well 
as on the degree ofthe polynomial P(N). 

Thus far we have worked within cW'1' Generalizing to 
the case of cW' n we introduce in zn a partial order by means of 
the definition 

a<J3 iff a;<J3/ (i = 1,2, ... ,n). 

Accordingly, on: = {aEzn: a;>O} is the set of n-tuples of 
non-negative integers. 

For a,/3EZn we define 
n 

Za(N) = IT Za/(N1 ), (2.25) 
1=1 

n 

ba.p(N) = IT ba.p/(N1 )· (2.26) 
1=1 

Formulas (2.15), (2.16), and (2.24) generalize to 

Z _ a (N + a) = Za (N), (2.27) 

babP=ba+(3ba.p(N), (2.28) 

b ap(N + a) = P(N)b a. (2.29) 

Also, formula (2.21) has an obvious generalization to cW'n, 
namely, 

(a+c)a= L 'brp~(N). (2.30) 
- a<r<a 

Here P~ (N) isjust the product of the polynomialsP;:(Nk ) 

(k = 1,2, ... ,n). 
An element of the algebra is called formally self-adjoint 

if it is invariant under the involutive antiautomorphism t . 
Applying this automorphism to the element (2.9) in stan­
dard form yields 

vt=.I Pa(N) b-a=.I b- a Pa(N-a) 
aE~ aE8 

=.I bap_a(N+a). 
aE-1l. 

(2.31 ) 

Hence V is formally self-adjoint iff 11 = - 11 and 

P -a (N + a) = Pa (N). Clearly, qm is formally self-adjoint 
and it is this property which underlies the symmetry relation 
(2.23) of the associated polynomials of its standard repre­
sentation. 

From now on we shall assume that our Hamiltonian 
(1.1) has the form HO + €V, where 

(2.32) 

Here ( , ) is the usual inner product of Rn and 
5: = ~ .II: = I Wk' Moreover, we shall assume that the poten­
tial Vis in standard form and is formally self-adjoint. Explic­
itly, this means that there exists a finite reflection invariant 
subset 11 of Z" so that V has the form .IaeA Va' where 

Va =baPa(N) =bap_a(N+a). (2.33 ) 

We also find it convenient to introduce the subalgebra 
.n1 ( V) of the Heisenberg algebra cW' n generated by the Va's 
(aEI1), as well as the Lie subalgebra 5t' generated by the 
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Va's and H 0. These definitions are meaningful since cW' n can 
be viewed as an associative algebra as well as a Lie algebra, 
with the Lie bracket the commutator. In order to indicate 
that cW'n or an (associative) subalgebra .n1 is viewed in this 
fashion the letter L is attached to the symbol as a superscript. 
Notice that 5t' = 5t' ° Ell 5t' (V), where 5t' 0= span HO and 
5t' ( V) C .n1 ( V) L is an ideal in 5t'. Both 5t' ( V) and .if ( V) 
are graded by the natural numbers, with 5t' p (V) and 
.n1 p ( V) being the linear hulls of all monomials of order pin 
the Va's (aEI1). In formulas, 

.n1p (V) : = span ( Va,a, ... a)' 

5t'p(V): = span(ad V)aa"'a Va)' 
I 2 p-l P 

(2.34) 

where a l ,a2, ... ,ap range over 11 and where we have set 

Va,a, .. 'ap = Va, Va, ... Va
p 

, 

(ad V)a a "'a = ad Va 'ad Va ... 'ad Va . 
I 2 P I 2 P 

(2.35a) 

(2.35b) 

(We adhere to the common usage of the symbol "ad," ac­
cording to which it associates to each element Vof the Lie 
algebra the linear map defined by the brackets; in formulas, 
ad VA = [V,A].) 

We also present the formula that expresses the Lie mo­
nomials in terms of the ordinary ones, written in the form 

(ad V)a a '''a Va 
I 2 p-l p 

= 1: (_l)lrIVaar . 
aUT= (U.,u2 •. ··.ap _ I) P 

(2.36) 

(TnT = '" 

Here the summation is over all subsets a of a l ,a2 , .. ·,ap _ 1 

arranged in the natural order of the corresponding sub­
scripts, whereas 7 denotes the complementary set, arranged 
in the reverse order. Finally, 171 denotes the order of the 
subset 7. 

Since the operation ad is a homomorphism of a Lie alge­
bra into its Lie algebra of linear endomorphisms its applica­
tion to formula (2.36) yields 

ad[(ad V)a,a''''ap_t VaJ 

(2.37) 

The claim made above, namely, that 5t' is a graded Lie alge­
bra, is immediate from formula (2.37). 

Note that the vectors Va a '''a , as well as the vectors 
" p 

(2.35), are eigenvectors to the eigenvalue 

(w,a 1 + a 2 + ... + a p ) 

of the operator ad HO, which thus is exhibited as an operator 
of degree O. Moreover, if we introduce the submodule Yo 
(over Z) of zn by means of the definition 

(2.38) 

and let Y 1 be its complement in zn then we see that each 
homogeneous subspace of 5t' (V) [or .n1 ( V)] splits under 
ad Ho into kernel and image, with the former spanned by all 
vectors (2.35) for which the sum a 1 + a 2 + .. , + ap be­
longs to Yo and the latter spanned by those vectors for which 
the same sum belongs to Y I • Summarizing, we have 
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(2.39) 

where ff = Ker ad HO, J( = 1m ad HO, ad HO being re­
stricted to!f ( V). Notice, also, that on account of the Jacobi 
identity, ff is a Lie subalgebra of !f and J( is invariant 
under ::C. 

Before we close this section we give the standard form of 
a general element (2.35a), which is 

_ a. + a 2 + ... + a p Va,a,·· 'ap - b 'Pa,a, .. 'ap (N) , (2.40) 

where 
p 

Pa a "'a (N) = II by a (N + PJ'p )Pa (N + PJ'p) 
I 2 P jt } • j • 

j=1 

and we have used the abbreviations 

Yj =a l +a2 '" +aj _ l , Pj.P =aj +1 + '" +ap ' 

which possess the special values YI = PP•P = O. The proof of 
(2.40) is based on the formula 

bap(N)bPQ(N) = b a +f3ba,p(N)P(N +P)Q(N), 

(2.42) 

which expresses the product of two given elements in stan­
dard form again in standard form (here P,QEC[N]; 

a,pE'ln), Clearly, formula (2.40) is valid in the case p = 1. 
Assuming its validity for a given p we invoke (2.42) to show 
that 
Pa a "'a a (N) 

I 2 p p+ I 

= by a (N)Pa (N)Pa a "'a (N + a p+ I)' 
p+I' p+J p+1 12 P 

(2.43) 

However, the rhs of Eq. (2.43) agrees precisely with what 
we obtain if we split off in (2.41) p + 1 the last term and ex­
press the remainder in terms of the lhs of (2.41)p' 

III. PERTURBATION THEORY 

In the following we develop a perturbation theory for 
the Schrodinger equation 

(3.1 ) 

based on normal form theory. Here we may think of HO as 
being<w,N) + 5 and of Vbeing an element of JY'n in stan­
dard form. 

However, we find it convenient to formulate our ap­
proach to peturbation theory within the framework of an 
algebra CcJ which is either associative or Lie depending on 
the context. We also introduce the algebra CcJ "" of a formal 
power series in the parameter E with coefficients in CcJ. An 
element eECcJ "" will be written in the form 

"" e = L e (j)E j
, e (j)ECcJ. (3.2) 

j=O 
Moreover, we will use the notation 

m '" elm] = L e(j)E j , e{m} = L e (j)E j (3.3 ) 
j=O j=m+ 1 

so that 

e= elm] + e{m}. (3.4) 

Correspondingly, CcJ 1m] will denote the subspace of polyno­
mials in Eofdegree <m with coefficients in CcJ, whereas CcJ{m} 
will denote the ideal in CcJ '" of a formal power series starting 
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with a term on the order of at least m + 1. We also note the 
formula 

A 1m], B 1m] - (A' B) 1m] = Em + IPm (A,B,E), (3.5) 

where 
m-J m 

Pm (A,B,E) = L Er L A (I)B(m+l+r-l), (3.6) 
r=O l=r+1 

which will playa crucial role in the following discussion. 
Note that for A,SECcJ '" the expression e = exp(ES)A is 

well defined in terms of the usual power series as an element 
of CcJ '" since each coefficient e (j) involves a finite sum only. 
In case CcJ : = !Z is a Lie algebra, exp(ES) is written as 
exp (E ad S) and is easily seen to be an automorphism of CcJ '" . 
If CcJ : = ,s# is an associative algebra and ,s#L is the corre­
sponding Lie algebra (with the commutator being the Lie 
bracket) then 

exp(E ad S)A = exp(ES)A exp( - ES) (3.7) 

holds for AE,s#"'. In particular, exp( E ad S) is also an auto­
morphism of the algebra ,s# '" . 

Like normal form theory of classical mechanics (see 
Refs. 10 and 13) our approach to quantum mechanical per­
turbation theory is best formulated within the framework of 
an abstract Lie algebra !Z that splits under ad HO: 

(3.8) 

withJ( = 1m ad HOandff = Ker ad HO. IfAE!Z,AandA 
will denote the components of A along J( and ff, respec­
tively. The splitting (3.8) obviously carries over to the Lie 
algebra !Z 00 of the formal power series in E over !f; the same 
holds for the associated projections, which we will continue 
to denote by tilde and caret. 

Our perturbation theory is based on the idea of bringing 
the perturbation EV into normal form, i.e., into a form in 
which it commutes with H ° by means of a suitable transfor­
mation. For our purpose we find it best to write the normal­
izing transformation as a product of exponentials, each of 
which transforms the next higher order term into normal 
form. 

If SIE!Z is any solution ofthe commutator equation 

[HO,SI] = V, 

then by comparing terms of order E on both sides of 

exp(E adSI)(Ho + EV) = HO + EH(II + cV2, 

V2E!f"', (3.9) 

we obtain H(l) = V. Assuming inductively that 
SI,S2,,,,,Sm _ 1 and H(II,H(2), ... ,H(m - I) belonging to!Z and 
VmE!Z'" have been constructed, we let Sm be a solution of 

[HO,Sm)=V~) (3.10) 

and we verify, by comparing terms of order ~ on both sides 
of 

exp(~adSm)(Hlm-l] +~Vm) =Hlm] +Em+IVm+1 
(3.11 ) 

with suitable V E!Z'" that H (m) = V(O) holds m+ l' m· 

Combining these transformations into a single one we 
may write 
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HO + EV= f/l m (S)(H[m1 + Em+ IVm+ I), (3.12) 

where 

f/lm(S) :=exp( -EadSI)exp( -radS2 ) 

X" 'exp( - Em ad Sm)' (3.13) 

Setting for 7] = (7]I,7]2, ... ,7]m )Enm ( = m-tuples ofnon-neg­
ative integers), 

n n 

17]1 = I l7]rl, 7]* = I rTJr' n! = 7]1!'7]2!" '7]m! 
r= I r= I 

and 

(ad S)'1 = (ad SI )'1, . (ad S2J"" .... (ad Sm) '1m , 

we can write the I th coefficient of f/l m (S) in the form 

( _1)1'11 
f/l~)(S) = ~ (adS)'1. (3.14) 

'lEOm 7]! 
'1. = I 

Comparing terms of order Em + 1 (m > 1) on both sides of 
(3.12) we obtain the formula 

m+1 
V(O) = _ ~ f/l(/)(S)H(m+ I-I) 

m+l 4,." m , (3.15 ) 
1=1 

which expresses the coefficient of ~ in Vm + I in terms of HO, 

H(I), ... ,H(m), and SI,S2,,,,,Sm' A similar formula could be 
derived for the higher order coefficients of V m + I' but since 
they are not needed we refrain from presenting them here. 12 
For m = 1 we obtain 

Viol = - f/l~l)(S)H(l) - f/l~2)(S)Ho, 

where f/l~I)(S)= -adSI, f/l12)(S)=~(adSI)2, and 
therefore 

(0) A A A 

V 2 =adSIV +~adSI(V- V) =~adSI(V+ V) 

and H (2) = ViO). Since on account of the Jacobi identity 1 
is stable under ff we may write 

( 3.16) 

provided only that we normalize SI to lie in 1. (Compare 
with Ref. 10.) 

The foregoing development is all valid in the abstract 
framework of a Lie algebra !f and its power series extension 
!f"". We now return to the situation of our quantum me­
chanical problem in which !f is realized as a Lie subalgebra 
of £"~, generated by HO and (Va )aEA' Since VE!f I (V) it 
follows from an easy induction argument based on formula 
(3.15) that in fact Sp andH (p) are in!f p ( V) C.Jtff p (V), i.e., 
they lie in the linear hull of vectors Va "'a (a l,a2, ... ,apEa). 

'p A 

Moreover, if we normalize S by the requirement S = 0, an 
induction argument based on formula (3.15) shows that if V 
is formally self-adjoint so is iSp and H (p). 

We now proceed to show how the transformation of 
Ho + E V into normal form can be used to define approxi­
mate solutions to the Schrodinger initial value problem 

(3.17) 

Moreover, we shall describe a procedure that allows us to 
estimate the associated error. Finally, we shall take up the 
task of making these constructions rigorous. For the present 
we assume that our Heisenberg algebra is realized as the 
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subalgebra of an operator algebra over some function space 
on which also the operator 

Um (I) = exp( - iH[m1t) (3.18) 

makes sense. The mth approximant to the initial value prob­
lem is defined by means of the formula 

tPm(t) = [f/l~ml(S)Um(t)]tPo' (3.19) 

Explicitly, for m = 0,1,2,3, the approximations are 

tPo(t) = Uo(l)tPo, 

tPl(t) = (1- ET1)U1(t), (3.20) 

tP2(t) = {I - ETI + run - T 2]}U2(1)tPo, 

tP3(1) = {I - ETI + r[!n - T 2] 

+ ~[ - iT~ + TIT2 - T 3]}U3(1)tPo. 

Here we have abbreviated Tk = ad S k (k = 1,2,3). 
Proceeding informally at first, we assume that we can 

differentiate tPm (t) and that the derivative is the expected 
one. Introducing the quantity 

m-l m 

Pm (t) : = ~ Er ~ f/l~) (S)(H (m + I + r- /) Um (I) )tPo, 
r=O l=r+1 

(3.21 ) 

we find, in view of (3.5), 

i¢m =f/l~ml(S)(H[mlUm(l»tPo 

= [f/l m (S)(H[m1Um (I»)] [m1tPo + Em+ IPm (I). 
(3.22) 

Here we view Um (I) as beingoforder~. Sinceexp(Ej ad S), 
for SE£"n,j> 1, is an automorphism in the algebra of a for­
mal power series with coefficients in the given operator alge­
bra, we may write 

i¢m = [f/l m (S)H [mlf/l m (S) Um (I)] [mIl/'o + Em + IPm (I) 

= [(HO + EV)f/l m (S) Um (t)] [mIl/'o + Em + IPm (t) 

= (Ho + EV)tPm (t) + Em+ I(Pm - rm ), 

where rm(t) = V[f/l~m)(S)Um(l)]l/'o. Summarizing, we 
see that tPm satisfies the initial value problem 

i¢m = (Ho + EV)tPm + Em + Igm (t), tPm (0) = tPo, 
(3.23 ) 

which differs from the Schrodinger initial value problem by 
the presence of the term gm (t). Explicitly, 

m-J m 

gm(t) = I E' I f/l~)(S)(H(m+l+r-/)Um(t»)tPo 
r=O l=r+1 

(3.24) 

In Sec. IV it will become clear that these derivations can be 
justified rigorously in a Hilbert space setting. It then follows 
from an argument similar to the one of Lemlih and ElIison9 

that tPm (I) deviates in norm from the exact solution I/'(t) of 
the Schrodinger initial value problem by a term of order 
~ + lit I for EJ.O, i.e., 

IItPm (t) - 1/'(1)11 = &(~+ lit I), (3.25) 

provided only that the initial vector 1/'0 is confined to a suit­
able dense subspace of the Hilbert space. 
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IV. RIGOROUS DETERMINATION OF THE INITIAL 
DOMAIN 

In order to make the foregoing development rigorous we 
introduce the space 'f/ ,. of entire functions of n complex vari­
ables z: = (ZI,Z2""'Z,,) and realize the algebra elements Ok 

and Ck as operators over 'C n of partial differentiation with 
respect to Zk and multiplication by Zk' respectively, i.e., 

(aJ)(z) = af (z), (cJ)(z) =zJ(z). (4.1) 
aZk 

On the space 'f/,. we introduce a pseudonorm by means of 
the definition 

(4.2) 

where the measure dp" (z) on e" is given by the expression 

dp,,(z) = rr-"e-z'zd"xd"y. 

Here 

z·z = i IZk 1
2

, Zk = x k + iYk, 
k=1 

d"x = dX 1 dX2" 'dxn , 

etc. Obviously, 'f/ n contains elements of infinite norm. How­
ever, it is well known that the linear subspace 

(4.3) 

of 'f/ n is a Hilbert space. In fact, Bargmannl
4-16 has amply 

demonstrated that the Hilbert space Y n is better suited for 
many applications in physics than the more conventional 
HilbertspaceL 2 (R") (see, also, Ref. 17). 

Moreover, Bargmann 14-16 has demonstrated that there 
exists a unitary integral transformation fromL 2(R") to Y n 

whose kernel essentially agrees with the generating function 
of the Hermite functions. Explicitly, the transformation is 
given by the formula 

fez) = f An (z,q) t/J(q)d nq, (4.4) 

where 

A,,(z,q) :=rr- nI4 exp[ _!(r+q2) +~z'q] 

= L U1] (z)<I>1] (q). (4.5) 
1]>0 

The symbols in expression (4.5) have the following mean­
ing: 

U1](Z);=(1/!)-1/2Z1], 1/EOn
, (4.6) 

is a complete orthonormal system of functions in Y nand 

<1>1] (q) = (211]11/!) -1/2rr - nl4 exp( - 1.- q2) ir h1]1 (ql) 
2 1=1 

(4.7) 

[ h m (q) = Hermite polynomial of order m J is such a system 
in L 2(Rn). 

The Heisenberg algebra K n' as well as the subalgebras 
.xl ( V), .!/, now appear in the disguise of algebras of differ­
ential operators over 'f/ n' By restriction these operators be­
come unbounded operators on the Hilbert space Y n' In fact, 
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any differential operator A over 'f/" restricts to an operator 
with natural maximal domain 

(4.8) 

Since the complete orthonormal system U1] (z), 1/EOn [see 
(4.6)], is contained in fi' (A) the linear hull of these vectors 
constitutes a dense invariant domain for all our operators. 
This implies in particular that fi' (A), as defined in (4.8), is 
dense in Yn' 

Notice that if A,BEK,. then 

fi'(A) nfi' (B) cfi' (A + B). 

Hence, if for (): on -+ [0, 00 ) we associate the domain 

flJ«(); = {fEY,.: L 1 (J,u1]W()(1/) < oo}, (4.9) 
'JEn " 

then the domain 

n flJ«()a) with ()a(1/) =Za(1/)IPa (1/W (4.10) 
aebo 

is contained in the maximal domain fi' ( V) of the operator 
V= 'i.aebobapa(N). 

We have seen in Sec. II that the operators 

V= LbaPa(N), W= L b a P_a(N+a) (4.11) 
a€bo ae - bo 

are formally adjoints of each other. In fact, it turns out that 
they are adjoint of each other as operators on the Hilbert 
space Y,., i.e., we shall prove the following theorem. 

Theorem: If Vand Ware as in (4.11) then V* = Was 
operators over Y,. . 

Remark' Remember fi' (V*) = {fEY,,: g- (J, Vg) is 
a continuous linear functional on fi' ( V)} and V*f is by de­
finition the unique vector in Y,., so that 

(J,Vg) = (V*J,g), (4.12) 

for all gEfi' ( V). 
The proof of this theorem is based on the following 

lemma. 
Lemma: For any fE'f/,. we have 

Wf= L (Vu1]./)u1]' (4.13) 
'JEO" 

We first deduce the theorem from the lemma. 
AssumefEfi' (V*). Then from (4.12) for all1/EO, 

(Vu1]./) = (u1], V*f). 

Hence, from (4.13), Wf = V *jEY n' This proves V * C W. 
Now, assume jEfi' (W). Then, by definition of fi' (W), 
WfEY" and from (4.13) we deduce 

(Vu1]./) = (u1],Wj) 

for all1/EO". Now, let gEfi' ( V). Since g is an entire function 
we have 

By continuity of the inner product we find 

M. Kummer and R. Gompa 1411 



                                                                                                                                    

(Vg,J) = L (g,uTJ) ( VUTJ,J) 
7JEn " 

= L (g,U.,) (U."Wj) = (g,Wf)· 
7JEn" 

It follows thatfE.@( V*) and V*f = Wf, i.e., we V*. By 
combining this result with the converse inclusion the deduc­
tion of the theorem from the lemma is complete. Finally, the 
statement of the lemma follows from the following computa­
tion: 

Wf= L L (u TJ ,J)[Z_a(1/)]I/Z Pa (1/-a) UTJ - a 
<XEd 7JEn " 

= L L (UTJ+a,J)[Za('lJ)] 1/2 Pa(TO UTJ 
aed l]Enn 

= L < VU.,,J)UTJ· 
7JEn " 

Corollary 1: All elements of 7t" n define closed operators 
overYn • 

Corollary 2: An element of 7t"" defines a self-adjoint 
operator over Y n iff it is formally self-adjoint. 

Notice that by our definition of the domain of an opera­
tor AE7t"n neither.@ (BA) e.@(A) nor A.@(BA)e.@(B) 
need to be true. In the following we shall denote the maximal 
domain of Va,a""ap simply by.@ (alaz" 'ap )' According to 
what we have just . stated it need not be true that 
.@(akak+I···ap) (k= 1,2, ... ,p) is a chain of domains, 
each contained in the next one, nor need it be true that Va 

p 

maps .@(alaz···ap ) into .@(a la 2 ···ap _ I ). However, if 
we define 

p 

8(a la z"'ap ) = n .@(akak+1 "'ap ) (4.14) 
k=1 

then these statements are true with .@ replaced by 8. The 
first statement is a consequence of our definition and the 
truth of the second is seen as follows. Assume 
feVap8(alaz" 'ap )' Then there exists 

ge8(a la 2" 'ap ) e8(a k a k + I" ·ap ) e.@(ap ) 

so that Va g = f Hence feY n' and 
p 

Vakak + ,"'ap_ ,f = Vakak + ," 'ap_ ,apg eY n' 

and thereforefe.@(akak+ I •. 'ap _ I ), for k = 1,2, ... ,p - 1. 
This is exactly what we wanted to show. 

Notice that, according to (2.40) and (4.9), 

.@(a la 2 ···ap) = f!jJ«(Ja,a""ap)' 

where 

(4.15 ) 

(Jo:,a""ap(1/) : = Za,+a,+ .. ' +ap (1/)IPa,a, "ap(1/)1
2
. 

( 4.16) 

Moreover, we introduce the domain 

.@o(aja2···ap):===.@(Vaa"'aHoo) = f!jJ«(J~ a "'0: ), 
I 2: P t l P 

( 4.17) 

where H oo = ({J),N) and therefore 

(J~a "'a (1/) = 1({J),1'1)1 2(Ja "a (1/). I 2 p ./ I p 
(4.18 ) 

Finally, we set 
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~(a a "'a ) = .@o(a a '''a ) n8(a a "'a ) IZ P 12 P 12 p' 

( 4.19) 

For any r = 0,1 ,2, ... ,p, we have 

Va .··a HOVa "'a = Va a '''a (ROO + S~), 
I r r+ I p I 2: P 

where S~ = S + ~L r+ j (a;.{J). Since, for any A,BE7t"n, 

.@(A + B) n.@(A) =.@ (B) n.@(A), 

it follows that 

.@(Va "'0: HOVa "'a) n.@(al " 'ap ) 
I r r+l p 

= .@o(al"·ap)n.@(al"·ap } 

and therefore 

fP(Va ... aHoVa "'a )n8(a la 2"'ap) 
t r r+' p 

= ~(ala2" 'ap )' 

Setting r = 0 in the last relation and reasoning as above in the 
case of 8(a ta 2" 'ap ) we also have 

Vap~(ala2" 'ap ) e~(ata2" 'ap_ I)' 

Finally, we introduce the domains 

8p (6.) = n 8(a ja 2"'ap ) 
a ... , .• a pE6. 

and similarily ~(6.). Notice that 

Va/5p(6.)eVap n 8(alaz'''ap_lap) 
ah ... ,ap _ JEA 

e8p _ 1 (6.) 

(4.20) 

and similarily for S},. More generally, if p, q are two natural 
numbers such that q <p and if Aed q ( V) then 

(4.21 ) 

Our fundamental estimate is based on the following 
Gronwall-like lemma (compare with Ref. 9). 

Main Lemma: Let % be a Hilbert space. Let I be an 
open interval containing O. Assume ,p, 1/1 are two continuous­
ly differentiable functions defined on I with values in the 
domain .@ (A) of a symmetric operator A over %. Assume 
further that ,p, 1/1 satisfy the differential equations 

( 4.22) 

where g: 1--+% is a continuous function. Then the following 
estimate holds: 

1I,p(t) -1/I(t)lI<II,p(O) -1/1(0)11 + ILlIg(S)lIdsl· 
(4.23 ) 

In order not to interrupt our main argument we relegate 
the proof of this lemma to the Appendix. Of course, for the 
application we have in mind the symmetric operator is 
A = Ho + €V,,p = ¢m [defined as the mth approximation in 
( 3.19)] and the error term g m is defined in (3.24). In order 
to state the main theorem of this paper we need the concept 
of nonresonance of order m. 

Definition: The potential V is called nonresonant of or­
der m with respect to H O if 

(4.24) 
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Using this concept our main theorem can now be stated as 
follows. 

Main Theorem: Assume V is nonresonant of order m 
with respect to HO. Then the approximate solution tPm [de­
fined in (3.19)] satisfies an estimate of type (3.25) provided 
only tPo is restricted to the domain 

82m (~) n~ (~). 

The proof of the main theorem is broken up into a series of 
lemmas. 

Lemma 1: If Vis nonresonant of order p with respect to 
HO then 8p (~) is invariant under Up (t,E) 
: = exp( - iH[P]{E)t). 

Proof: Since by assumption Vis (formally) self-adjoint 
an easy induction shows that the same is true for each ele­
mentH(P),p> 1, hence also for H[p] and Ereal. However, we 
know that formal self-adjointness implies genuine self-ad­
jointness on the maximal domain. By Stone's theorem 
exp{ - iH [pIt) is unitary. Incase Vis nonresonant oforderp 
H [pI is seen easily to be a function C(N,E) of the number 
operators Nk (k = 1,2, ... ,n) and E only. Since 8p (~) is the 
intersection of sets of type flJ (() [see (4.9») it is sufficient 
to prove that such a set is invariant under exp( - iC{N,E)t). 
However, in view of the identity 

(u'1,exp( - iC{N,E)t)f) = exp( - iC{7],E)t)(U'1J) 

this is self evident. 
Lemma 2: 

tPm(t):= i E' ~ (_l)lal {adS)a Um(t,E)tPo 
'=0 a· =, a! 

is well defined for tPOE8m (~). 
Proof: Evidently, it is sufficient to prove that 

(ad S) a Urn (t,E) tPo with a* = I is well defined for tPoED, (~). 
Remembering that 

(ad s)a = (ad SI)a'(ad S2)a, ... {ad S, )a, 

it is clear that 

(ad s)aUm (t,E) 

= I (a) sa-13Um (t,E)SP( _1)13, 
O.;;f3<a \f3 

where p= ({3,,(3'_1, ... ,{31)' Since sP maps 8,(~) into 
8'_f3. (~), which is left invariant by Um (t,E) and mapped 
into 8'_a. (~) = 80(~) = Y n by sa-f3, Lemma 2 is 
proved. 

Lemma 3: Let (X '1) 'JEOn be a set of continuous complex 
valued functions defined on an open interval J about 0, each 
of which is bounded by a positive constant M'1' If 
~'JEonM'1 < 00 then ~'JEOn X'1 (h) is well defined and contin­
uous on J. In particular, 

lim IX'1(h) = I X'1(O). 
h_O 'JEOn 'JEOn 

Proof: By adding 

I X'1 =Xk' I J-L'1 =Mk 
1]EOn 7JEon 

I'll =k I'll = k 
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the general case is reduced to the case n = 1, in which it is an 
immediate consequence of the Cauchy criterion. 

Lemma 4: The formula v(t) =A exp( - iHoot)tPo for 
AE.f2Y' p ( V) and tPoE~ (~) is differentiable, with the expected 
derivative v I (t): = - iAH 00 exp ( - iHOOt) tPo' 

Proof: By linearity it is obviously sufficient to prove 
Lemma 4 for the case of A = Va a "'a • Since 

" p 

[v(t + h) - v(t)]!h - VI (t) 

= Va .... ap exp{ - iHoot) [(e- iH"'h - l)/h + iHooJtPo, 

we find 

II v(t+ h~ - v(t) _ v
1
(t) 112 

= I I (U'1'tPo) 12()a ... 'ap (rJ) 
'JEOn 

(4.25) 

From e - iah - 1 = - ia f~e - iat dt we conclude that 
Ie - iah - 11, Ih I I a[. Hence the 7] term in the sum (4.25) is 
bounded by the constant 

M'1 = 41 (u'1'tPo) 12()a .... ap (7]) I (7],wW· 

Since by definition of ~(~):~'JEOnM'1 is convergent the 
statement of Lemma 4 follows from Lemma 3. 

Lemma 4(a): The expression A exp{ - iH[m]t){3tPo with 
AE.f2Y'p{ V),BE.f2Y'q{ V), tPoE~ (~)n82m (~) (p + q = m) is 
differentiable with respect to t and the derivative is the ex­
pected one. 

Proof: We have tPI = BtPoE8p (~) n8m +p (~). Now pro­
ceed as in Lemma 4 (with tPo replaced by tPI)' 

Lemma 5: The functiongm (t), defined in (3.24), is con­
tinuous for tPOE82m (~). 

Proof: Apparently it is sufficient to prove that 
Aexp{-iH[m1t)BtPo is continuous for AE.f2Y'p{V), 
BEflJ q (V) with p + q = 2m. Since under our assumption 
tPl = BtPo belongs to 8p (~) it is sufficient to prove that 
v(t): = Va,a""ape-iHlmlttPl is continuous for tPIE8p(~). 
However, this follows from Lemma 3 in view of the formula 

l\v(t+h) -v(t)11 2 = II (u'1,tPI)1 2()a,a''''ap{7]) 
'JEOn 

x lexp[ - iH [m] (7],E)h ] - 112. 

Here we have used the fact that H [m] is a function of N, E 
only. 

Pro%/the Main Theorem/rom the lemmas: Each term 
of tPm (t) is of the type described in Lemma 4(a) with 
p + q,m. Hence the argument sketched at the end of Sec. 
III is valid, i.e., tPm satisfies the Schrodinger equation modu­
lo an error termgm (t), which according to Lemma 5 is con­
tinuous. Since the operator HO + E V is self-adjoint on its 
maximal domain it is symmetric on ~ (~) n 82m (~) so that 
the hypotheses of our Main Lemma are satisfied. Its conclu­
sion implies the result of our Main Theorem. 

Corollary: The domain ~ (~) n82m (~) for which the 
conclusion of our Main Theorem is valid can be simplified to 
read as 
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9J~ (a) nD2m (a), 

where 

9J~ (a) = n 9JO(a la 2' . ·am ). 
a.u2 ••••• a meti 

(4.26) 

Proof Clearly, the domain (4.26) contains the domain 
~ (a) nD2m (a); we only have to show that (4.26) is also 
contained in it. However, obviously 

152m (a) CD(a la 2 " 'am ), 

for all a l ,a2, ... ,am Ea. Hence 

152m (a) n9Jo(a l a2" 'am ) C~(ala2" ·am ). 

Forming the intersection over all a l ,a2, ... ,am Ea yields 

152m (a) n9J~ (a) C~ (a). 

The conclusion follows. This simplification of the initial do­
main is achieved without sacrificing precision. Still, the de­
scription of the initial domain given thus far may appear too 
unwieldly to be of practical use. For this reason we now 
proceed to construct a subdomain of the initial domain 
(4.26) which bears a simple relationship to the potential 
V = ~aEIl Va' For this purpose we note that there exists a 
positive constant C(a) and a positive integer r(a) so that, 
for all aEa, 

O.;;;(Ja(1]) = Za(1])IPa (1]W.;;;C(a)(I1]1 + 1)r(lll, 
( 4.27) 

where 11]1 = ~;= 11];. Here the integer 

r(a) : = max [2 deg Pa (1]) + lal] 
aEIl 

is nothing but the degree of V viewed as a polynomial in the 
creation and annihilation operators. Going through the con­
struction of the initial domain (4.26) with the estimate 
(4.27) in mind we see that under the assumption mr(a) >2 
our initial domain contains the simple subdomain f!lJ 2m (a), 
where, for integral p, 

f!lJ p (a) : = {fEY n: L I (j,U1]) 12( 11]1 + 1 )pr(ll) < oo} . 
1]E,{ln 

(4.28) 

Remark: In the case n = 1, 11]1 + 1 may be replaced by 
1]. 

It turns out that the domain (4.28) is sufficiently small 
to be a candidate for the initial domain even in case of some 
resonances. In order to illustrate this point and also in order 
to discuss a case which in a certain sense is quite opposite to 
the nonresonant case, we take up the case of the 1: 1 reso­
nance, which one of the present authors has studied pre­
viously within the context of classical mechanics.5 In quan­
tum mechanics this system is described by a Hamiltonian 

HO=N\ +N2+ I 

and a potential interaction in standard form 

V= L b~b~Pk,/(N\,N2)' (4.29) 
(k,/)EIl 

where a is a finite reflection invariant subset of ',l} and 
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are polynomials in the number operators NI = cla\, 
N2 = c2a2• Notice that since Yo is the submodule (over Z) of 
Z2 generated by ( 1, - 1) any potential (4.29) with a =f: {O} 
is resonant with respect to HO. As in the classical context the 
normal form is a polynomial in the Hopf"variables" which, 
however, in the quantum mechanical context are bilinear 
forms in the creation and annihilation operators, namely 
(see Refs,S, 6, and 16), 

M = (~(c\a2 + c2a\),( 1/2i) (c\a2 - c2a\),!(N\ - N 2 »), 
J = ~(N\ + N2 ) [M2 = J(J + 1)] , 

which generate the U(2) action over Y 2• Accordingly, the 
Hilbert space Y 2' under the action of the evolution opera­
tor, associated with the normal form, breaks up the same 
way as under the action ofSU(2), namely, as follows: 

Y 2 = ~ Ell fJ1 2 ·• 
j>O J 

Here fJ1 2j is the space of complex homogeneous polynomials 
of degree 2j in two complex variables z), Z2' Notice that the 
domain (4.28) with p = 2m in the present case becomes 

where e£ = f.tj+ p.j _ p.' Notice that this domain, and, more 
generally, each domain of this type with 2m replaced by any 
positive integer p, is invariant under the evolution operator 
of the normal form. For this reason our arguments carry 
over from the nonresonant case to the 1: 1 resonance and 
show that (4.30) isa valid initial domain for the mth approx­
imant in the 1: 1 resonance. 

V. A SECOND METHOD OF APPROXIMATION 

Finally, we will describe an alternative method of ap­
proximation to the solution of the Schrodinger initial value 
problem 

(5.1) 

This method is also based on the normal form technique. 
However, instead of writing the normalizing transformation 
in the form of a product of exponentials, as has been done 
previously, we simply write it in the form of a power series 
S( E) (compare with Ref. 11). The method is best described 
in the setting of an abstract associative algebra d an its 
formal power series extension d co • Assuming that Ho' VEd 
we look for a transformation SEd co so that 

(H o + EV)S = SH, S(O) = I , (5.2) 

andH = H O + Jt.l} commutes withHo. A sufficientcondi­
tion to make this construction possible is precisely the split­
ting assumption made in Sec. II, except that J2/L takes over 
the role of .!.t'. Again this splitting assumption extends to the 
algebra of a formal power series and the components of an 
element in the kernel ff and image J( of ad Ho will again be 
denoted by a caret and a tilde, respectively. Comparing 
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terms of order E"' on both sides of Eq. (5.2) yields 

- adHOS(m) +H(m) = Vm, 

where 
m-I 

Vm = - L S(l)H(m-/) + vs(m-\). 
/=1 

In particular, VI = V, S(t) is a solution of 

ad H(O)S(t) = - V, 
and H (t) = V. Also, 

(5.3 ) 

(5.4) 

(5.5) 

V2 = - S(t)H(t) + VS(t) = [V,S(I)] + VS(I) (5.6) 

and S (2) is a solution of 

ad H(O)S(2) = - V2 

andH(2) = V2. If we normalize S(I) by the conditionS(t) = 0 
then [V,S(l)r = 0 and the expression for H(2) simplifies to 

H(2) = (VS(I){: 

Although H (2) is still formally se~-adjoint if Vand H (0) 

have this property the normalization S = 0 in general is not 
the correct one to guarantee the formal self-adjointness of H 
for real E. This will be achieved as follows. 

A 

We normalize S in such a manner that S is formally self-
adjoint and for m,;? 1 satisfies 

s(m) = _~ mfl [s(/)(s(m-/»t( 
2 /=1 

In order to see that this normalization achieves the desired 
result we first recognize that (5.2) implies the relation 

ad HOSSt = S(H - Ht)St + dSSt, V]. 

Clearly, (Sst )(0) = 1I and HO = (Ht )(0). Now assume 
(Sst) [m - II = 1I and H[m -II = (Ht) [m- I l. Then it fol-
lows that 

ad Ho(SSt)(m) = H(m) _ (H(m»t. 

Since the rhs belongs to...#", whereas the Ihs belongs toJ( we 
see that (Sst)(m)EJVandH[m1 = (Ht)iml. Hence 

and therefore (Sst) [ml = 1I. In particular, S(I) = 0, 
S(2) = - ~ [S(t)S(t)t(: etc. 

We define the mth approximant <Pm by means of the 
formula 

<Pm (t) = S [ml exp( - iH [mIt) T[mlrPo, T = st. (5.7) 

On account of (3.5) we have 

<Pm (0) = rPo + Em+ IPm (S, T,E) rPo, 

i.e., <Pm satisfies the desired initial condition only up to a 
factor of order E"' + I. Again invoking (3.5) we find 

s[mlHiml _ HOs(m] _ Evs(ml 

= Em + I [Pm (S,H,E) _ VS (m)]. 

The terms in brackets on the rhs will be abbreviated by 
gm (t,E). We use this relation in order to show that <Pm (t) 
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again satisfies the Schrodinger equation modulo a term of 
order E"' + I. Indeed, formal differentiation yields 

i~m = s(mlHiml exp( - iH (mIt) T[ml
rPo 

= (Ho+EV)<Pm + Em+Igm(t,E). 

It can be shown 12 by a similar analysis, as presented in Sec. 
IV, that in a rigorous Hilbert space setting the appropriate 
initial domains for our alternative method take the form 

83m (a) n.@~m (a), 

with the simple subdomain YJ 3m (a) [see (4.28)]. More­
over, for rPo restricted to this domain, we obtain an estimate 
of the form 

lI<Pm (t) - rP(t)II<Em+ IM(1 + It 1>. 
Notice that this method, although formally simpler than the 
method described in Sec. III, leads to smaller initial domains 
and an error term that does not vanish for t = O. 

Of course, the cause for this behavior of the alternative 
method is the presence of the operator T (m I in the definition 
of the mth approximant (5.7). Its function is to guarantee 
that <Pm does not only satisfy the Schrodinger equation, but 
also the initial condition modulo a term of order E"' + I. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge discussions on the 
algebraic aspects of the normal form with Alberto Baider; no 
doubt, they have strongly influenced the writing of Sec. III. 
Thanks also go to Sheila A-Lee for her superb typing of the 
manuscript. 

APPENDIX: PROOF OF THE MAIN LEMMA 

Set u = <P - rP. Then we compute 

!i.. (u,u) = - 2 Im(Au + g,u) = - 2 Im(g,u). 
dt 

Here we used the symmetry of the operator A. 
Setting Vii (t) = [(u,u) + 8] 1/2 for 8> 0 and using the 

Schwarz inequality, we find 

-llg(t)II<vli (t)<llg(t)II· 
Integrating, we obtain 

Vii (t) <Vii (0) + 1 f IIg(s) lids I· 

The conclusion ofthe lemma follows in the limit 8W. 
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A new approximation for solving the time-dependent Schrodinger equation is proposed. It 
improves the time-dependent Hartree approximation by including time-dependent unitary 
operators acting on the Hartree product. This allows for the approximate description of the 
correlation between the various degrees of freedom. The mathematical structure of the new 
approach is analyzed and an alternative Lie algebraic derivation is presented. By adopting two 
different time-dependent variational principles two different sets of equations are obtained. 
Differences between the two resulting methods are discussed. 

I. INTRODUCTION 

Time-dependent methods in solving quantum dynamics 
have become increasingly popular during the last decade. 
Many severe problems of the time-independent formulation 
do not exist in a time-dependent picture, e.g., the treatment 
of continua and of the rearrangement and breakup processes 
in reactive scattering. Averaged quantities may be computed 
directly since one does not necessarily project the wave func­
tion onto final states. Hence time-dependent methods are 
particularly well suited for describing nonfully resolved ex­
periments. Besides of the technical advantages, the time-de­
pendent formulation often leads to a better understanding of 
the physical mechanism under discussion. 

The applications we have in mind are (a) collisional 
vibrational excitation of a polyatomic molecule, e.g., 
HCN(v) + He .... HCN(v') + He, where v and v' denote the 
quantum numbers of vibration prior and post collision, re­
spectively; (b) photodissociation, e.g., HzO(v) + hv 
.... H + OH(v'); and (c) reactive scattering, e.g., 
HCI + D .... HD + Cl. The nuclear dynamics performs in all 
these cases on a single Born-Oppenheimer surface, i.e., the 
electronic motion decouples from the heavy particle motion 
(to a very good approximation). The former motion is as­
sumed to be solved by quantum chemistry and the latter one 
is what we want to investigate. 

Adopting a time-dependent formulation one has to 
choose among different numerical methods for solving the 
time-dependent Schrodinger equation. The best methods 
are, of course, the numerically exact ones. I

-
9 However, the 

use of a numerically exact propagation scheme is limited to 
problems with a very small number of degrees of freedom 
C two or three). A considerable reduction of the computa­
tional effort is gained by resorting to approximate methods, 
e.g., to the mean field approaches. These are in particular the 
time-dependent Hartree (TDH) and time-dependent Har­
tree-Fock CTDHF) methods for treating distinguishable 
particles and fermions, respectively. In nuclear physics 
TDHF is one of the most popular time-dependent meth­
ods. \0 In the field of molecular physics TDH has been used 
less. However, semiclassical approximations to TDH have 
recently been investigated and applied. I 1-13 

aJ Permanent address: R. Boskovic Institute, Zagreb, Yugoslavia. 

Another approach to solve the time-dependent Schro­
dinger equation approximately is the parametrized wave 
function method. In this method one adopts an ansatz for the 
wave function that contains a set of time-dependent param­
eters. The equations of motion for these parameters are de­
termined by a time-dependent variational principle (VP). A 
thorough discussion of the mathematical structure of the 
parametrized wave function method can be found in Kramer 
and Saraceno. 14 A well-known example out of this category 
is the Gaussian wave packet propagation of Heller. IS-17 

Somewhat similar in spirit to the parametrized wave 
function method is the exponential operator approach. One 
writes the propagated wave function ,pCt) as 

,pU) = U(t),p(O). (1.1 ) 

The time-evolution operator UU) is written as an exponen­
tial or as a product of exponential operators. The exponen­
tial form guarantees unitarity although the propagation may 
be approximative. The first use of exponential time-evolu­
tion operators goes back to Magnus. IS Using the Magnus 
formula one writes 

( 1.2) 

where the Hermitian operators Mn are given as time inte­
grals over;n times the n-fold commutator of HUI), ... ,H(tn ). 

Depending on the problem there may be only a finite number 
of nonvanishing operators Mn. Otherwise the series must be 
truncated. However, if the Hamiltonian HU) belongs to a 
finite-dimensional Lie algebra then all Mn also belong to this 
Lie algebra and the infinite sum may analytically be reduced 
to a finite one. In this case the time-evolution operator be­
comes 

C 1.3) 

where the operators {A n } form a basis of the m-dimensional 
Lie algebra. The parameters an may be determined by solv­
ing a set of differential equations. In a nice paper Pechukas 
and Light 19 have demonstrated the usefulness ofthe Magnus 
approach for solving certain model problems. 

The Magnus formulation has two serious drawbacks: 
(i) the matrix elements of the time-evolution operator are 
often very hard to compute; and (ii) it can only be shown 
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that Eqs. (1.1), (1.2), or (1.3) establish a local solution to 
the time-dependent Schr6dinger equation (i.e., up to some 
finite to). A global solution may not exist! These two difficul­
ties are overcome in the formulation of Wei and Nor-

2021 Th . h' I' man.' ey wnte t e tIme-evo utlOn operator as a prod-
uct of exponentials 

U(t) = exp(iamAm ) .. 'exp(iazA2)exp(ia IA1), (1.4) 

where al, ... ,am are real time-dependent parameters and 
where the Hermitian operatorsA1, ... ,Am are assumed to be a 
basis of some Lie algebra. (Actually Wei and Norman did 
not require A 1,. .. ,Am to be Hermitian and a1,. .. ,am to be real 
and they considered a larger class of problems than just the 
time-dependent Schr6dinger equation.) If the Hamiltonian 
H(!) is in the Lie algebra then one can find parameters 
a1, ... ,am yielding an exact solution. Wei and Norman de­
rived differential equations for the parameters and showed 
under which condition the solution is global. These condi­
tions, in particular, concern the ordering of the product 
(1.4). 

The Wei and Norman approach is not of too much prac­
tical use in the general case. This is because one generally 
cannot find a Lie algebra which on one hand contains the 
Hamiltonian and which on the other hand has a small sized 
basis of simple operators such that exp(iajAj) can be evalu­
ated. If one approximates the Hamiltonian by a member of 
the Lie algebra, then this approximation is often very poor. 

In this paper we shall combine the TDH and the Wei 
and Norman approaches yielding the time-dependent rotat­
ed Hartree (TDRH) formalism. By "rotated" we here de­
note a generalized rotation, i.e., a unitary transformation of 
the wave function; we do not restrict ourselves to physical 
rotations of the coordinates. In TDRH the unitary operators 
act on the Hartree product rather than on ¢(t = 0). Hence 
the unitary transformations have only to account for the 
correlations between the different degrees of freedom and 
not for the full motion of the wave packet. Since TDRH is 
derived from a VP it is necessarily an improvement over 
TDH. 

The TDRH was recently applied successfully to a model 
problem.22 Here we devote ourselves to the formal deriva­
tion of the new method. In Sec. II we shall derive the equa­
tions of motion from time-dependent VP's. In Sec. III we 
discuss the TDRH approach in terms of the Lie algebra for­
malism and introduce the new concept of a A algebra. The 
algebraic approach leads to the same equations of motion as 
derived in Sec. II. The Lie algebraic formulation, however, is 
of great importance because it illuminates the mathematical 
structure of the method. It shows a way how to determine 
the optimal ordering of the exponential operators and allows 
us to name the conditions under which a global solution 
exists. In Sec. IV we shall discuss the two-dimensional har­
monic algebra as an example and in Sec. V we finally summa­
rize our results. 

II. THE GENERALIZED HARTREE METHOD 

A. The ansatz 

The goal of the present work is to solve the time-depen­
dent Schr6dinger equation 
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i¢ex = H¢ex (2.1) 

in an approximate but systematic fashion. Here H denotes 
the Hamiltonian that mayor may not depend on time and 
¢ex is the exact wave function depending on n coordinates. 
We shall assume Ii = 1 throughout. In the TDH formalism 
the wave function is approximated by a separable product 

n 

¢ex (xl,· .. ,xn,t) :::::<I>(X I,X2 .. ·,xn,t) = II <l>j(Xj,t). (2.2) 
j~ 1 

The single-particle functions <l>j are assumed to be normal­
ized, 

(2.3 ) 

and their time evolution is given by the mean field equa­
tions23 

i<i>j = (H U) - [(n - 1 )/n] (H) )<I>j, 

where the total energy reads 

(H) = (<I>IHI<I» 

and where 

(2.4 ) 

(2.5 ) 

(2.6) 

is the mean field Hamiltonian describing the motion of the 
particle j in the mean field spanned by the other particles. 
The phase factor [(n - 1 )/n] (H) is often removed from 
the mean field equation (2.4) and the sum of all phase fac­
tors is treated separately. 23 

The Hartree ansatz can be improved by enlarging the 
space of the trial functions. Our ansatz for the trial wave 
function ¢ reads22 

¢(t) = U(t)<I>(t), (2.7) 

where U(t) is a unitary operator. This operator is written as 
a product 

with 

m 

U= II Uk =Um "'U2 U 1 
k~1 

(2.8) 

(2.9) 

(Note that we order products from right to left!) The a k 

denote time-dependent real parameters and the Ak are Her­
mitian operators. 

The unitary transformations performed by the exponen­
tial operators can be considered as generalized rotations. 
Hence we shall refer to the method which follows from the 
ansatz (2.7)-(2.9) as the time-dependent Hartree method 
with generalized rotations or briefly time-dependent rotated 
Hartree (TDRH). 

Some remarks on TDHF and its generalization to 
TDRHF are in order. In TDHF the trial function <I> is not of 
product form but is a Slater determinant. When generalizing 
TDHF to TDRHF one has to be careful not to destroy the 
antisymmetry. The natural way to achieve this is to restrict 
the generators of the rotations Ak to be second quantized 
operators, i.e., Hermitian combinations offermion annihila­
tion and creation operators. 
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B. Variational principles 

The equations of motion for the parameters a k as well as 
for the single-particle functions <l>j are obtained by applying 
a time-dependent VP to the ansatz (2.7)-(2.9). In the fol­
lowing we shall discuss two different VP's. The first VP we 
discuss is due to McLachlan. 23 It states 

(2.10) 

where 11'11 denotes the Hilbert space norm. Only the time 
derivative if! is varied. This demand follows from the phys­
ical picture that, at each point of time, t/J is given as the initial 
value and the optimal approximation to if! is desired. The 
McLachlan VP defines "optimal" as the smallest error in the 
norm. If the space of allowed variations of if! is equal to the 
space of allowed variations of t/J, i.e., if 

{15if!} = {15t/J}, (2.11) 

then one finds that Eq. (2.10) is equivalent to 

(2.12) 

Our ansatz (2.7)-(2.9) implies that (2.11) and thus (2.12) 
are valid. 

The other VP of interest is thoroughly investigated by 
Kramer and Saraceno. 14 It starts by introducing the Lagran­
gian 

(2.13 ) 

where t/J is assumed to be normalized. As usual one requires 

f" 15 Ldt= 0 
" 

(2.14 ) 

subject to the boundary conditions 15L (t I) = 15L (t2) = O. 
Performing the partial integration leads to 

Re( 15t/J I i :r - H I t/J) = o. (2.15 ) 

The two VP's lead to surprisingly similar equations. 
Iffor each allowed variation 15t/J the variation iSt/J is also 

allowed then both VP's reduce to 

(15t/J Ii :t -H I t/J) = 0, (2.16 ) 

which is known as the Dirac-Frenkel Vp. 24
,25 The variation­

al parameters ak' however, are restricted to be real and 
hence the two VP's are inequivalent and produce different 
equations of motion. The VP due to McLachlan will be de­
noted as NVP (norm VP) and the second VP by L VP (La­
grangian VP). The NVP and L VP fulfill the imaginary and 
real parts of the Dirac-Frenkel VP (2.16), respectively. The 
Dirac-Frenkel VP itself is not applicable since it requires 
complex parameters ak' The parameters ak have been cho­
sen to be real because otherwise the operators Uk are no 
longer unitary. The use of non unitary operators leads to un­
traceable difficulties. Returning to the usual Hartree ap­
proach (2.4) we remark that in this case all three VP's 
(NVP, LVP, and Dirac-Frenkel) are equivalent and hence 
yield the same mean field equations. This is because the vari­
ational quantities <l>j are complex. 
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c. Equations of motion 

As for the TDH approach both VP's yield in our TDRH 
the same mean field equations of motion for the single-parti­
cle functions <l>j. They read22 

i<i>. = {H(j) _ n - 1 (H) 
J n 

m ('" u) n - 1 '" )} + L ak A k --- (A k ) <l>jJ 
k=1 n 

where H denotes the rotated Hamiltonian 

H= UtHU, 

and where Ak denotes the partially rotated generator 

'" [k-I ]t [k-I ] 
Ak = /:[11 exp(ia/A/) Ak /:[11 exp(ia/A/) . 

(2.17) 

(2.18 ) 

(2.19) 

The expectation value (X) and the mean field X U) of the 
operator X are defined analogously to Eqs. (2.5) and (2.6), 
respectively. One recognizes that the first part of Eq. (2.17) 
is just the TDH formula except for the use of the rotated 
Hamiltonian. The second part arises because the mean field 
equation must account for the change of the wave function 
introduced by the change of the parameters a k • This part is 
proportional to the velocities a k' 

Before we discuss the equations of motion for the pa­
rameters a k we find it convenient to introduce the super 
operator A which is defined by 

n 

AB = B + (n - 1) (B) - L B U). 
j= I 

The super operator is idempotent, i.e., 

A(AB) = AB, 

(2.20) 

(2.21 ) 

and it produces operators with vanishing mean fields and 
vanishing expectation values 

(2.22) 

The meaning of AB is simple. It describes that part of B 
which is nonseparable. The equation AB = 0 holds if and 
only if B is a sum of single-particle operators. 

The super operator A enables us to separate the set of 
operators into two classes. We shall call an operator B a 
mixing or a separable operator according to whether AB i= 0 
or AB = 0, respectively. Although the value of AB obviously 
depends on the choice of the Hartree product with respect to 
which the mean fields are defined, the distinction mixing/ 
separable is independent of this choice! Finally we note two 
very useful rules, namely 

«t::.A)B) = (A(AB» = (t::.AAB) (2.23 ) 

and 

(2.24) 

where Bj and B/ denote single-particle operators operating 
on thejth and lth coordinate, respectively. 

We now vary-according to the rules of NVP and 
LVP-the parameters a k to obtain their equations of mo­
tion. This leads t022 

(2.25) 
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where the auxiliary operator F is defined as 

F= I1lI + f akl1Ak. 
k~1 

(2.26) 

In Eq. (2.25) one has to use the anticommutator 
[A,B] + = AB + BA if one adopts NVP and the commutator 
[A,BL = AB - BA if LVP is used. Equation (2.25) can 
easily be rewritten by assuming a matrix notation 

Ba = b, 

Ca = e, 

(2.27a) 

(2.27b) 

where a = (a l ,a2 , ... ,a",) T. The matrices Band C possess 
the elements 

Bkk , = ([ I1Ak ,l1Ak , ] +) , 

Ckk' =i([l1Ak,l1Ak']~)' 
(2.28a) 

(2.28b) 

and the elements of the vectors band e take the following 
appearance: 

bk = - ([l1Ak,l1lI]+) , 

Ck = - i( [l1Ak,l1lI]~) . 

(2.29a) 

(2.29b) 

Equations (2.27a), (2.28a), (2.29a) refer to NVP and Eqs. 
(2.27b), (2.28b), (2.29b) to LVP. All quantities appearing 
in these equations are real. The matrices Band C are sym­
metric and antisymmetric, respectively; i.e., 

BT = B, 

CT = -C. 

D. Comparison of the variational principles 

(2.30a) 

(2.30b) 

The most striking difference between the two VP's lies 
in their treatment of constants of motion. In particular, the 
LVP conserves the total energy of time-independent systems 
whereas NVP does not. Let I denote some time-independent 
constant of motion, i.e., aI/at = 0 and [I,H] ~ = O. The 
time derivative of its expectation value is 

~ (1/11111/1) = i(<I>1 [111,F L 1<1»· 
dt 

(2.31 ) 

This result is independent of the VP used. It also holds for 
TDH for which F and 111 simplify to I1H and 111, respective­
ly. Setting I = H and using Eqs. (2.26) and (2.29) one finds 

E==~ (1/I1H 11/1) = aTe. (2.32) 
dt 

This expression is valid independently of how a is deter­
mined. Using the LVP one finds that E = a TCa = 0 vanish­
es because of the antisymmetry of the matrix C [cf. (2.27b), 
(2,30b)]. We now let I become again an arbitrary constant 
of motion. Using the L VP one then finds that the time deriv­
ative of (1/111 11/1) vanishes if 111 is a linear combination of the 
I1Ak [cf. (2.25) and (2.31) ]. This requirement is fulfilled if 
I is in the maximal embedding Lie algebra. (The embedding 
algebra will be introduced in the next section.) The NVP, on 
the other hand, does neither conserve the total energy nor 
the expectation value of a constant of motion (except for 
trivial ones with 111=0; I = 1 is usually the only constant of 
motion with this property). 

The constraint of conservation of total energy can easily 
be added to the NVP. This leads to the equations of motion 
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a = (1 - deT)B~lb, 

where 

d = B~le/(ers~le). 

(2.33 ) 

(2.34) 

We have derived these expressions to show that L VP is not 
just NVP plus the constraint of conservation of energy. 

From the above considerations one may get the impres­
sion that the LVP is superior over the NVP. However, if one 
investigates the error introduced into the wave function then 
the NVP seems to be the superior method. To discuss the 
error we introduce the effective Hamiltonian Heff which pro­
pagates the approximate solution 1/1. We define Heff by 

iip = Heff 1/1. (2.35) 

One can easily show that 

Heff = H - UFUt (2.36 ) 

and hence 

Iliip - H1/I11 = IIF<I>II (2.37 ) 

holds. This shows that IIF<I>II is a measure of the error. Equa­
tions (2.35)-(2.37) are valid for both VP's as well as for 
TDH for which F simplifies to 11H. 

The NVP is equivalent to requiring 

IIF<I>I12 = Min, (2.38) 

where the ak are to be varied. Hence the NVP tries to make 
IIF<I>II as small as possible. This is very reasonable because­
as seen above-IIF<I>II is a measure of the error introduced in 
the wave function. We note that both VP's yield the same 
(exact) result, if the ak can be arranged such that F<I> = O. 
In general, however, the results obtained by employing the 
NVP or the L VP will be different. It is not clear to us in 
which sense the LVP provides an optimal result if an exact 
solution is not accessible. 

We have shown under which conditions the new meth­
ods yield an exact solution (i.e., if IIF<I>II = 0). We have, 
however, not yet proved that a global solution exists. A glo­
bal TDRH solution requires a global solution of the differen­
tial equation (2.27). Such a solution may not exist, e.g., if the 
matrices B or C become singular in the course of the integra­
tion. In the next section we shall investigate the origin of 
possible singularities of B or C and discuss how to avoid 
them. 

III. USING LIE ALGEBRAS 

A. General remarks 

In Sec. III B we shall somewhat colloquially describe 
the Lie algebraic approach to TDRH. The algebraic ap­
proach offers an independent route to the equations of mo­
tion of TDRH. This way is more difficult to follow but it 
provides a considerably deeper understanding of the meth­
od. We start the discussion by assuming that the Hamilto­
nian belongs to a so-called embedding Lie algebra, i.e., by 
assuming that an exact solution is accessible. In Sec. III ewe 
discuss how to proceed if the Hamiltonian is not a member of 
the embedding algebra. We shall find that the equations of 
motion, as derived in Sec. II, are recovered by the algebraic 
approach for both of the VP's. In Sec. III D we essentially 
repeat and extend the second part by using more mathemat­
ical rigor. 
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When discussing the algebraic approach we shall con­
centrate on the equations of motion for the parameters a. 
With respect to the mean field equations (2.17) we only 
remark that their solution exists and is unique, provided the 
velocities ak remain bounded. One then finds that the II<i>j II 
are bounded which guarantees the existence of the solution. 
The mean field operators appearing in (2.17) can be differ­
entiated with respect to the single-particle functions <l>j. 
Hence the Lipschitz condition can be satisfied yielding the 
uniqueness of the solution. 

B. Outline of results 

The basis of a Lie algebra has often been used 14.18.20.21 to 
serve as generators of the generalized rotations describing 
the time-evolution operator. Such a choice of generators al­
lows for a rigorous and transparent theory. In the following 
we briefly discuss the properties of Lie algebra. For our pur­
pose it is sufficient to define a Lie algebra as a complex linear 
space of linear operators which is closed under commuta­
tions, i.e., the commutator of two operators out of the alge­
bra belongs to the algebra. From this property it follows 18 

that the Lie algebra is invariant under rotations, i.e., if 
A and B belong to the algebra then A rotated by B, 
exp( - B) A exp(B), also belongs to the Lie algebra. Hence 
if the Hamiltonian is in the algebra, then the rotated Hamil­
tonian H is still in the algebra. All operators of the Lie alge­
bra can be expanded in the finite basis and the exact quantal 
solution of, e.g., the Wei and Norman formulation becomes 
equivalent to solving a finite set of first-order differential 
equations. 14.18.20.21 

In the TORH approach the situation is more complicat­
ed. The time evolution operator acts on the Hartree product 
which itself is a fairly good approximation to the exact wave 
function. Hence to yield an exact solution (we suppose the 
Hamiltonian being such that an exact solution is accessible) 
the unitary operator has only to account for the nonsep­
arable parts of the wave function. Therefore only the mixing 
parts, aH and aA k' of the rg!ated Hamiltonian H and the 
partially rotated generators Ak appear in the equations of 
motion for the parameters a k [cf. (2.27)-(2.29)]. This new 
situation leads to the introduction of the new concept of a a 
algebra. The a algebra !» is defined as a linear space of 
mixing operators, i.e., !» contains no separable operator ex­
cept for the zero operator. In order to be a a algebra, !» must 
be invariant under rotations (so called a invariance, see 
Sec. III C). For each a algebra there exist embedding Lie 
algebras. A Lie algebra X' is called an embedding algebra of 
the a algebra!» if !» C X' and aX' = a!»; i.e., the super 
operator a projects any operator of X' onto a!». (!» and 
a!» are isomorphic. One merely distinguishes between the 
two sets because a!» is defined only with respect to the Har­
tree product. ) 

Let the generators of TORH, A k , be a basis of some m­
dimensional a algebra!». Because of the a .invariance one 
may expand the partially rotated operators Il.A k by the unro­
tated ones, i.e., 

1421 

aAk = I Dkk,ll.Ak,· 
k' 
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(3.1) 

The matrix 0 is called "structure matrix." It depends on a as 
well as on the ordering of the generators. Now suppose that 
aH is in the a algebra, i.e., 

m 

aH = I hkll.Ak. (3.2) 
k=1 

By satisfying the linear equation 

h = - DTci (3.3 ) 

the velocities ak are arranged such that the operator F [cf. 
(2.26) ] vanishes indentically. Hence TORH yields an exact 
solution if aHEa!». As known from the theory of differen­
tial equations,26 Eq. (3.3) has a global solution if 

(i) 0 is nonsingular for all a, 

(ii) IIO-I1JlII<cI +c2 11all, 
(3.4) 

where CI and Cz are some constants and where 11'11 denotes 
the Euclidean norm of the Hm. It is one of the major results of 
the algebraic approach to TORH to emphasize that one has 
to avoid a singular structure matrix by choosing an optimal 
ordering of the generators A k (see Sec. IV). 

The requirement that aH lies in the a algebra is usually 
not easy to check. One has to consider the a projection of the 
rotated Hamiltonian H rather than of the Hamiltonian itself 
(the a invariance does not help because Hf!;!» although 
aHEa!» ). However, if Hbelongs to an embedding Lie alge­
bra X' of the a algebra !» then we can conclude 
HEX' -+ HEX' -+ aHEa!». Hence we arrive at the easy to 
check condition that TORH yields an exact solution if H 
belongs to an embedding Lie algebra of !» . 

c. Hamiltonians not belonging to the Lie algebra 

In most of the problems which one wants to solve, the 
Hamiltonian H does not belong to an embedding Lie algebra 
or, more precisely, aHf!;a!». In this case one constructs an 
approximation aHapp which belongs to the a algebra. The 
strategy now is to seek an exact solution to the approximate 
Hamiltonian which in tum establishes an approximate solu­
tion to the exact Hamiltonian. [By the way, the effective 
Hamiltonian for which we obtain the time evolved wave 
function is given by Helf = H - U(aH - aHapp) Ut, see 
Eq. (2.36).] The most obvious ~onstruct!.on of aHapp is 
making the difference between aH and aHapp as small as 
possible, where the measure is the norm with respect to the 
Hartree product, i.e., 

II(aH -Wapp )<I>1I2 = Min. (3.5) 

We write 
m 

aH app = I h k Il.A k> (3.6) 
k=l 

where now hk are to be determined and are not given a priori 
as in Eq. (3.2). The solution to the problem (3.5) yields 

Boh = - bo, (3.7) 

where 

bOk = - ([ll.Ak,aH]+) , 

BOkk ' = ([ Il.Ak,ll.Ak'] +) . 

(3.8) 

(3.9) 

The differential equation for the parameters (3.3) now reads 
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U= -O-I1fi=O-IIBo-
l bo 

= (OBOOT)-IObo = B-1b (3.10) 

with obvious definitions for Band b. It is easy to see that the 
quantities Band b of Eq. (3.10) are exactly the ones defined 
by Eqs. (2.28a) and (2.29a). Hence the prescriEtion (3.5) 
to determine the a-algebra approximation to aH is strictly 
equivalent to the NVP. 

Another way of finding a a-algebra approximation to 
ail is by requiring that ail and ailapp have the same expec­
tation values of the commutators with the a-algebra ele­
ments; i.e., 

(3.11 ) 

This condition is motivated by the fact that the structure of a 
Lie algebra is determined by its commutators. The condition 
(3.11) has the solution. 

Cob = - Co 

with 

COkk ' = i( [aAk,aA k,]_) 

and 

Similar to Eq. (3.10) one finds 

C = OCOOT 

and 

(3.12 ) 

(3.13) 

(3.14) 

(3.1Sa) 

C = Oco, (3.1Sb) 

where C and c are given by Eqs. (2.28b) and (2.29b). This 
proves that the construction (3.11 ) is equivalent to the L VP. 

We will now discuss the origin of the possible singulari­
ties of the matrices Band C. Equations (3.10) and (3,15) 
show that these matrices are singular if 0 or if Bo (Co) are 
singular. The matrix 0 is entirely defined by the structure of 
the a algebra and by the ordering of the generators. It is 
independent of the Hartree product ct>. The matrix elements 
of 0 can be derived explicitly (see Sec. IV). By a proper 
choice of the a algebra and of the ordering of the generators 
one can ensure that 0 is nonsingular once and for all. 

The singular points of Bo and Co, on the other hand, do 
not depend on the ordering. They are even independent on 
the choice of the basis of !lJ. They do, however, depend on 
the Hartree product ct>. A singularity ofBo indicates that Eq. 
(3.5) has no unique solution. (The existence of a solution is 
clear.) In fact, it is easy to show that Bo is singular if and only 
if there exists a Hermitian operator AE!lJ ,A =1= 0, with 

aA<I> = O. (3.16) 

A Hartree product <I> satisfying Eq. (3.16) is called a singu-
1ar point of Bo. At a singular point one may add A.aA to 
alI. with an arbitrary A. and still satisfy Eq. (3.5). From app 
Eq. (3.16), on the other hand, it follows that the time evolu­
tion of the wave function .,p is not changed by the above 
mentioned change of ailapp . Hence the singularities of 8 0 

are irrelevant physically. The (spurious) difficulty raised by 
the singularity of Bo can be overcome by replacing 80- I by 
the pseudoinverse B~. 

Before we continue we shall briefly discuss the defini-
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tion and the properties of a pseudoinverse.27 Let M be a real 
matrix which does not need to be square and let P denote the 
projector on those eigenvectors ofMIM which have vanish­
ing eigenvalues. The pseudoinverse MI is defined as 

M1=(MIM+A.P)-IMT, (3.17) 

where A. denotes some positive constant. (M 1 does not de­
pend on A..) The pseudoinverse has the following proper­
ties27

: 

MMIM = M, (3.18a) 

M/MMI = M/, (3.18b) 

(M/)I = M, (3.18c) 

(MT)I = (M/)T, (3.18d) 

M/M = 1 - P, (3.18e) 

MM/=1-P', (3.18f) 

where P' denotes the projector on the null space ofMM T. (To 
put it differently: 1 - P and 1 - P' denote projectors on the 
row and column spaces of M, respectively.) If M- 1 exists 
then MI = M - I. If the equation 

Mx=m (3.19 ) 

has a solution (i.e., if P'm = 0) then 

Xo = M/m (3.20) 

is that solution of all possible solutions of Eq. (3.19) which 
has the smallest Euclidian norm. If, on the other hand, Eq. 
(3.19) has no solution (i.e., if P'm=l=O) then Xo denotes the 
solution of minimal norm to the equation 

IIMx - mJJ2 = Min. (3.21 ) 

Before we continue, we remark that we shall make further 
use of the pseudoinverse when we encounter the singular 
matrices 0 and Co of Eqs. (4.10) and (4.19) (see Sec. IV). 

We now return to the equations of motion for the pa­
rameters a as determined by NVP. The equation 

ii = - B~bo (3.22) 

provides a well defined exact solution to Eq. (3.7) [because 
P'bo = 0, see Eqs. (3.8), (3.9), and (3.16)]. In the present 
situation, however, it is not convenient to employ the pseu­
doinverse directly. If the matrix Bo is regular but close to 
singular then b and hence u may become very large which 
causes numerical difficulties as well as obscures the existence 
of a global solution. The pseudoinverse B~-albeit well de­
fined- cannot be uniformly bounded for all times. Guided 
by Eq' (3. 17) we therefore preferred to replace Bo- I by 

80 = (B6'Bo + E1 )-IB6', (3.23) 

which is a uniformly bounded approximation to the pseu­
doinverse. Here E denotes a small positive number. The com­
puted wave function will depend on E. The convergence of 
.,p(E,t) as E-O is disc~ssed at the end of this section. (Note 
that B~ ..... BI 

as E-O)" . . . . . 
Returning to the L VP we find that the s1tuat10n 1S S1m1-

lar but not quite as pleasant as above. The matrix Co is singu­
lar if and only if there exists a Hermitian operator AE!lJ, 
A =1=0 such that 

(ct>I[aA,aAd_I<I» =0 (3.24) 
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holds for k = l •...• m. This is a much weaker condition than 
(3.16) and hence singular points of Co are more likely than 
singular points of Bo. (A singular point of Bo is necessarily a 
singular point of Co,) Moreover. Eq. (3.11) may not have a 
solution at all (i.e .• P'eo#O) if Co is singular and H(f.? max' 

Hence the computed wave function t/I(t) may depend on 
how one determines eX near the singularities of Co. In prac­
tice one removes the singularities of Co by a procedure analo­
gous to that ofEqs. (3.17) and (3.23). The above consider­
ations again show that the NVP seems to yield better results 
than the L VP. at least if one considers the error in the wave 
function. 

D. Mathematical details 

In this section we shall give a more extensive discussion 
on Lie and a algebras as well as a more rigorous proof on the 
existence of a global exact solution. The motivation for all 
the definitions and lemmas to follow was provided above. 
The proofs of the lemmas are mostly not given here; they are 
either straightforward or can be found in the litera­
ture. 18,20,2I,28-31 For sake of simplicity and brevity we shall 
not adopt the most general definition of a Lie algebra but 
consider only Lie algebras formed by linear operators. For 
sake of brevity we also shall drop the minus sign from the 
commutators in the following. 

Definition 3.1: A set of linear operators.? is called 
closed iff or each A,BE.? follows [A,B]E.? 

Definition 3.2: A set oflinear operators.? is called in­
variant iff or each A.BE'? follows e - B AeBE.? 

Definition 3.3: A set of linear operators is called a Lie 
algebra if it is a closed linear space. 

Lemma 3. J: A Lie algebra is invariant. An invariant 
linear space is a Lie algebra. 

Definition 3.4: Let a be a super operator and'? a set of 
operators. The sets a.?, [.?I' '?2], and Comp(.?) 
(called the completion of .?) are defined as 

a.? = {an IBE'?}, 

[.? I'.? 2] = {[A,B] IAE.? I' BE.? 2}, 

Comp(.?) = span('?U [.?,.?] U [.?,[.?,.?]] 

U [.?,[.?,[.?,.?]]] 

U [[.?,.?],[.?,.?]] U···) , 

where span (.?) denotes the complex linear space spanned 
by the set .? 

Lemma 3.2: Let .? be a set of operators. Then 
Comp(.?) is a Lie algebra. Moreover, .? is a Lie algebra if 
and only if.? = Comp(.?). 

We now introduce the new concept of a a algebra. The 
super operator a which projects onto the mixing part of an 
operator is defined in the previous section [Eq. (2.20)]. 

Definition 3.5: A nonzero operator A is called mixing 
(separable) if aA # 0 (aA = 0). The zero operator is by de­
finition both mixing and separable. 

Lemma 3.3: The property mixing (separable) is inde­
pendent of the Hartree product <I> used to construct the su­
per operator a. 

Lemma 3. 4: Let fiJ be a linear space of mixing operators 

1423 J. Math. Phys., Vol. 29, No.6, June 1988 

and let {A k} , k = 1, ... ,m, be a basis of fiJ. The mapping a: 
fiJ -+ afiJ is isomorphic and {aA k}, k = 1, ... ,m, is a basis of 
afiJ. 

Definition 3. 6: A set of mixing operators fiJ is called a 
closed if for any integer n and for BI, ... ,BnEfiJ follows 
a [B I, [B2, ... , [Bn _ I ,Bn ] ... ] ] EafiJ. 

Definition 3. 7: A set of mixing operators fiJ is called a 
invariant iffor any integer n and for all A, BI, ... ,BnEfiJ fol­
lows a(e-B'e-B'···e-BnAeBn .. '~'eB,) EafiJ. 

Definition 3.8: A set of mixing operators is called a a 
algebra if it is a a-closed linear space. 

Lemma 3.5: A a algebra is a invariant. A a-invariant 
linear space of mixing operators is a a algebra. 

Lemma 3.6: Let.? be a Lie algebra. Then a.? is a a 
algebra. 

Definition 3.9: Let.? be a Lie algebra and let fiJ be a a 
algebra. Here .? is called an embedding algebra of fiJ if 
fiJ C.? and A.? = afiJ. 

Definition 3.10: The minimal embedding algebra.? min 

ofthe a algebra fiJ is defined as .? min = Comp(fiJ). 
Definition 3.11: Let .? max be an embedding algebra of 

fiJ. Here .? max is called a maximal embedding algebra 
if for any operator A(f.? max follows a Comp( {A} 
U.? max) #afiJ. 

Lemma 3. 7: The maximal embedding algebra is unique­
ly defined. 

Lemma 3.8: For any embedding Lie algebra.? there 
holds .? min C .? C.? max and dim (.? min) 

<;dim(.?) <;dim(.? max)' 

Having studied the properties of Lie and A algebras as 
well as their relations we come back to investigate the 
TDRH method. We shall assume that the generators of the 
rotations {Ak}' k = l, ... ,m, are a basis of a a algebra fiJ. 
Since fiJ is a invariant we can expand the mixing parts of the 
partially rotated generators aAk in the basis; i.e., 

(3.25 ) 

where Ak and D kk , are functions of the parameter a. It is 
important to note that the structure matrix D is independent 
of the Hartree product <I> used to construct the super opera­
tor a. The structure matrix is real. We now extend the set of 
Hermitian operators {Ak} such that {A k}, k = 1, ... ,M, be­
comes a basis of the maximal embedding algebra.? max' The 
rotated basisAk = UtAk U can be related to the original one 
via the matrix R, i.e., 

(3.26) 

for all k between 1 and M. Let the Hamiltonian Hbe a mem­
ber of the maximal embedding algebra.? max' i.e., 

(3.27) 

Since .? max is invariant we may also expand the rotated 
Hamiltonian in the basis 

M 

H= L hkAk· 
k=1 

(3,28 ) 

By comparison one finds 
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M 

hk = L hk,Rk'k' (3.29) 
k'= 1 

Using the above equations we can now express F [cf. (2,26) ] 
as 

F= k~1 (~I hjRjk , + ktl llkDkk') IlA k,· 

Hence F vanishes if 

a = - (R'O-I)Th, 

(3.30) 

(3.31) 

where we have denoted by R' the M X m matrix consisting of 
the first m columns of R. 

The TDRH method yields the exact wave function if the 
differential equation (3.31 ) has a solution. The existence of a 
unique and global solution of (3.31) depends on certain 
properties of the matrices Rand O. Their matrix elements 
depend on the choice and ordering of the basis. To discrimi­
nate not well behaved matrices from well behaved ones we 
introduce the following definition, 

Definition 3.12: Let GCRm be an open set. The genera­
torsA k , k = 1,oo.,m, are called properly ordered on G if 

(i) 0- 1 exists for all aEG, 
(ii) IIR'O-III<c1 + c2l1all, 

for some constants C1, C2 and for all aEG. 
We remark that the choice and ordering of the basis 

operators not belonging to fiJ, i.e., A k , k = m + l,oo.,M, is 
irrelevant. We are now ready to state the central result of this 
section. 

Theorem 3.1: Let {A k }, k = 1,oo.,m, denote a set of Her­
mitian operators which form a basis of some II algebra fiJ. 
Let the generators A k be properly ordered on some domain 
GCRm. Let Uk}' k = l,oo.,M, denote a basis of the maximal 
embedding algebra.!f' max and let the Hamiltonian Hbelong 
to this algebra. The expansion coefficients of 
H = 1:.':= 1 hkAk are assumed to be uniformly bounded, i.e., 
I h k (t) I <const. Finally let a (t = 0) EG. Then the TDRH 
method as defined by Eqs. (2.17) and (3.31) provides the 
exact wave function within some time interval O<t<to' The 
parameters aCt) are uniquely determined. The time to, if 
finite, is given by the condition a(to)EaG. The solution is 
global, i.e., to = 00, if a(t)EG for all t. A global solution 
exists in particular if G = Rm. 

To prove the theorem we remark that we only have to 
show that the differential equation (3.31) has a unique solu­
tion on G. The uniqueness of the solution is given if the dif­
ferential equation satisfies the Lipschitz condition.26 The 
matrix elements of 0 and R can be shown2o,21 to be analytic 
functions of a. The conditions raised in Definition 3,12 now 
ensure that the matrix elements of R'O- 1 are analytic on G. 
Hence the Lipschitz condition can be satisfied. The existence 
of the solution is also guaranteed by the conditions raised in 
Definition 3.12. The condition (ii) together with the as­
sumption Ihk (t) I <const ensures that the solution cannot 
"blow up," i.e., Ila(t) II ..... 00 for finite t. 

In closing this section we comment on the case 
Hf!2" max' An exact solution is no longer guaranteed but one 
wishes to ensure the global existence of the approximate so­
lution. In view of Theorem 3.1 we may conclude that TDRH 
has a global solution if the approximate Hamiltonian Happ 
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has uniformly bounded expansion coefficients hk (t), How­
ever, because 8 0 or Co may become singular one cannot en­
sure that h k (t) is bounded. But if we remove the singularities 
of 80 or Co as discussed above [cf. (3.23)] then we obtain a 
global solution. This is stated in the following theorem. 

Theorem 3.2: Let 

(i) 1I0-111<cD , for all a, 

(ii) IIH(t)tP(t)II<cH , for O<t<to, 

(iii) IlllAk<l>ll<cA , for O<t<to and l<k<m, 

hold for some constants CD' CH , andcA and sometime to' The 
third condition is only necessary if the L VP version of 
TDRHisused. The equations of motion (2.27) or (3.10) are 
replaced by 

(3.32a) 

or 

(3.32b) 

for the use of the NVP or LVP form, respectively. The num­
ber E is assumed to be positive. The thus modified TDRH 
method has a unique solution in the time interval [O,to]' The 
solution is global if the assumptions (ii) and (iii) hold for all 
times. [If the NVP is used, then condition (iii) may be ig­
nored.] The time derivatives of the parameters are bounded 
by 

(3.33a) 

or 

(3.33b) 

for using the NVP or the LVP, respectively. 
Before we sketch the proof of the theorem we remark 

that the assumptions (ii) and (iii) are trivially obeyed if to is 
finite because IIHtPll and IlllAk <1>11 are continuous functions 
oftime. Moreover, the condition (ii) merely excludes time­
dependent Hamiltonians with a somewhat wildly time de­
pendence. For time-independent Hamiltonians we have 
IIHtPex (t) 112 = (tPex IH2ltPex) = const and replacing the ex­
act solution tPex by the TDRH approximation tP one can 
assume that IIHtPll does not change considerably. 

Turning to the proof of Theorem 3.2 we remark that 
0- 1, bo, and Co are analytic functions of a (bo and Co depend 
on a via lliI). The Lipschitz condition26 for the differential 
equations (3.32) is therefore obeyed and the solution is 
unique, provided it exists. The existence of the solution fol­
lows immediately from Eqs. (3.33). To prove these equa­
tions is just a matter of simple algebra. We merely remark 
that to prove (3.33a) one may use the diagonal representa­
tion of 8 0 , 

We finally comment on the convergence of the solutions 
with respect to the limit E ..... O. For this purpose we introduce 
two definitions. A detailed analysis of the convergence is 
then given in Theorem 3.3. 

Definition 3.13: Assume that the limits tP( E,t) ..... tP( O,t) 
exist and that 

(3.34) 

holds for some constants a and v and for all positive E. The 
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supremum for all v which satisfy Eq. (3.34) is called the 
speed of convergence. 

Definition 3.14: Let dj denote the eigenvalues ofBo or Co 
and assume that Bo (Co) is singular at t = ts' The singularity 
is called to be of bounded by ft if there exist some positive 
constants a, T, and eo such that 

(3.35 ) 

holds for all 0 < e < Eo and It - ts (E) I.;;; T. 

Theorem 3.3: Let the conditions of Theorem 3.2 be satis­
fied. Let ,p(e,t = 0) =,po be some initial condition. This 
wave function is propagated over the time interval [O,t] ac­
cordingly to the NVP or the LVP, respectively. The final 
wave function ,p(e,t) converges as e .... O, provided one of the 
following sets of conditions is met. 

( 1) If a singularity of Bo or Co is never encountered 
within the time interval [O,t] then ,p( e,t) converges with the 
speed v;;;. 1 for both of the VP's. 

(2a) If the exact solution is accessible then the solution 
of the NVP version ofTDRH converges with the speed v;;;.~. 

(3a) If there is only a finite number of singularities ofBo 
within the time interval [O,t] and if these singularities are 
bounded by ft then the solution of the NVP version of 
TDRH converges with the speed v;;;. 11 (2ft). 

The statements (2a) and (3a) hold analogously also for 
the L VP version, provided the singularities of Co are com­
mon singularities ofBo' i.e., ifrank(Co) = rank(Bo) for all 
times considered. Ifthe matrix Co has singularities which are 
not common singularities of Bo then one arrives at the fol­
lowing weaker statement. 

(2b) If an exact solution is accessible and if those singu­
larities of Co which are not common singularities of Bo are 
bounded by ft then the solution of the LVP version ofTDRH 
converges with the speed v;;;. 11 (2ft). 

Rather than prove the theorem we shall comment on it. 
The first point is fairly trivial. If one never encounters a 
singularity then the limit e .... 0 of course exists. More inter­
esting is the second point. It raises no restrictions on the 
singularities [point (2a), NVP] or on the common singular­
ities [point (2b), L VP], respectively. If an exact solution is 
accessible then we shall converge to it, even if we "sit" on a 
singularity of Bo' i.e., if Bo is singular over a whole period of 
time. Such a situation occurs, e.g., if one adopts the four­
dimensional A algebra of example 8 of Sec. IV, assumes that 
HE51' max' and chooses an initial wave function as given by 
Eq. (4.15). As well known a Gaussian remains a Gaussian in 
a quadratic potential and hence the Hartree product 
will always assume the form ( 4.15). One finds that 
rank(Bo) = rank(Co) = 2 for all times, i.e., there are con­
stantly two vanishing eigenvalues; but this does not affect the 
convergence. 

We now turn to point (3a). If an exact solution is not 
accessible then one can find arguments that the character of 
the singularities of Bo is typically f1 = 2. In rare cases one 
may find f1 = 4 or f1 = 6 but in any event f1 < 00. These argu­
ments together with the point (2a) show that the NVP ver­
sion ofTDRH always converges. 

Due to the very construction of the NVP [see Eq. 
(2.38)] it is clear that 1/.F<I>1/.;;;I/AJJ4>1/ holds for all e. This is 
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not the case if one adopts the LVP. In fact, I/F<I>I/ may di­
verge like e- I

/
2 if an exact solution is not accessible and if we 

are close to a singularity of Co which is not a common singu­
larity of Bo. Close to such a singularity the computed wave 
function changes rapidly and may not converge for e .... O. In 
this case one has to live with the fact that one computes an e­
dependent approximation to the exact wave function. 

Theorem 3.3 d~monstrates again that the NVP version 
ofTDRH is numerically better behaved than the LVP ver­
sion. The numerical calculations we have performed32 have 
shown that the dependence of,p( e) on e is fortunately rather 
weak for both of the VP's. 

IV. THE TWO-DIMENSIONAL HARMONIC ALGEBRA 

In this section we shall explicitly evaluate various quan­
tities defined in the previous section. The examples given 
here will help to clarify the concepts. We concentrate on 
systems of two degrees of freedom and in order to keep the 
notation simple we use x and y for the coordinates and P and 
q for their conjugate momenta rather than x .. X2 and PI' P2' 
respectively. 

Any operator on the Hilbert space of square integrable 
functions of two variables can be considered as a function of 
the four basic operators x, y, p, and q. The two-dimensional 
harmonic algebra is spanned by all products of these opera­
tors up to the second degree, i.e., by the 15 operators 1, x, y, 
p, q, x 2, xy, xp, xq,y2,yp,yq,p2,pq, q2. It is easy to show that 
this algebra is a Lie algebra. The mixing operators in the 
above set are xy, xq, yp, and pq. All the other operators are 
separable because they operate on either the x or the y degree 
of freedom only. To arrive at a Hermitian basis of the Lie 
algebra one has, of course, to symmetrize the two operators 
xp andyq. We found it convenient, however, to introduce the 
following Hermitian linear combinations of the quadratic 
operators: 

I=xy-pq, J=xq+yp, K=xy+pq, 

L = xq - yp, A = xp + qy, B = xp - yq, 

V = ~(X2 + r), W = ~(X2 - r), 
T = ~(p2 + q2), U = !(p2 _ q2). 

(4.1 ) 

The first four operators-I,J,K,L-are the mixing ones. The 
quadratic operators form a sub-Lie algebra. The commuta­
tion relations ofthis algebra are shown in Table 1. In order to 
illustrate the action of the above ten operators we display in 
Table II the four basic operators rotated by one of the qua­
dratic operators. The transformation generated by the oper­
ator I is a skewing transformation in the x-q and y-p planes. 
The operator J performs a similar transformation in the x-y 
and p-q planes. The operators K and L generate (true) rota­
tions in the above mentioned planes. Note that J and L gen­
erate coordinate transformations; they mix the degrees of 
freedom but they do not mix coordinates and momenta. The 
transformations generated by I and K, however, do mix co­
ordinates and momenta. They are hence the more difficult 
transformations. The transformations generated by the sep­
arable operators A and B are totally symmetric and antisym­
metric scaling transformations, respectively. The potential 
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TABLE I. Commutation relations among the quadratic operators of the harmonic algebra. The table entries are ( 1/ i) [ D,. D21. The entries xY and pq may be 
replaced by (/ + K)!2 and (/ - K)!2. respectively. 

~ 
I J K L A B V W T U xy pq 

I 2(V+n 2A 2(W- U) 2K 0 J L J -L A A 
J -2(V+ n 2(T- V) 2B 0 2L -2xy 0 2pq 0 -2V 2T 
K -2A 2(V- n 2(W+ U) 2/ 0 -J -L J -L -A A 
L 2(U- W) -2B - 2(W+ U) 
A -2K 0 -2/ 0 
B 0 -2L 0 -21 
V -J 2xy J 0 
W -L 0 L -2xy 
T -J - 2pq -J 0 
U L 0 L -2pq 

xy -A 2V A 2W 
pq -A -2T -A 2U 

operators Vand Wor the kinetic energy operators T and U 
mix the coordinates and momenta within each degree of 
freedom if they rotate the momenta or coordinates, respec­
tively. In Tables I and II we have also included the operators 
xy and pq because we found it sometimes more convenient to 
work with these operators rather than with I and K. For the 
sake of completeness we present in Table III the quadratic 
operators as rotated by the mixing ones. 

It may be useful to indicate the relation of the two-di­
mensional harmonic algebra with the classical Lie alge­
bras.30 The harmonic algebra is the semidirect sum of the 
radical {l,x,y,p,q} and the simple subalgebra which is built 
up by the ten quadratic operators (4.1). This subalgebra is 
isomorphic to SP (4). The Lie algebraic structure of the har­
monic algebra was recently investigated by Wolf and 
Korsch33 in connection with the Wei and Norman approach. 

The four mixing operators I, J, K, and L (or xy, pq, J, 
and L) can easily be shown to be 11 complete. Moreover, any 
subset of these operators is 11 complete! Hence there is a large 
variety of 11 algebras which are subsets of the two-dimen­
sional harmonic Lie algebra. In the following examples we 
list some of these 11 algebras together with their maximal and 
minimal embedding Lie algebras. 

0 21 0 2xy 0 2pq -2W -2U 
0 -2V -2W 2T 2U -2xy 2pq 

0 -2W -2V 2U 2T 0 0 
2V 2W 0 A B 0 J 
2W 2V 0 B A 0 L 

-2T -2U -A -B 0 -J 0 
-2U -2T -B -A 0 L 0 

2xy 0 0 0 J -L A 
-2pq 0 -J -L 0 0 -A 

Example 1: 

f!j) = {o}, 2' min = {o}, 2' max = {A /11A = O}. 

Example 2: 

f!j) = span{L}, 2' min = span{L}, 

2' max = span{L,A,V,T,x,y,p,q,l}. 

Example 3: 

f!j) = span{xy,L}, 2' min = span{xy,L, W}, 

2' max = span{xy,L,A,V,W,x,y,p,q,l}. 

Example 4: 

f!j) = span{xy,J}, 2' min = span{xy,J, V}, 

2' max = span{xy,J,A,v,w,x,y,p,q,l}. 

Example 5: 

f!j) = span{xy,J,L}, 2' min = span{xy,J,L,B,V,W}, 

2' max = span{xy,J,L,A,B, v, w,x,y,p,q, 1}. 

Example 6: 

f!j) = span{I,K}=span{xy,pq}, 

2' min = span{I,K,A}, 

2' max = span{I,K,A,B,x,y,p,q,l}. 

TABLE II. Basic operators rotated by the quadratic ones. The table entries are exp ( - aD, ) D2 exp (iAD, ). The last column of the table repeats the definition 
of the quadratic operators for convenience. 

~ 
x y p q Definition 

I x'cosh A + q'sinh A y'cosh A + p-sinh A p-coshA +Y'sinhA q'cosh A + x'sinh A xy-pq 
J x'cosh A - Y'sinh A y·cosh A - x'sinh A p'coshA + q'sinhA q'cosh A + p'sinh A xq+yp 
K X'COSA - q'sinA Y'COSA - p'sinA p'cos A + y'sin A q'COSA +x'sinA xy+pq 
L x·cos A + Y'sin A y'cosA-x'sinA p-cos A + q'sin A q'cos A - p-sin A xq-yp 
A e-Ax e-Ay eAp eAq xp+qy 
B e- AX eAy eAp e-Aq xp-yq 
V x y P+AX q+AY !(x2 +1) 
W x y P+AX q-AY !(x2 _I) 
T X-AP Y-Aq P q !(p2 + q2) 
U X-AP Y+Aq P q !(p2 _ q2) 

xy X Y P+AY q+AX xy 
pq X-Aq y-AP p q pq 
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~ TABLE III. Quadratic operators rotated by the mixing ones. The table entries are exp( - ao, )02 exp(aO,). c: 
:::l 
(1) .... 
co 
ex> 
ex> 

3: 
CD 
'< 
~ 
~ c: 
C)< 

~ 
I\) 
:::l 
Q. 

0 
CD 
Q. 
CD a-
I\) 
c 
3 

.... 
". 
I\) ...., 

~ 
I 

J 

K 

L 

xy 

pq 

I J 

I J'cosh U 
+ ( Y + Tlsinh U 

I'coshU J 
- ( Y + Tlsinh U 

I·cosU J·cosU 
-A'sin2il + (Y- Tlsin U 

I· cos U J·cos U 
+ (U- W)sinU -B'sinU 

I-AA J+UY 
_il 2xy 

I-AA J-UT 
+il 2pq 

K L A 

K'coshU L'coshU A'coshU 
+A'sinhU + (W - U)sinh U + K'sinh U 

K'coshU L'coshU A 
+ (T - Vlsinh U +B'sinhU 

K L·cosU A'cosU 
+ (W + U)sinU +I'sinU 

K'cosU L A 
- (W + U)sinU 

K +ilA L+UW A +Uxy 
+il 2xy 

K-AA L+UU A-Upq 
+.il 2pq 

B Y W T U xy pq 

B Y'cosh2 il W'cosh 2il T'cosh2 il U'cosh2 il xy-cosh2 il pq·cosh2 .il 
+ T'sinh2 A - U'sinh2 il + Y'sinh2 il - Wsinh2 il + pq'sinh2 il + xy-sinh2 A 
+ !J'sinh U + !L'sinh U + !J'sinh U - !L'sinh U + !A'sinh U + !A'sinh U 

B'cosh 2il Y'cosh 2il W T'coshU U xy-coshU pq'coshU 
+L'sinhU -xy-sinhA +pq'sinh U - Ysinh U + T'sinh U 

B V-cos2 il W'cos2 il T'cos2 A U'cos2 il xy-cos2 A pq'cos2 il 
+ T'sin2 A - U'sin2 A + V-sin2 A - W'sin 2 "l + pq'sin2 "l +xy-sin2 A 
-VsinU - !L'sin 2A +VsinU - !L'sin U - !A'sin U + !A'sin 2il 

B'cosU Y WcosU T U'cosU xy-cosU pq'cos 2il 
+J'sin U +xy-sinU +pq'sinU - WsinU - U'sin 2A 

B Y W T +ll U-AL xy pq+AA 
+il2y _A 2W +A 2XY 

B V-Ai W-AL T U xy-ilA pq 
+.il 2T -A 2U +A2pq 



                                                                                                                                    

Example 7: 

g; = span{I,J,K}= span{xy,pq,J}, 

!i" min = span{I,J,K,A, v,T}, 

!i" max = span{I,J,K,A,V,T,x,y,p,q,l}. 

Example 8: 

g; = span{I,J,K,L}, 

!i" min = span{I,J,K,L,A,B,V,W,T,U}, 

!i" max = span{I,J,K,L,A,B,V,W,T,U,x,y,p,q,l}. 

We now discuss the various examples. In the first example 
one does not use any generator, i.e., one performs a usual 
Hartree calculation. The Hamiltonian lies in !i" max and the 
result is exact, if H is a separable operator. If one wants to use 
only one single generator it is convenient to use the angular 
momentum operator L as done in example 2. The general­
ized rotation becomes a true rotation. The structure matrix 
o reduces to unity because there is only one generator. In the 
third example we encounter for the first time a nontrivial 
structure matrix. Assume we order the generators as A I = L 
andA 2 = xy. With the aid of Table III the structure matrix is 
easily calculated and reads 

o = (~ cO~2J. (4.2) 

Hence the structure matrix becomes singular for a = 17/4. If 
we use the other ordering A I = xy and A2 = L we find that 0 
is regular, 

o = (~ ~). (4.3) 

This illustrates the importance of ordering. The matrix R', 
which-for this example and ordering-is given by 

R' = (COSO 2{3 o 
1 

o 
o 

sin 2f3 

o 
2a 

o 
o 
o 

o 
o 

o 
o 

o 
o 

O)T 
o • 

(4.4 ) 

is obviously linearly bounded. Hence the generators are 
properly ordered on R2 and a global solution (in the sense of 
Theorem 3.1) is guaranteed. In Eqs. (4.2) and (4.4) we 
found it convenient to use a and f3 rather than a l and a 2• 

We now skip example 4 and turn to example 5. Using the 
ordering A I = xy, A2 = J, and A3 = L, i.e., U = eiyLei{3Jeiaxy, 
one finds that the structure matrix reads 

o 
o ) o . 

cosh 2f3 

( 4.5) 

o 
This matrix is obviously regular for all parameters. How­
ever, the matrix R' possess matrix elements containing 
sinh 2f3 and cosh 2f3 such that II R'O-III grows like cosh 2f3 
for large f3. The generators are hence properly ordered on 
Gc ' where 

(4.6) 

and where c denotes some positive number. Inspection of 
Table III shows that the two positive definite operators V 
and Tare multiplied by cosh 2f3 under a generalized rotation 
withJ. Since (T) (V) >! due to the uncertainty principle, one 
finds that conservation of energy requires that 1f31 is bound­
ed. One can choose c larger than this bound which proves 
that example 5 provides us with a global solution in the sense 
of Theorem 3.1. Using similar arguments one can also prove 
that examples 4,6, and 7 yield a global solution. 

Turning finally to example 8 we find that the ordering 
A I = I, A2 = J, A3 = K, and A4 = L is the most convenient 
one. Using this ordering the structure matrix reads 

o 
cosh 2a 

o 
o 

o 
o 

cosh 2a cosh 2f3 

o 

o ) o 
o ' 

cosh 2a cosh 2f3 cos 2r 

(4.7) 

which is singular for r = 17"/4. The matrix R' can be bounded by 

IIR'II<co cosh 2a cosh 2f3 

with some constant Co. The generators are hence properly ordered on 

GE ={(a,f3,r,o)Tllal<€-t, 1f31<€-I, Irl<17"/4-d, (4.8) 

where € denotes some small positive constant. Similar as before one can argue that a andf3 remain bounded because of energy 
conservation. We cannot, however, prove that Irl does not approach 17"/4. The singularity of the structure matrix 0 can be 
removed by adding a separable operator to the set of generators. We choose the separable operator W = ! (x2 - y2) because W 
rotated by K contains the operator L (compare Table III). The singularity of the structure matrix was caused by the loss of the 
operator L from the set of partially rotated generators. We therefore define the unitary operator U now by 

(4.9) 

The structure matrix 0 is now a rectangular 5 X 4 matrix relating the partially rotated operators 1::.1, I::.l, I::.K, I::. iV, and I::.L to 
1::.1, I::.J, I::.K, and I::.L: 

1::.1 0 0 0 1::.1 
I::.l cosh 2a 0 0 I::.J 

= 0 cosh 2a cosh 2f3 0 (4.10) 

0 0 d 
A 

I::.L a b c cosh 2a cosh 2f3 cos 2r 
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where 

a = - 8· cosh 2f3·cos 2y, 

b = 8·cos 2Y'sinh 2f3'sinh 2a, 

c = 8(sin 2y-sinh 2a - cosh 2f3'cosh 2a), 

d = ~(sinh 2a - cosh 2a'cosh 2f3'sin 2y). 

(4.11) 

The equations of motion for the parameters are still given by 
[cf. (3.3)] 

(4.12) 

where ii denotes the four-component vector of expansion 
coefficients of all and where now « = (a,P, y,8,i]) T is the 
five-component velocity vector. Equation (4.12) has always 
a solution since the structure matrix defined by Eq. (4.10) 
has maximal rank. A unique solution can be obtained by 
choosing that solution for which 11«11 is minimal, i.e., by 
employing the pseudoinverse. Since DID is nonsingular we 
find with the aid of Eqs. (3.17) and (3.18d) 

(OT)l = O(OID) -I. (4.13) 

Using 

(4.14 ) 

we can conclude that the thus modified example 8 allows for 
a global solution. 

Returning to the discussion of the examples we remark 
that the examples 2-5 are of greater practical importance 
than the examples 6 and 7. This is because the examples 6 
and 7 contain the operator pq in their a algebras. This opera­
tor (as well as I = xy - pq and K = xy + pq) is much hard­
er to exponentiate than xy, J, or L. The example 8, on the 
other hand, is ofimportance because it alone has the full two­
dimensional harmonic Lie algebra as embedding algebra. 
Hence using all four mixing operators as generators TDRH 
solves every harmonic problem exactly. If the Hamiltonian 
is not harmonic then TDRH accounts for the harmonic part 
of the Hamiltonian exactly and treats the anharmonic terms 
in a mean field approximation. 

So far in this section we have implicitly assumed that the 
Hamiltonian is a member of the maximal embedding alge­
bra. We now assume that H($.Y'max and that an exact solu­
tion is not accessible. This leads to a discussion of the matri­
ces 8 0 and Co and in particular to an investigation of their 
singularities. To study the singular properties of 8 0 we solve 
Eq. (3.16). If the a algebra is spanned by one of the follow­
ing sets: {I}, {J}, {xy}, {pq}, {xy,J}, {pq,J}, or {I,J} then 
there exist no square integrable solution of Eq. (3.16) and 
hence 8 0 possesses no singular points. For the other a alge­
bras which are subsets of the harmonic algebra we find that 
the solution of Eq. (3.16) has the form 

<I> = a exp( - (w/2) (x - XO)2 + ipo(x - xo») 

'exp( - (w2/2) (y - YO)2 + iqo(Y - Yo)), (4.15) 

where a, w" and W2 are complex and where Xo, Yo, Po, and qo 
are real. Depending on the a algebra there are different con­
ditions on w, and w2 • These conditions are given in Table IV. 
One notices that singularities are more likely for larger a 
algebras. However, the restriction (4.15) that the Hartree 
product is a product of two Gaussians is a condition which is 
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TABLE IV. Conditions on ai, and ai2 which lead to a singularity ofBo (see 
text). 

A algebra 
spanned by 

{K} 
{L} 
{xy,L} 
{pq,L} 
{J,L} 
{xy,pq} ~ {I,K} 
{xy,J,L} 
{pq,J,L} 
{xy,pq,J} ~ {1,K,]} 
{xy,pq,L} = {1,K,L} 
{1,J.K,L} 

Relation between 
ai, and ai2 

ai,'ai, = 4 
ai, = W2 

Re(w,) = Re(w2) 
Re(1/w,) = Re(1/w2) 
Im(w,/ai2 ) = 0 
Im(w,'w2 ) = 0 

no restrictions 

hardly ever met, except, of course, if the initial wave function 
is chosen to be of this form. Anyhow, as shown in Sec. III the 
singularities of 8 0 are of no physical importance although 
unpleasant numerically. 

The investigation of the singular points of the matrix Co 
is more elaborate because one has to evaluate the determi­
nant of this matrix for each a algebra separately. For illus­
trative purposes we will do so for the a algebras of example 3 
and 8. The Co matrix of example 3 is singular if 

(x2 )o = (yZ)o (4.16) 

holds where the number (0,02 )0 is defined as 

(0,02 )0 = (0,02 ) - (0,)(°2 ) ( 4.17) 

with operators 0, and O2 taken from the set {x,y,p,q}. The 
matrix Co is thus singular if the width of <1>, (x) equals the 
width of <1>2 (y). This is a condition which is much easier to 
meet than (4.15). Hence, as mentioned before, singular 
points of Co are much more likely than singular points of80 • 

We now turn to example 8 and find that the matrix Co has a 
vanishing determinant if 

4(X2)O(p2)0 - (xp + pX)02 = 4(y2)0(q2)0 - (yp + qY)02 

( 4.18) 

holds. Again, this is much weaker condition than (4.15). 
For the generalized Gaussian (4.15) both sides ofEq. (4.18) 
assume unity. 

The examples 2, 5, and 7 cannot be treated directly with­
in the L VP form ofTDRH because they have an odd number 
of generators. The eigenvalues of a real antisymmetric ma­
trix, as Co is, are imaginary and appear in complex conjugate 
pairs. A antisymmetric matrix of odd dimension has neces­
sarily one vanishing eigenvalue. However, the replacement 
of the inverse by the pseudoinverse helps again. To show 
this, let us concentrate on the discussion of example 5. The 
matrix Co now reads 

Co= [~o -OWo 

Vo -Do 

- Vol 
~o . 

( 4.19) 

The eigenvector with vanishing eigenvalues is given by 

(4.20) 
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The matrix CJ"Co + eoeJ" is diagonal and can be inverted ana­
lytically. Hence 

(4.21) 

Since Vo 2 + Wo 2 + Bo 2 > 0 we find that this approximation 
to the inverse of Co is free of singularities. We found32 that 
the resulting equations of motion are very convenient to use; 
however, they do not compute the exact solution of He!? max 

of example 5. This is because one effectively uses only two 
generators rather than three. These two generators can be 
considered as time-dependent linear combinations of the 
three original generators xy, J, and L. Hence one has a time­
dependent maximal embedding algebra and it is not easy to 
state for which Hamiltonians we arrive at an exact solution. 
For general nonharmonic Hamiltonians, however, the 
method outlined above gives usually better results than the 
use of the two-dimensional a algebra of example 3.32 

v. CONCLUSION 

In this paper we have analyzed the TDRH method in 
detail. The basic idea of TDRH is simple. One enlarges the 
space of trial functions of TDH by replacing the Hartree 
product <P by U(a)<P, where U(a) denotes a unitary opera­
tor depending on a set of parameters a. The time evolution of 
the product wave function <P as well as of the (real) param­
eters a can be deduced by applying a time-dependent VP to 
the trial function U( a)<P. We have used two different VP's, 
NVP and LVP, and have found that these two VP's lead to 
identical mean field equations for <P but to different equa­
tions of motion for the parameters a. The differences of the 
two resulting methods have been discussed. 

The ansatz of TDRH is reminiscent to the "optimized 
coordinate SCF" recently introduced by several authors34

-
36 

in order to improve the time-independent Hartree. There 
are, however, important differences. The action of the uni­
tary operators ofTDRH is not restricted to cause coordinate 
transformations. In fact, the inclusion of operators like 
exp (iaxy) is very important in order to compensate the non­
separable potential terms in alI [cf. (2.26)]. 

The VP approach to TDRH is simple. It is, however, 
very difficult within this approach to prove the existence of 
the solution. As an alternative way to the equations of mo­
tion we therefore have also investigated the algebraic ap­
proach to TDRH. This approach allows for a much deeper 
analysis of the mathematical structure ofTDRH. In particu­
lar it allows the formulation of theorems which show under 
which conditions a unique global solution exist. The algebra­
ic approach introduces the structure matrix D which illumi­
nates the importance of the ordering of the generators. If the 
generators are properly ordered-i.e., if the structure matrix 
has no singularities-then TDRH yields an exact global so­
lution for Hamiltonians being members of the maximal em­
bedding algebra!? max' (For a more precise statement see 
Theorem 3.1.) 

If the Hamiltonian does not belong to !£' max then one 
has to approximate alI by some aHapp which belongs to 
aiiJ. The two different VP's, NVP and LVP, correspond to 
two different constructions of aHapp in the algebraic ap­
proach. Using NVP (LVP) this construction introduces the 
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matrix 8 0 (Co) which depends on the Hartree product <P. 
The equations of motion become singular if 8 0 (Co) has a 
vanishing determinant. A singularity of 8 0 indicates that­
according to the construction (3.5)-there is no unique 
aHapp ' A singularity of Co, on the other hand, indicates that 
there is either no unique or no solution at all which is consis­
tent with Eq. (3.11), i.e., with the construction of aHapp 

according to the LVP. Singularities of Co are much more 
likely to occur than singularities of 8 0 , A simple trick can be 
used [cf. (3.23)] to eliminate the singular behavior of the 
equations of motion for both VP's. This modification en­
sures that the TDRH method yields a global approximation 
to the exact wave function. 
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A condition for zero not to be an eigenvalue of the Shrooinger operator is given. 

I. INTRODUCTION 

Let H= -V2+q(x) in R 3, q=q, [q]:=(41T)-1 
XSs,q(r,U)dU), S2 be the unit sphere in R 3, 

1+ : = max(f,O), and DR: = {x: Ixl;;;.R}, where R is arbi­
trarily large. The main result of this paper is the following 
theorem. 

Theorem: If Hu=O in DR' [q]+EL 3/2 (DR ), and 
0< uEL m(DR), m < 3, then u = 0 in DR' 

After publication of Ref. 1, Lieb drew my attention to 
his work, 2 where the result in the theorem above is given for 
m = 2 and [q] +EL 3/2(DR ). The argument in Ref. 2 relies 
essentially on a result in Ref. 3. It is noted in Ref. 2 that H. 
Brezis proved the result for m < 3 (unpublished). The aim of 
this work is to give a proof of the theorem that does not rely 
on the result in Ref. 3 but is based on the method given in 
Ref. 1 and uses the ideas and results from Ref. 2. Our proof is 
self-contained and relatively short. It treats the problem as a 
local one near infinity; the argument uses the assumptions in 
DR only. In Ref. 3 the global assumption qEL 3/2 (R 3) was 
used. This assumption is not necessary locally: q(x) may be 
L :, with m < ~. In Ref. 1 the condition (a) 
Iq(x) I <c(1 + Ixl) - a, a> 2, was used in DR' This condi­
tion implies that (b) qEL 3/2(DR ), and it is very close to (b) 
in the sense that (b) does not hold if a<2. It was shown in 
Ref. 1 that the theorem is not valid if a<2, so that conditions 
(a) and (b) are exact conditions on q for zero not to be an 
eigenvalue of H. 

In Sec. II proofs are given. 

II. PROOFS 

First we reduce the problem to the ODE problem. This 
reduction, Step 1, is given in Ref. 2, and we reproduce the 
argument in Ref. 2 for convenience of the reader in order to 
make the argument self-contained. 

Step 1: Suppose 

Hu=O in DR' O<uELm(DR), 

m<3, [q] +: =p(r)EL 312(DR). 

Let/: = exp( [In u]). Then by Lemma 1 (below), 

(1) 

-1-lal+[q];;;.[-u-1au+q];;;'o. (2) 

By Jensen's inequality, 1 m = exp[In um
] < [urn], m;;;. 1. 

Thus 

( Imdx< ( umdx, m;;;'1. 
JDr JDR 

Therefore if I(£L m (DR) then u(£L m(DR ). Thus if 
per): = [q] + and 

-t:.I+p(r)/;;;.O, 1>0, r;;;.R, (3) 

implies that I(£L m (DR)' then u(£L m(DR), m < 3. Since 

I =/(r), the problem is reduced to the problem for ODE. To 
complete the argument let us prove the following. 

Lemma 1: (See Ref. 2, p. 632.) If/= exp( [In u]) then 
1-1t:.1<[u-lau], au: = V2u. 

Proof" If g = In u then u-Iau = t:.g + (Vg)2. One has 
[t:.g] = t:.[g], (Vg)2;;;.(ag/ar)2, and [(ag/ar)2];;;.(d[g]l 
dr)2 by Cauchy's inequality, since [1] = 1. Thus 

[u-It:.u];;;.t:.[g] + (V[g])2 =I-Iaf 

Step 2: Let I = r- I v. Then (3) reduces to 

-v"+p(r)v:=h(r);;;'O, v>O, r;;;.R. (4) 
Note that 

IEL m(DR) ¢:> vEL m(R,oo ),t - (m-2»): = ym. 

We need to prove the following. 
Lemma 2: Inequality (4) implies v = 0 provided that 

veym, m < 3, and O<p(r)EL 3/2(DR ), i.e., if 
S'Rt2p3/2(t)dt< 00. 

Write (4) as 

v = A + Br + fO (t - r)p(t)v(t)dt - L (r - t)h dt, 

(5) 

where A,B = const. Let 

a(r) : = (1 00 

t 2p312(t)dt )2/3. 

One has 

100 

(t - r)pv dt 

«100 

t 2p3/2(t)dt y/3(L'" t -IV3 dt )1/3 

= a(r)(foo t - (m-2)vm (t -lv)3-m dt y/3 
<a(r)lIvll;:; IIr- lvW3 - m)/3-+0 as r-+ 00. (6) 

Here IIvll : = max,;;.R lvi, and the estimate 

IIr-lvll < 00 (7) 

was used. To prove (7), differentiate (5) to get 

v'(r) = B - 100 

pv dt -1 h dt<B, (8) 

where the inequalities pv;;;.O and h;;;.O were used. Integrate 
(8) and use the inequality v> 0 to get 

O<v(r)<Br+ vCR). (9) 

From (9) inequality (7) follows. Let us prove that 

Loo h(t)dt<oo. (10) 

Suppose (.) f'R h dt = 00. Then choose R I > R so that 
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S~oh dt> 2B, fix R I , and choose r so large that 

r rRo JR (r - t)h dt'~r JR (1 - r-It)h dr~2Br. (11 ) 

From (11), (6),and(5)itfollowsthatv-+ - ooifr-+ + 00. 

This contradicts the assumption v > 0, r>R. Therefore (*) is 
false and (10) holds. 

Proof of Lemma 2: Write (4) as v" <pv and integrate this 
inequality over (r,r n ), r n -+ 00, and let n -+ 00 to get 

- v'(r)<fo pvdt. (12) 

Here we used the fact that VE.£'m , m < 3, implies existence of 
a sequence rn -+ 00 such that v'(rn ) -+0. An easy proof of this 
fact is leftto the reader. Integrate (12) over (r,R n ),Rn -+ 00, 

and choose Rn so that v(Rn) -+0 as n-+ 00. This is possible 
since VE.£'m, m < 3. The result is 

o<v(r)<fo dt fO pvds= fO (t-r)pvdt-+O, r-+oo, 

(13) 

where the assumption v > 0 and the inequality (6) were used. 
Note that inequality (13) implies v = 0 provided that 

1"0 tpdt< 00. (14) 

Indeed (13) implies maxr>r" v < maxr>r" v, where ro is chosen 
so that S;.: tp dt < 1. Thus v = 0 for r>ro. By the uniqueness of 
the solution to the Cauchy problem, v = 0 for r>R. 

Let us derive from ( 13) that v = 0 under the assumption 
peL 3/2(DR ). One has as in (6) 

v<a(r>(fO t -IV3 dt r/3 <a(r) IIvll;'~ II v11
El3r- El3, (15) 

where E: = 3 - m. Define IIrEl3 vllo : = maxr>r" 1,..-13 vCr) 1 
: = N(u). Then 

100 

t -lul dt <100 t - I - ~(,..-I3V)3 dt 

<N3(v)E-lr-~, r>ro. 

From (16) and (15) one gets 

v<a(r)N(v)E-I/3r- ~/3. 

Multiply (17) by ,..-/3 to obtain 

N(v) <max a(r)E- I/3N(v). 
r;;.ro 
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(16) 

(17) 

(18) 

Choose ro so that E-
I

/
3 maxr>'i,a(r) < 1. Then (18) implies 

N(v) = 0, v = 0 for r>ro, and, as above, v = 0 for r>R. 
Lemma 2 is proved. 

This completes the proof of the theorem. 
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APPENDIX: SKETCH OF BREZIS' ARGUMENT 

This appendix is an excerpt from a letter by Professor H. 
Brezis to the editor of this Journal. In this letter Professor 
Brezis sketches his unpublished argument as follows. 

Let u:> 0 in DR and 

- Au + p(r)u = q _ (x)u>O in DR CR 3. (AI) 

Let 

b(r): = L ds s-z£ p(t)t Z dt. 

Then b(r»O, b(R) =b'(R) =0, Ab=p(r). Multiply 
(Al) by exp[b(r)] - 1 and integrate over DR to get 

f {-uAexp[b(r)] +pu[exp(b(r»)-l] 

- q_u(exp[b(r)] - l)}dx = 0, 

where S = S DR. Since 

A exp(b(r») = exp(b(r»)[p + (Vb)2], 

it follows from (A2) that 

(A2) 

f {pu + u exp(b(r»)IVb 12 + q_u[exp(b(r») - l]}dx = O. 

Thus pu = 0, and (AI) reduces to 

- Au>O in DR' u>O in DR' uEL m(DR ), m < 3. 
(A3) 

This implies u = o. The argument that leads to (A2) can be 
justified: multiply (AI) by {exp[b(r)] - l}1](x!n), where 
1]>0, 1]EC 0', 1] = I in a neighborhood of the origin, integrate 
over DR' integrate by parts, and then let n -+ 00 • 

IA. G. Ramm. J. Math. Phys. 28,1341 (1987). 
2E. Lieb. Rev. Mod. Phys. 53, 603 (1981). 
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On the power-series construction of bound states. I. The energies as zeros of 
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For a broad class of potentials, we show that the nonvariational (so-called Hill-determinant) 
intuitive identification of binding energies with zeros of certain infinite determinants may be 
given a rigorous mathematical foundation. The essence of the construction lies in an 
appropriate restriction of the class of the admissible Ansiitze. This eliminates the undesirable 
confluence of the physical and unphysical components of ,p( r) that may take place in the 
general case. 

I. INTRODUCTION 

An exceptional simplicity of the harmonic oscillator 
wave functions 

1/In(r) =exp(_l..r) i Pm rm + I + 1 (1.1) 
2 m=O 

(cf., e.g., Fliigge l
) forms a natural background for the per­

turbative2 as well as variationaP treatment of anharmonici­
ties. Recently, the direct generalizations of ( 1.1), 

1/In (r) = exp(polynomial) X power series, (1.2) 

were also studied in the numerical context,4,5 with the inten­
tion of deriving the new resummation techniques,6 etc. Be­
sides the simplicity and semianalytic character of the wave 
functions, additional merit of ( 1.2) lies also in the possibility 
of an approximative replacement of the power series by a 
polynomial, and in the related tractability of the approxi­
mate energies as zeros of the so-called Hill determinants. 7 

In a purely formal manner, the "generalized harmonic 
oscillator" wave functions (1.2) may be interpreted as an 
Ansatz, converting, say, the radial differential Schrodinger 
equation 

[ _ :; + lU; 1) + VCr) ],p(r) =E,p(r) (1.3) 

into a purely algebraic problem.4.7,8 Unfortunately, in con­
trast to the more standard numerical and variational meth­
ods,3 it is not always easy to treat properly also the physical 
boundary conditions in the new algebraic language.4 Even 
the simplest example with the special sextic anharmonic os­
cillator potential, 

VCr) = ar + brA + c,-6, c>O, b<O, 

was not treated properly from this point of view. 6,9 This in­
spired an extensive discussion in the literature (cf., e.g., Ref. 
10 for the review) . 

At present, the latter b < 0 sextic oscillator puzzle seems 
resolved. Singh's "completely WKB" choice of the polyno­
mial exponent per) in (1.2) has been proved incompatible ll 

with the intuitive identification of the physical bound-state 
energies with zeros of the related "Hill determinants.,,7 Con­
versely, rigorous validity of the method has been confirmed 
for b > 0,12 or for certain incompletely WKB 13 or completely 
non-WKB5 modified exponents P( r) in (1.2). 

For a broader class of potentials, the situation will be 
clarified in the present paper. In Sec. II we specify the forces 
in more detail, in Sec. III we characterize them formally as a 
natural generalization of the harmonic oscillator, and, se­
parating their class into a pair of its natural subclasses, we 
deliver the corresponding construction and proofs in Secs. 
IV and V. Section VI is a summary. 

II. THE CLASS OF FORCES 

An interest in simple potentials stems from the phenom­
enological needs of the atomic and molecular physics as well 
as from the methodical considerations of the perturbative 
field theory. 14 In our preceding paper, IS our interest has been 
concentrated upon the general superpositions of the rational 
powers of the coordinate 

N 

Vo(r) = L giD) rmln
" mN/nN >'" > ml/n l > - 2. 

;=1 

(2.1) 

These forces were shown to be tractable by the Hill-determi­
nant technique, provided only that a certain "superconfine­
ment restriction" (schematically, g':'- 1> 0) was satisfied 
by the coupling constants. Now we intend to get rid of it. 
Indeed, a formulation of a procedure independent of the par­
ticular coupling values is important methodically. More­
over, our choice and study of the class of forces (2.1) may 
also be shown useful from the following points of view. IS 

(a) Their flexibility forms a good background for ap­
proximations of the various realistic forces. If needed, a com­
ponent g6D)r-2 may also be used and incorporated into the 
centrifugal term, l(l + 1) + g6D

) = /' (l' + 1). The con­
dition of regularity /' > -! implies that the coupling gbO

) 

> - (l + p2 cannot be arbitrary. 
(b) The restrictions imposed upon the exponents m;lni 

and the singular coupling g6D
) are minimal. They merely re­

flect an acceptable nonregularity of the differential equation 
and of its general solution near the origin, 

1/I(r) -c1f+ 1 + c2r-
l, r::::O. 

The latter, irregular component of 1/1 ( r) may immediately be 
omitted as unphysical. 16 

(c) Asymptotically, formula (2.1) incorporates both 
the finite wells (mN/nN<O) and the confining potentials 
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(g~l > 0, mN/nN > 0, and E'~Emin)' In the wave functions, 
an asymptotic appearance of a node, t/J( 00 ) = 0, is in a one­
to-one correspondence to an emergence of a new bound 
state. This is valid within the discrete spectrum domain (for 
E <g~) if mN/nN = 0) and follows from the standard 
Sturm-Liouville oscillation theorems. 17 In particular, we 
shall have also !t/J(r) !-exp (polynomial) ~ 1, for large r~ 1 
and for Ei=Ephys ' 

(d) An elementary change of variables, 

t/J--t/Ji' r--ri, I--li' {E,gn}--{g~i),EJ, 1 <i<imax , 

in Eq. (1.3) may be used to preserve its SchrOdinger equa­
tion form and modify the potential lS VO-- Vi' In particular, 
we may obtain the even polynomials 

s 

VI(r) = L g~)rm, gs >0, (2.2a) 
m=O 

ordinary polynomials 
t 

V2 (r)= L g~Z)~, g,>Ofort;;;ol, (2.2b) 
n= -I 

and all the fractional-power superpositions up to i = imax 

= I and VI ( 00 ) = const < 00, 

T 

VIer) = L gj/lr- ZkIT. 
k=O 

(2.3) 

All these potentials are equivalent, formally, to the original 
force Vo = Via' and we may study any of them without loss of 
generality. In the paper, we shall use only the polynomial 
forms (2.2), recalling the special case of their mutual trans­
formation, 18 

t/Jz(rZ)=F;t/JI(rl ), rz=ri, 2/2 +1=11+!' 

g(':\ = i(g~1) - E I ), g~Zl - Ez = ~\I), 

g~l=!g~~I' m=I,2, ... , s-l:=t, 

(2.4) 

as an illustration of the above implicit formula. 
An analysis of the polynomial potentials (2.2) leads to 

an important formal difference between the even and odd 
degree t. Indeed, the general asymptotic solution of Eq. 
(1.3) reads 

t/J(r) ;::;:,dl exp( ariz + I) + d2 exp( - ar/2 + I), r~ 1, 
t/2+1 t/2+1 

a2 = g~2), t;;;.l, (2.5) 

a2 = g62
) - E, t < 1, 

and may be used as a factor in Eq. (1.2) for t = 2q only. In 
Ref. 15, an elimination of the square-root variable r l/2 has 
been achieved by means of a transition (2.4) from odd t and 
V = V2 to its even-degree representation VI with t new = 4q, 
told = 2q - 1. Here, we shall treat both parities of t separate­
ly. 

III. HARMONIC OSCILLATOR AS A METHODICAL 
GUIDE 

The simplest form of Ansatz (1.2) reads 
N 

t/J(r) = e- f3r'IZ r p"rn+ 1+ t, N-- 00, (3.1) 
,,=0 

and may be inserted in our SchrOdinger equation (1.3) with 
an arbitrary potential in principle. In order to illustrate this 
procedure, let us contemplate the simplest potential VCr) 
= a2r. Obviously, the recurrences obtained from (1.3), 

B"p" + I = (An - E)p" + CnPn_l, n = 0,1, ... , 

B" = (2n + 2)(2n + 21 + 3), (3.2) 

An = (4n + 21 + 3){3, Cn = a2 - {32, 

may immediately be solved by means of the explicit deter­
minantal formula 

p" + I = CUI Bk) - I·PO det (0, ... ,0, 

Ao-E, -Bo, 0, ... 

D •.. } n~D.l •...• Ck , Ak -E, -Bk , (3.3 ) 

0, ... , 0, Cn' An -E, 

for an arbitrary choice of the parameter {3 in (3.1). 
Of course, in the particular example in question, a "clev­

er" choice of the parameter {3 = a implies that Ck = 0 for all 
k. This makes the regular infinite series (1.2) coincide with 
the confluent hypergeometric function. It will terminate 
at the exceptional values E = En = (4n + 21 + 3 )a, n 
= 0,1, ... , of energies. Then the overall exponential factor 

makes the norm of t/J(r) finite-the exceptional energies 
form a complete spectrum. Formally, we may write a deter­
minantal equation that defines exactly the first N - I bind­
ing energies,7 

PN = 0, N> 1. (3.4 ) 

The oversimplified harmonic oscillator example may 
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I 
simulate the more complicated cases, provided that we pick 
up a "wrong" value of the parameter {3( i=a) in (3.1). Then, 
in a purely heuristic manner, we may still simplify Eq. (3.2) 
(three-term recurrences) by a change of variables: 

(3.5) 

In an asymptotic domain of indices, a simplified form of 
(3.2), 

qn+l-qn=!(aZ/{32_I)q,,_I' n>l, (3.6) 

may be used in place of the original difference equation. 
The new equation has constant coefficients and may be 

solved by the Ansatz 

M.Znojil 1434 



                                                                                                                                    

qn =..1, n. 

After a determination of A = A ± = (1 ± a/f3)/2 from 
(3.6), the general solution ofEq. (3.2) becomes available, 

= ~ (f3 + a)n + C2 (f3 - a)n n~ 1 (3.7) 
Pn '2 '2" , n. n. 

and leads also to the f3 = a termination condition. Of course, 
its relation to the normalizability physical requirement be­
comes less obvious. 

In the detailed analysis, we may recall (2.5), i.e., 

,p(r)=dle
ar'12+d2e- ar'12, r»I, (3.8) 

where d I = 0 if and only if E = Ephys ' 

Atthesametime, we may insert (3.7) in (3.1) and write 

,per) exp(!f3r)::::;a polynomial + L ... 
n>N 

(3.9) 

Thus, provided that f3> 0, the asymptotics of ,per), r- 00, 

remain unphysical (d l #0) whenever CI #0 in Eq. (3.7) or 
(3.9). Conversely, both the coefficients d l andc l change sign 
precisely at E = Ephys when treated as functions of the vari­
able E. Obviously, we may write 

( f3 + a)N ( (f3 - a)N) NlpN = -2- cl +c2 f3+ a 

O<E = (f3 - a)/(f3 + a) < 1, (3.10) 

and see that the roots of P N coincide with the physical bind­
ing energies En in the limit N - 00. In this way, a rigorous 
foundation of the Hill-determinant method is obtained-in 
accord with (3.3), we may employ the approximate secular 
equation (3.4), 

J-EI 1 ~o, N>l, 
(3.11 ) 

and determine the binding energies by the standard compu­
tation algorithms.3 

C- E

' 

-Bo, 
n -I C(l) AI-E, 

Pn + I = CUo Bk) Po det I' . . . 
0, ... ,0, D (q+ 1), ... ,D(l), 

IV. POTENTIALS EQUIVALENT TO POLYNOMIALS OF 
AN ODD DEGREE 

For t = 2q - 1 in the definition of the potentials 
V = V2 (r), we may use the change of variables (2.4) and 
consider an equivalent potential 

V(r)=go+glr+"'+g2q r4q, g2q=a2>0, (4.1) 

giving the quartic anharmonic oscillator in the simplest non­
trivial q = 1 case. In accord with the standard Hill-determi­
nant computations, 7 we may choose the exponential (sub­
dominant) factor in an almost arbitrary way in (1.2), 

00 

,per) =,J+ I exp( - g(r») L Pnrn, 
n=O (4.2) 

q 

g(r) = L f3jrj/ 2j. 
j= I 

Then, an insertion in Eqs. (1.3) and (4.1) leads to the basic 
(2q + 2)-term recurrences ofthe type (3.2), 

q-I 
BnPn+ I = (An - E)Pn + L Pn_jC~j) 

j= I 

2q 
+ ~ P .D (j + I - q) L.J n-] , 

j=q 
n =0,1, ... , P_I=P_2=···=0. (4.3) 

Of course, the coefficients are functions of the couplings and 
other parameters, 

Bn = (2n + 2)(2n + 21 + 3), 

An = (4n + 21 + 3)f31 + go=C~O) + E, 

C ~j) = (4n + 21 + 3 - 2j )f3j+ I + gj 
j-I 

+ L f3i+ lf3j - i' 
;=0 

j = I,2, ... ,q - 1, n = 0,1, ... , 
q-I 

D(j)=gj+q_1 + L f3i+lf3q+j-i-1> 
i=j-I 

j= 1,2, ... ,q, 

D(q+l) =g2q =a2. 

(4.4) 

A discussion of the physical normalization requirement re­
mains an open question here. 

In general, we may expect an asymptotic growth of 
,per): 

,p(r)::::;dlexp(arq+I)+d2exp( -ar
q
+

I
), r»1. 

2q+I 2q+l 
(4.5) 

At the same time, each row of Eq. (4.3) defines the nonzero 
coefficient Pn + I at each energy E, 

0, ... 

A"o~J -BI' 
(4.6) . . . 

c~q-I), ... ,C~I), 

Hence the standard finite-dimensional analogies make no sense in the infinite-dimensional system in question. 10 A detailed 
analysis of relations between the physical asymptotics of ,per), r- 00, andpn' n - 00, necessitates a more careful argumenta­
tion as indicated schematically in the preceding section. 
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In the first step, we shall employ a change of variables inspired by Eq. (3.5), 

A nhn 

Pn+1 = r(1 + (n + 1)/(2q+ 1))r(1 + (n + 1+~)/(2q+ 1»)' 

This converts our basic recurrences (4.3) into a set of the alternative difference equations 
q-I 

hn -hn_ 2q _ 1 = L (wq_mhn+m_q +w2q-mhn+m-2q), 
m=O 

each of which may be numbered by the parameter k such that 

[ 
a2 ] 1/(2q + I) ( • 21Tk ) 

A = A(k) = 2 exp 1--- , k = 0, ± 1, ± 2, ... , ± q, 
(4q+2) 2q+1 

in the Ansatz (4.7). The new values of coefficients in (4.8), 

c~q-I-m)r(1 + (n + 1)/(2q + 1))r(1 + (n + 1+ V(2q + 1») 
W = , 

q-m A q- mBnr(1 + (n + 1 + m - q)/(2q + 1»)r(1 + (n + 1+ 1 + m - q)/(2q + 1)) 

D(q-m)r(1 + (n + 1)/(2q+ 1))r(1 + (n +1+1)/(2q+ 1») 
W 2 = , 

q - m A 2q - m B n r(1 + (1 + n + m - 2q) / (2q + I))r( 1 + (n + I + 1 + m - 2q) / (2q + I)) 

m = 0,1, .... ,q - 1, 

I 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

are ordered with respect to their asymptotic decrease [cf. 
Fig. 1 (a)], 

This completes the first part of our analysis-an insertion of 

W = O(n - (2m+ \)/(2q+ I» 
q-m , (4.11 ) 

W2q _ m =O(n-(2m+2)/(2q+I». 

In comparison with the harmonic oscillator methodical ex­
ample (3.6), our equations (4.8) have an asymptotically 
negligible right-hand-side expression-one of their solutions 
should obviously be almost constant for n ~ 1. 

The almost-constant solution may easily be represented 
by its Taylor series truncated after a few terms. In this case, 
we may replace also each of the difference equations (4.8) by 
the simplest nontrivial differential equation approximation, 

(2q + 1) ~ hn = wqhn + corrections, n ~ 1, (4.12) 
dn 

and derive immediately the leading-order form of the al­
most-conMant solution. Assuming for simplicity thatf3q 'f0, 
we get 

i.e., 

Wq = (2q+ 1)- If3q [n/(2q+ 1)] -1/(2q +I)/Aik) 

+ corrections, 

hn =h~k) =exp {~[(2q+ 1)-ln ]2q/(2q +l) 
2qA (k) 

+ corrections}, n ~ 1, (4.13 ) 

for each particular parameter k. This is similar to the con­
struction of the harmonic oscillator solutions for each 
e = e ± . The general solution of the present difference equa­
tion (4.8) may be written as a superposition of the type 
(3.7), 

( 
n + 1) ( n + I + ~) r 1+-- r 1+ Pn+1 
2q+1 2q+1 

q 

= L CkA~k)h~k), n~l. (4.14 ) 
k~ -q 
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( 4.13) will enable us to derive the present analog of the har­
monic oscillator formula (3.10). 

The proof ofthe previous statement is not complicated, 
First, we renumber the roots (4.9) in such a way that A (k)q 
= AUeo) / A 6 + I, i.e., we put ko = j - q for k = 2j + 1, ko = j 

U, ~O(N') 

(8) / 
0(1) ...•.• )( ..•..... •..•.••..•.•. )< •. 

O(p') )< 

" 

" O(I/N) 

o I q-l q q+ I q+2 2q 2q+ I 

U, ~O(N') 

/ (b) 
/U'~O(N) 

/ 
0(1) •.....•.. . >t • ••••••••••••• ,c .. 

O(p) 

)I' 

It 

O(l/N) 

q-I q q+ I q+2 2q 2q+ 1 

FIG. I. Order of magnitude of coefficients in our recurrences 
2q+ 1 

L ~PN+I_j=O and 
j~O 

u, ~O(l) 

for large N>I: (a) t=2q-l. p=N- 1
/(2Q

+I); (b) t=2q. 
p=N- II(Q+I). 
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for k = 2j, and ko = 0 if and only if k = o. Next, we notice 
that ReA(ko) <A(O) for all ko#O. Thus due to (4.13) we 
have Ih ~k)1 ~ Ih ~O)I, for all k #0 and n). 1. This means that 
in full analogy to (3.10), we may neglect all the exponential­
ly small corrections and write, for sufficiently large indices 
N, 

r(1 + N + 1 ) r (1 + N + i + 1) 
2q+ 1 2q+ 1 PN+I 

:::::CoA, fo) h ':/) 

:::::CoA,fo) exp {~[~]2ql(2q+I)}, 
2qA rO) 2q + 1 

( 4.15) 

The asymptotic zeros ofPN and Co will coincide. 
In the next step of our considerations, we may try to 

extend the asymptotic estimate (3.9) beyond the harmonic 
oscillator trivial case. Thus combining (4.2) with (4.15) we 
arrive at an estimate 

where the summation may be approximated by an integra­
tion, 

_ "" _2n_ f"" rn exp(n In A(O) + corrections) 
<PN(r) - L Pn r _Co dn , N). 1. 

n~N N r(1 + (n + 1)/(2q+ 1))r(1 + (n + i+ 1)/(2q+ 1)) 
( 4.17) 

Then a change of variables leads to the formula 

2q + 1 f~ r(2q+ I)m exp[ (q + !)m InA(o) + corrections] 
<PN (r) ::::: -- Co dm --------=:.....!:....-=---=----..:..:..:...-----~--

2 NI(q+1I2) r(1 +mI2+ 1I(2q+ 1))r(l +mI2+ (/+1)/(2q+ 1)) 

::::: Co exp [arq+ I I (2q + 1) + corrections], r). 1, (4.18 ) 

compatible, within the achieved precision, with the asymptotic d I # 0 estimate (4.5). 
A common zero in Co, <PN(r), or l/!(r) is in a one-to-one correspondence to the energy, crossing its bound-state value 

E = Ephys . We may conclude that the relation 

C O) 

det 
I , 

[( 

Ao, 0, ... 

-BI , 
0, ... ) ] -EI =0, N- 00, ( 4.19) 

0, ... ,0, D (q+ I),D (q), ... , C O) 
N' AN 

defines the bound-state energies for the potential (4.1). 

V. POTENTIALS EQUIVALENT TO POLYNOMIALS OF 
AN EVEN DEGREE 

The pair of forces (4.1) and 

VCr) =go+glr+ ... +g2q+l r4q + 2, g2q+1 =a2>0, 
(5.1) 

represent the complete class of the general "fractionally an­
harmonic" oscillators (2.1) [cf. Sec. II (d)]. From the 
purely formal point of view the new interaction (5.1) con­
tains one more coupling, but we may postulate 

l/!(r) = ,J+ I exp( - g(r)} f Pnrn, 
n~O 

q+ I f3j rj 
g(r) = L -.-, f3q+ 1= a>O, 

j~ I 2; 
and arrive again at the (2q + 2)-term recurrences 
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(5.2) 

q 

BnPn+ 1 = (An - E)Pn + L Pn_jC~j) 
j~1 

2q 

+ ~ P .D<i-q) 
~ n-J ' 

j~q+l 

n = 0,1, ... , P _ 1 = P _ 2 = ... = 0, 

analogous to Eq. (4.3). 

(5.3 ) 

Before going into details, let us recall a close analogy 
between (5.1 ) and the harmonic oscillator [== a special case 
of (5.1) with q = 0], and reparametrize (5.1): 

VCr) = WI(r) + W~ (r)r, 
WI (r) = Co + clr + ... + cqrq, (5.4) 

W2(r) = YI + Y2r + ... + Yq+ Irq, Yq+ I = a. 

In terms of the new couplings, we may express then also the 
explicit definitions of coefficients in (5.3), 
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Bn = (2n + 2)(2n + 21 + 3), 

An = (4n + 21 + 3)/31 + co=C~O) + E, 

C~j) = (4n + 21 + 3 - 2j)/3j+ 1+ Cj + d j , 
j-I 

dj = L (Yj - i + /3j - i ) ( Yi + 1 - /3i + 1 ), 
i=O 

q-I 
D(j) = L (Yq+j-i +/3q+j-i)(Yi+1 -/3i +d, 

i=j-I 

j= I,2, ... ,q, (5.5) 

with the possible explicit transition between the definitions 
(5.1) and (5.4) of the potential, 

m = O,l, ... ,q - 1, (5.6) 

etc. 
In comparison with the preceding section, the change of 

variables (4.7) finds its present counterpart in the relations 

Pn+ 1 = r(1 + (n + l)/(q + l))r(I + (n + 1 + D/(q + 1») , (5.7) 
4v = 21 + 3 - 2q + (lla)(cq + dq), n = 0,1, ... , A q+ 1 = al(q + 1). 

This transformation converts our basic difference equation (5.3) into the q + 1 different equivalents 
q-I 

hn - hn_ q_ 1 = L (wq_ mhn+ m-q + w2q + 1- ",hn+ m-2q-I)' 
m=O 

where the auxiliary parameter A = A(k) has a form similar to Eq. (4.9), 

A = A(k) = I c: 1 )1I(q+ I) I exp(i q2:k
1
). k = O,I, ... ,q. 

The coefficients 

wq _ m = 
c~q-m-I) r(1 + (n +m -q+v)/(q+ I»)r(1 + (n + I)/(q+ l))r(1 + (n +1+~)/(q+ 1» 

BnA q- mr(1 + (n + v)/(q + l))r(n + m + 2)/(q + l))r(n + m + 1 + i)/(q + 1») 

(5.8) 

(5.9) 

D (q- m)(q + 1)r(n + m - q + v)/(q + l))r(1 + (n + 1 )/(q + 1))r(I + (n + / + ~)/(q + 1)) 
w2q + I-m = , 

aBnA q- "'r(1 + (n + v)/(q + 1))r(n + m + 1 - q)/(q + l))r«n + m + / + ~ - q)/(q + 1») 

m = O,I, ... ,q - 1, (5.10) 

exhibit again the n> 1 asymptotic decrease 

wq_ m = (q + 1) -1/3q_ mA ~k) q[nl(q + 1)] - (m + 1)/(q+ I) + corrections, 
(5.11 ) 

w2q + 1 _ m = (q + l) -ID (q- m) [nl(q + 1)] - (m + I)/(q+ I) 140A r;;; m + corrections, 

displayed also in Fig. I(b). 
In full analogy with the preceding section, the simple 

n> 1 differential equation approximations to Eq. (5.8), 

d 
(q+ I)2-lnhn 

dn 

A "k q
( n )-I/(q+l) 

= -( -) -- [Yq + /3q + corrections], 
2 q+I 

give q + 1 independent solutions 

hn = h ~k) 

(5.12) 

= exp q q -- + corrections , [
/3 + Y ( n )q/(q + I) ] 

2qA'/k) q+1 

n> 1, k = O,I, ... ,q, (5.13 ) 

numbered by the SUbscript k used in (5.9). 
The remaining q independent solutions of Eq. (5.8) 

with D (q) #0 may be found in the same way as above-only 
the suitable change of variables 
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Pn - q = ,uniin/r(I + (n + r)lq), ,uq = - (l/4oq)D (q), 

r = (1/40) [ (2/ + 3 - 2q)a + cq + dq ], 
(5.14) 

differs from Eq. (5.7) and replaces Eq. (5.3) by the q rela­
tions 

iin - iin_ q 

= ---h --q h ,u ( D (q) - /3 -
(nlq)lIq 402 n+q+1 a n+1 

D(q-I) - ) + h n _ q + 1 + corrections, n> 1. D(q) 
(5.15 ) 

We arrive at the q missing and independent quasiconstant 
solutions 

ii ~k) = exp(const',u(k) n(q- 1)/q + corrections), 

n> 1, k = I,2, ... ,q, (5.16) 
immediately. A similar procedure works for D (q) = 0 as 
well. 

The detailed form of constants in (5.16) is not needed. 
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When we compare (5.7) with (5.14), we see that the latter q 
components of Pn + I are suppressed by a huge overall factor, 

r(const + n/q)/r(const + n/(q + 1)) 

:::::r(const + n/[q(q + 1)]), n» 1. 

We may omit them completely from the general solution of 
Eq. (5.3) and write the latter, within the present error 
bounds, in the form 

r(1 + (n + 1)/(q + 1»)r(1 + (n + 1+ n/(q + 1») 
---------r-(-I-+-(-n-+--v)-/-(q-+--l-»)---------Pn+1 

(5.17) 

fully analogous to our former Eq. (4.14). 
In what follows we shall assume a choice of /3q such that 

/3q+rq>O. (5.18) 

As a consequence, the right-hand-side sum in (5.17) be­
comes dominated by the k = ° component [cf. Eq. (4.15)]. 
Indeed, for k #0, we have always a nonzero imaginary part 
in the factor 

1/A rk) = A (O)q exp( - 21Tikq/(q + 1)) 

= A (O)q exp( - 21Ti(q + 1 - k)/(q + 1»). 

An insertion in (5.2), 

rp(r) =,J+ I exp( -g(r»)[O(rN) + ¢N(r>], r» 1, 
00 

¢N(r) = L Pn rn, 
n=N 

enables us to write 

:::::Co L 
m>N/(q+ I) 

rm(q+l) 

m! 

xexp(m In _0_ + O(mq/(q+ I)) 
q+l 

-C ea?q+ 2/ (q + I) r»- 1 
-0 ", ( 5.19) 

in full agreement with the unphysical asymptotic growth 
[(2.5) with d l #0] whenever Co = co(E) #0. Conversely, 
the zeros of Co (E) will coincide with the zeros of rp( r), r» 1, 
as well as with the zeros of the Hill determinant, 

[C
W -Bo, 0, ... 

C(I) 
AI' -BI' 

0 •. ) ] 
I , 

det . . -EI . . . . 
0, ... ,0, D (q), ••• ,D(l), C}j), ... ,C}J), AN 
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=0, N>1. (5.20) 

The proof of the validity of the method [Eq. (3.4)] for the 
potential (5.1) is completed. 

VI. SUMMARY 

In this paper we have considered the complete class of 
the fractional potentials (1.4). We have transformed (i) the 
potentials into their two "canonical" forms, (4.1 ) and (5.1), 
in accord with Ref. 15; (ii) the regular wave functions 
rp(r), rE(O,oo), into their appropriate Taylor coefficients 
Pn' n = 1,2, ... [cf. Eqs. (4.2) and (5.2), respectively]; (iii) 
the radial (ordinary differential) SchrOdinger equation into 
its difference equation equivalents [Eqs. (4.3) and (5.3), 
respectively]; and (iv) the standard physical boundary con­
dition 

rp(r) = 0, r-- 00, 

into its "Hill-determinant" equivalent 

PN = 0, N-- 00. 

(6.1 ) 

(6.2) 

The core of the paper lies in a complete asymptotic solu­
tion of the difference equations, showing that the asymptoti­
cally dominant component of Pn is in a one-to-one corre­
spondence to the r> 1 asymptotically dominant component 
of the wave function r/!(r) itself. Our main result [the equiv­
alence between the two boundary conditions (6.1) and 
(6.2)] is a property of our particular choice of the transfor­
mation r/!(r) --Pn' and, in light of the existing counterexam­
ples, II it need not be valid in general, of course. 
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A new proof of the generalized Birkhoff theorem in general relativity is presented. The partial 
results contained in previous proofs are recovered in a unified treatment of the different kinds 
of space-times to which the theorem applies. The proof is based on the fact that these space­
times are conformal to the direct product of two two-dimensional manifolds (almost-product 
structure) . 

I. INTRODUCTION 

The original formulation of the, well-known Birkhoff 
theorem 1 applied only to spherically symmetric vacuum 
space-times. Its standard generalization applies to space­
times with an energy-momentum tensor posessing two dou­
ble eigenvalues either in the case of the spherical2

•
3 or asso­

ciated symmetries,4.5 even when the orbits of the isometry 
group are timelike.6 

In this work, a new proof of the generalized theorem is 
given. The partial results contained in Refs. 2-6 are recov­
ered in a unified treatment of the different kinds of space­
times to which the generalized Birkhoff theorem applies. 
The proof is based on the fact that all these space-times are 
conformally reducible, in the sense of Petrov. 7 

This conformal reduction was used by Petrov8 in con­
nection with' the original version of the Birkhoff theorem, 
working in specific coordinate systems. The proof of the gen­
eralized theorem that is presented here is intrinsic, for the 
class of adapted coordinate systems in which the almost­
product structure of the space-time metric is manifest. 

The paper is organized as follows. In Sec. II, the confor­
mal reduction of the space-times considered is performed 
and the generalized Birkhoff theorem is properly stated. In 
Sec. III, the components of the Ricci tensor are computed 
and an important lemma is proved. The proof of the theorem 
is given in Sec. IV and, finally, Sec. V contains comments on 
previous formulations on the same theorem. 

II. SPACE-TIMES WITH SPHERICAL OR ASSOCIATED 
SYMMETRIES 

Let us consider a pseudo-Riemannian manifold (V4 ,g) 
admitting a three-dimensional isometry group G3 acting on 
two-dimensional non-null orbits9 O2 , The space-time is then 
conformally reducible,7 and the metric g has the following 
structure: 

g = y2g , (1) 

wheregis reducible7 and it can be thought of as the metric of 
a direct product space-time (V4,g). 

Let us construct a local coordinate system by taking 
local coordinates {yA} (A = 1,2) in O2 and {xa} (a = 3,4) 
in the surfaces V2 orthogonal to O2, In this adapted coordi­
nate system, the conformal factor Yand the metric g can be 
written as follows: 

Y = Y(x), g = hAB (y)dyA dJil + gab (x)dxa dxb, 

(2) 

where hand g are the two-dimensional metrics induced by g 
on O2 and V2, respectively. 

The two-dimensional manifold V2 is of constant curva­
ture, so that the conformal factor Y can be normalized in 
order to have 

Ric(h) = kh, (3) 
where k can be either + 1 (spherical symmetry), 0 (plane 
symmetry), or - 1 (hyperbolic symmetry). The specific 
form of the metric h depends both on the sign of k and on the 
causal character of the (non-null) orbits O2 , 

Weare now in the position to state the following 
theorem. 

Theorem 1 ( Generalized Birkhoff theorem): Every 
space-time admitting a three-dimensional isometry group G

3 
acting on two-dimensional orbits O2 and with Ricci tensor 
pertaining to the algebraic types [( 11) (1,1)] or [( 111,1)] 
(Segre notation) admits at least a four-dimensional isometry 
group G4 , provided that 

(4) 

III. COMPUTATION OF THE RICCI TENSOR OF (V4 .9) 
The Ricci tensor of (V4 , g) can be computed in two 

steps. First of all, one can obtain the Ricci tensor of ( V4,g) in 
terms of k and the Gaussian curvature R of the two-dimen­
sional manifold ( V2, g), 

RAB = khAB' Rab = Rgab , RAb = RaB = 0, (5) 

as it follows easily from the direct product structure (2) of g 
and from Eq. (3). 

The second step consists in applying to g and g the well­
known formulas relating the curvature tensors of two met­
rics that are conformal one to another. \0 A straightforward 
calculation gives 

RAB = [k + y(Ve de y-l) - 3y-2(VeYVe Y) ]hAB , 

R Ab =RaB =0, 

Rab = 2YVa db y-I + [R + y(Ve de y-I) 

- 3y-2(VeYVe Y) ]gab , 

(6) 

where V stands for the covariant derivative in ( V2,g) and all 
contractions are made using the two-dimensional metric g. 

Expressions (6) are covariant in (V2,g) and allow an 
intrinsic formulation of the Einstein field equations for the 
space-times verifying (1 )-(3). Here we are only interested 
in the algebraic structure of the Ricci tensor of ( V4,g). The 
decomposition (6) leads directly to the following result. 

Lemma 1: The algebraic type of the Ricci tensor of 
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( V4,g) is either [(11 )( 1, 1) ] or [( 111, 1)] (Segre notation) 
if and only if the second covariant derivatives of lIY [in the 
sense of ( V2,g)] are proportional to g, that is, 

Vodb (l/y) a:gob . (7) 

IV. PROOF OF THE THEOREM 

The proof consists of three steps. Let us suppose that the 
hypotheses of Theorem 1 are verified, so that, allowing for 
Lemma 1, Eq. (7) holds true. 

( 1) Let us construct the two-dimensional vector u with 
components 

ua(x) = eob db (lIY) , (8) 

where e ab stands for the antisymmetric tensor in ( V2,g). The 
vector u is nonzero, as we are supposing that the function Y 
is not constant [Eq. (4)]. It is easy to see that u is a Killing 
vector of ( V2,g) , 

(9) 

(2) Let us construct now a four-dimensional vector v 
with components 

v°=:ua(x), ~=:O, (10) 

so that it is tangent to the surfaces V2 orthogonal to 02' It 
follows from (9) and the direct product structure of g (2) 
that v is a Killing vector of (V4,g), that is, 

Lv(g)=O, (11) 

where L ( ) stands for the Lie derivative operator in V4 • 

(3) Equation (11) implies that the vector v defined in 
(10) must be a conformal vector of the metricg conformally 
related to g by (1), that is, 

Lv (g) = 2Lv (Y)g (12) 

and the factor Lv (Y) can be easily computed from (10) and 
the definition (8) of u, 

(13) 

so that v is in fact a fourth Killing vector of (V4,g) and 
Theorem 1 is proved. 

There are two more results arising from the proof pre­
sented above. 

Corollary 1: The components of the fourth Killing vec­
tor v are 

Vo = UO(x), ~ = 0, 

where u is the two-dimensional vector explicitly given in Eq. 
(8). 

Corollary 2: The fourth Killing vector is invariant by the 
isometry subgroup G3 acting on 02' The extension to a G4 

isometry group is then central. 

V.COMMENTS 

The generalized Birkhoff theorem is sometimes stated 
without the restriction (4). II This is not correct because, in 

1441 J. Math. Phys., Vol. 29, No.6, June 1988 

the case in which Yisconstant, themetricgitselfhas a direct 
product structure and its Ricci tensor (6) becomes 

RAB=khAB , Rab=Rgab , RAb=RaB=O, (14) 

so that it pertains always to the required algebraic types and 
one has no restriction at all on the two-dimensional metric 
gab' For a generic form of gab' the space-time (V4 ,g) does not 
admit a fourth Killing vector. 12 

In other versions, \3 the condition (4) is replaced by 

(15) 

which is more restrictive than (4) in the case in which the 
orbits O2 are spacelike. The cases not covered by (15) are 
discussed by Foyster and Mclntosh.14 Note that, in these 
cases, Eq. (7) becomes 

(16) 

so that (V2,g) must be flat (we are supposing that Yis not 
constant). It is easy to verify that, in these cases, the two­
dimensional vector u defined by (8) is isotropic. 

This vector coincides up to a sign with the vector w 
defined as follows: 

(17) 

and a straightforward calculation shows that the four-di­
mensional isotropic vector W defined as 

w a = wa(x), W A = ° (18) 

is covariantly constant in the sense of (V4,g). The space­
times (V4 ,g) can be interpreted then as plane-fronted gravi­
tational waves with parallel rays (pp waves 10) and the metric 
forms are given in Ref. 14. 
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It is shown that the class of solutions S(a,O, - 1/1), a real slice of the "complexified" 
Plebanski S(a,b,c/m) metrics, is interpretable as colliding wave solutions and, for a = - Sz, 
coincides precisely with the Ferrari-Ibanez colliding wave metrics. 

I. INTRODUCTION 

The main purpose of this work is to demonstrate the 
equivalence of the S(a,O, - 1/1) metrics and the Ferrari­
Ibanez class of colliding wave solutions. 

II. PRESENTATION 

In 1980 Plebanski I published a large class of static Weyl 
solutions, denoted by S(a,b,c/m) , which can be given in a 
real chart {q,p,(7, 'T} (1 < q < 00, - 1 <p < 1) by the metric 
structure 

m-Zg4 =j-I[.#gz + @ dul] - jdr, 

.#= (q+ 1)(a+b)'(q_l)(a-b)' 

X(1 +p)(a+c)'(1_p)(a-c)', 

@ = (i _1)(I_pz), 

j= (q+ 1)-(a+ b)(q_1)b-a 

X(1 +p)-(a+c)(1_p)c-a, 

gz = (qZ _ pZ)(q + p) - (b+ c)'(q _ p) - (b-cl' 

[ 
dqZ dPZ ] 

X -z--+-I--z ' 
q -1 -p 

where a, b, c, and m are arbitrary constants. 

(1) 

By complex coordinate transformations (scaling trans­
formations of the form q-+q/qo,P-+p/po' (7-+(7/(70' 'T-+'T/'To, 
accompanied by complex scaling of parameters), the metric 
( 1 ) can be brought to the form 

m-Zg4 = I-I [d'gz + fJJJ dul] +1 dr, 

d' = (1 + q)(a+b)'(1_ q)(a-b)' 

X(1 +p)(a+c)'(1_p)(a-c)', 

fJJJ = (1 - pZ)( 1 _ qZ) = : pZ, 

1= (1 +q)-(a+b)(1_q)b-a 

X(1 +p)-(a+c)(1_p)c-a, 

gz = (pz _ qZ)(p + q) - (b+c)'(p _ q) - (b_C)1 

X {...!!L - -.!!L} , 
I_pz 1_ qz 

(2) 

which are real solutions of cylindrically symmetric charac­
ter; a l7 and aT are now spacelike Killing vectors. This class of 
solutions is naturally denoted by S(a,b,c/m). 

According to the theorem on colliding wave solutions 
belonging to the CW1 class, Z it is necessary and sufficient 
that 

b + c = ± 1, b - c = ± 1. (3) 

Thus the sea, ± 1,011) and S(a,O, ± 1/1) metrics are 
interpretable as colliding wave metrics. It is easy to show 
that these solutions are equivalent one to another. 

Let us consider the particular case ofS(a,O, - 1/1). 
Then the structural functions and the line element g2 of the 
above metric g4 reduce to 

fJJJ = (1 - pZ) (1 _ qZ) = : pZ, 

l=p-za(1 +p)/(1-p), 

d' = p2a' (1 + p) 1 - 2a(1 _ p) 1+ Za, 

_ dp2 dqZ 
gz = -1--Z - -1--2 . 

-p -q 

(4) 

The S(a,O, - 1/1) is interpretable as a colliding wave 
solution, since by accomplishing the transformations 

p = cos <p, q = cos e, (7 = Xl, 'T = XZ, a = - Sz 
(5) 

in g4 from (2) with structural functions and g 2 from (4), for 
m = 1, one arrives, modulo the change of signature, justly at 
the colliding wave solutions derived and studied by Ferrari 
and Ibanez. 3 

We expect that certain cylindrically symmetric real 
slices of the "complexified" multiexponent Weyl metrics4 

could bear a colliding wave interpretation. 
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The self-similar spherically symmetric solutions of the Einstein field equation for the case of 
dust are identified. These form a subclass of the Tolman models. These self-similar models 
contain the solution recently presented by Chi [J. Math. Phys. 28, 1539 (1987)], thereby 
refuting the claim of having found a new solution to the Einstein field equations. 

I. INTRODUCTION 

The assumption of self-similarity in general relativity 
has particular appeal because of the simplification that re­
sults in the Einstein field equations. The mathematical sim­
plification arises because the metric functions, in a spherical­
ly symmetric problem, are now essentially functions of the 
single variable ct 1 R, where R is the radial coordinate and tis 
the coordinate time. Consequently the field equations reduce 
to a system of ordinary differential equations. The solution 
of these equations should be useful in astrophysics, for exam­
ple in studying the asymptotic behavior of a relativistic su­
pernova shock wave created by a source from which energy 
is released. 

Recently Chi 1 found a self-similar spherically symmet­
ric solution to the field equations for the special case of dust. 
However, the general dust solutions for spherically symmet­
ric space-times, the Tolman models,2 are known and are list­
ed by Kramer et al.3 Thus the solution of Chi must be a 
particular Tolman model. We reexpress the solution of Chi 
to ease comparison with the equations of Kramer et al. This 
solution contains the Einstein-de Sitter model as a particu­
lar case. 

We extend the solution of Chi by finding two further 
classes of self-similar solutions for the Tolman metrics. In 
fact the self-similar solutions presented in this paper are the 
only possible self-similar spherically symmetric solutions 
admitted by the field equations formulated by Chi. Through­
out we follow the notation and conventions of Chi. 1 

II. FIELD EQUATIONS 

The spherically symmetric metric can be put in the form 

d~ = c 2e u(t,R) dt 2 _ ew(t,R) dR 2 

(1) 

where R is the comoving radial coordinate. Cahill and Taub4 

define a self-similar spherically symmetric solution of the 
field equations as one for which the resulting space-time ad­
mits a conformal Killing vector. They then show that the 
metric (1) must be of the form 

d~ = c2eu(t) dt 2 _ eWw dR 2 

(2) 

where S is the self-similarity variable. In his attempt to ob­
tain self-similar solutions Chi 1 expressed the field equations 
in terms of the dimensionless functions 

8trGpt 2 = N(s), 8trGpt 21c2 = Q(S), 

2Gmt 2IR 3 =M(S), r=RS(S)' 

(Note that if we replace ct with R in these expressions we 
then obtain the equations considered by Cahill and Taub.4

) 

The field equations can then be written as a system of ordi­
nary differential equations, 

M = t 2s [1 + e -uS,2 - e-W(S - tS')2], (3a) 

3M - SM' = NS2(S - SS'), (3b) 

SM' - 2M = - SQS2S', (3c) 

So/ = - 2(tN' - 2N)/(Q + N) - 4tS'IS, (3d) 

0' = - 2Q'/(Q + N), (3e) 

where a prime denotes differentiation with respect to t. In 
the case of dust the pressure vanishes so that Q = 0 and the 
field equations (3) can be easily integrated. The metric (2) 
now has the particular form 

d; = c2 dt 2 _ t 4S- 4N- 2 dR 2 

_R 2S2(d()2 + sin2 ()dtji), (4) 

where 

SS'2+S(1-M~) -Mo=O, 

NS 2(S - SS') - MOS2 = 0, 

(5a) 

(5b) 

and Mo is a constant of integration. It remains to obtain the 
function set). 

III. THE CASE Mo= 1 

This special case was considered by Chi. 1 Equations (5) 
yield 

S = n(so ± t) ]2/3, 
N = ~t2(to ± S)-I(SO ± s 13)-1. 

On using Eq. (5b) we obtain the relationship 

t 4N- 2S- 4 = (S + RS')2 = (:~r 
Then the metric (4) can be written as 

(6a) 

(6b) 

(7) 

The solution (7) is a special case of the general dust equation 
(13.39) (on setting E = 0) of Kramer et al.3 We use (6a) to 
obtain an explicit form for r, 
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t- to(R) = ± [m(R)] 112,-312, (8) 

whereto(R) = +soRlcandm(R) = [2/(3cR2)]1/2.The 
result (8) is equivalentto Eq. (13.38a) of Kramer et aJ. (In 
the general dust solutions the quantities to and m are arbi­
trary functions of R.) Thus we have shown that the self­
similar dust solution of Chi is a particular Tolman model. 

With the aid of Eq. (6) the metric (4) can be written as 

di' = c2 dt 2 - (~)4/3(SO ± S)-2/3 (So ± S /3)2 dR 2 

_ (~)4/3 R 2(SO ± s)4/3(d() 2 + sin2 () drfi). (9) 

This self-similar solution contains essentially only one arbi­
trary constant, namely So. It is interesting to observe that 
when we set So = 0 in (9) we get 

di' = c2dt 2 _ t 4/3 dR 2 _ t 4/3 (d(} 2 + sin2 () d4l) (10) 

after a rescaling of coordinates. The space-time (10) is the 
familiar Einstein-de Sitter model. 

IV.Mo~1 

This case was not considered by Chi. I However, the field 
equations (5) can also be integrated for Mo=/:- 1 and we ob­
tain two further classes of self-similar Tolman models. Upon 
integration (Sa) yields 

M~>I: 

S=Mo(M6 -1)-I(cosh1]-1), 

S - So = ± Mo(M6 - 1) -3/
2(sinh 1] -1]), 

M~ <1: 

S=Mo(1-M~)-I(1-cOS1]), 

S-So= ±MoO-M6)-3/2(1]-sin1]). 

We can write this solution in the standard form 

t - to(R) = ± h(1])m(R)/- 3
, 

where· 

to(R) =soR/c, m(R) = MoR/c, 

_ {(M~ - 1)1/2, for M6> 1, 
1- (1 _ M~) 1/2, for M~ < 1, 

_ {sinh 1] - 1], for M6> 1, 
h(1])- . &' M21 1] - SlO 1], lor 0 < . 

01 ) 

Of course Eq. ( 11) is contained in the general dust equation 
( 13.38b) of Kramer et al. 

These self-similar solutions contain essentially two arbi­
trary constants, namely So and Mo. Note that self-similarity 
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seems to isolate those solutions for which m(R) -R. For 
Mo = 1 we have m(R) -l/R. For Mo=/:- 1 the metric (4) 
becomes 

di' = c2 dt 2 _ (_1_ J!...)2 dR 2 - r(d(} 2 + sin2 () d4?), 
M JR 

o (2) 

where r must satisfy 

r = h '(1])m(R)/- 2. 

The metrics (7) and (12) comprise the entire set of self­
similar Tolman models. 

V. ENERGY DENSITY 

Here we briefly study the behavior of the energy density 
p in the self-similar Tolman models. The energy density is 
the only nonvanishing dynamical quantity in the Tolman 
models. For the case Mo = 1 we have 

p= 081TG)-l t -2S 2(So±S)-I(SO±S/3)-I. (3) 

Note that the expression corresponding to ( 13) given by Chi 
incorrectly contains an additional factor of S2. For small 
values of S, we obtain the behavior 

p_S2/t 2 = c2/R 2, 

and p has the form of an inverse square law. For large values 
of S we obtain the behavior 

p-t -2. 

Also, in the classes of solution for which Mo =/:- 1 the en­
ergy density p can be written as 

p = Mo(81TG) -It -2S2S -2(:~) -I. 

If Jr/JR-S -2 then clearly p_S2/t 2, and againp has the 
form of an inverse square law. 
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In this paper a special case of Hauser-Malliot (HM) space-times is examined in the presence 
of a perfect fluid source. The obtained solutions are all known except for a generalization of a 
stationary axisymmetric solution found by Kramer [Class. Quantum Gravit. 1, L3 (1984)]. 

I. INTRODUCTION 

In a 1968 paper Carter I examined spaces with a two­
parameter Abelian isometry group, G 2 (condition I in Ref. 
1 ), invertible with non-null surfaces of transitivity (condi­
tion II in Ref. 1), in which the Hamilton-Jacobi equation 
(HJ) is separable for non-null geodesics (condition IV in 
Ref. 1). The metric satisfying these four conditions is metric 
(77) in Ref. 1. Carter, in order to simplify the field equa­
tions, imposed a supplementary condition (III S in Ref. 1), 
the separability of the Schrodinger equation. The necessary 
and sufficient condition for the separability of the Schro­
dinger equation is relation (79) in Ref. 1. The resulting 
spaces split into four families [A], [B( +)], [B( - )],and 
[D] in the presence of a nonsingular electromagnetic field. 

The separability of the HJ equation, which has been 
shown independently by Matravers2 and Carter, I gives rise 
to a fourth constant of the motion for particle orbits (the 
three other constants being the rest mass, the energy, and the 
angular momentum about the symmetry axis). This implies 
the existence of a second-rank Killing tensor in these solu­
tions. Matravers has also shown that the separability of the 
HJ equation for null geodesics gives rise to a nonzero qua­
dratic first integral for the null geodesic equations, which 
implies the existence of a conformal Killing tensor. Walker 
and Penrose3 found that all the vacuum type-D solutions 
admit an irreducible second-rank conformal Killing tensor 
for null geodesics, while an irreducible second-rank Killing 
tensor and its corresponding first integral for all geodesics 
exists only in a subclass of these solutions. 

The results of Walker and Penrose have been extended 
to type-D electovac solutions with an aligned nonsingular 
electromagnetic field by Hughston et a/.4 and by Hughston 
and Sommers.5 The latter authors have shown that the C 
metric and the C-NUT metric and their electrovac general­
izations are the only metrics in the class that do not admit the 
Killing tensor. Sufficient conditions for the separability of 
the HJ equation have been given by Woodhouse.6 He relates 
the separability of the HJ equation with the existence of sec­
ond-rank Killing tensors (Theorem 4.2). 

In the same spirit with Carter, Bonanos7 has studied 
spaces with a two-parameter, invertible Abelian isometry 
group in which the HJ equation for null geodesic separates in 
the presence of perfect fluid sources. The separability of the 
HJ equation for null geodesics is equivalent to the existence 
of a conformal Killing tensor (the conformal Killing tensor 
which corresponds to a [( 11) (11)] Killing tensor). This is 
the only work that has been done on spaces containing, as 

special cases, metrics admitting [ ( 11) (11)] Killing tensors 
in the presence of a perfect fluid energy-momentum tensor. 
A generalization of Carter's space-times has been made by 
Hauser and Malhiot (HM), in two successive papers. X

,9 In 
the first ( 1976) they presented the set of all space-times that 
admit a second-rank Killing tensor whose Segre characteris­
tics are [( 11) (11)], or, equivalently, a second-rank Killing 
tensor with two double non constant eigenvalues, A 1 and A2• 

In a special coordinate system the resulting metric has the 
same general form as Carter's HJ separable metric [(77) in 
Ref. 1] except that there is no group of symmetry. However, 
under an additional assumption on the Ricci tensor (the R 12 

component of the Ricci tensor vanishes) the metric of HM 
admits a two-parameter Abelian isometry group and, in this 
case, the space-time coincides with Carter's metric (77) un­
der the restriction of relation (79), The vanishing of the R 12 

component of the Ricci tensor is the sufficient and necessary 
condition for the separability of the Schrodinger equation 
and it is completely equivalent to relation (79) of Carter. 

In a second paper ( 1978) HM completed their previous 
results and obtained a larger class of metrics, namely, they 
found all space-times that admit, or are conformal to, those 
that admit nonsingular [( 11) (11)] Killing tensors, with 
nonsingular meaning with the nonconstant eigenvalues AI 
and A2• Their general metric splits into four subfamilies: 
(1,1) when 8 182 #0; (0,1) when 8 1 = 0, 82 #0; (1,0) when 
8 1 #0, 82 = 0; and (0,0) when 8 1 = 82 = 0, where 
8 1 = p - p and 82 = 7' + Tare expressions of the Newman­
Penrose (NP) spin coefficients. In this second paper they 
also proposed two possible directions of research: the first is 
to find spaces with R 12 # 0 (non-Schrodinger separable) and 
the second is the search for physically plausible matter ten­
sors, which permit the hidden symmetry characterized by a 
[ ( 11) (11)] Killing tensor. 

In the present paper we examine only the ( 1,1) subfami­
ly of HM spaces in the presence of a perfect fluid source and 
under the assumption of the separability of the Schrooinger 
equation. 

In the (1,1) subfamily of HM spaces, the existence of a 
[ ( 11) (11)] Killing tensor in the presence of a perfect fluid 
energy-momentum tensor implies the existence of a G 2 (at 
least), invertible with a non-null surface of transivity. The 
orbits of the group are timelike (one timelike Killing field 
and one spacelike), or spacelike (two spacelike Killing 
fields) . 

Our work generalizes, in a certain way, Bonanos' re­
sults, because (a) we also examine the spacelike case (Bon­
anos examined only the timelike case, namely, the stationary 
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axisymmetric spaces), and (b) we find all solutions for the 
timelike case (Bonanos has not found Kramer's solution and 
its generalization). We say "in a certain way" because Bon­
anos' spaces are more general than the spaces examined in 
this paper since they admit the conformal Killing tensor cor­
responding to the [ ( 11) (11)] Killing tensor, which charac­
terizes the ( 1,1) subfamily of HM spaces. 

In Sec. II we present the (1,1) subfamily of HM spaces 
and we make a classification of this subfamily based on the 
eigenvalues Al and ..1.2 of the [( 11) (11)] Killing tensor. 

In Sec. III we formulate the consequences of the exis­
tence of a perfect fluid source for the (1,1) case in NP for­
malism. 

In Secs. IV and V we solve the field equations and we 
present the obtained solutions. 

We shall perform our calculations using the NP formal­
ism \0 and the complex vectorial formalism of Cahen, 
Debever, and Defrise. 11-13 

II. SPACES ADMITTING [(11) (11)] KILLING TENSORS 

The Killing tensor has the following form in a local co­
ordinate system (Xi) (see Refs. 8,9, and 14): 

Kij = AI (n;!j + linj) +A2 (mimj + mimj ) , (1) 

where the covariant vectors Ii and nj are real and null and the 
complex null vectors mi and mj are complex conjugate. The 
functions AI and ..1.2 are real. 

The Killing tensor equation, 

V(kKij) =0, (2) 

can be written in the NP notation: 

k = (T = A = v = 0, (3 ) 

dAI = (AI +A2){(1T- r),,'P + (11'-7)11 4}, (4) 

dA2 = (AI + A2){ - (p + p)11 I + (It + ,u)112}, (5) 

where 11 a (a = 1,2,3,4) are one-forms forming a covariant 
null tetrad in which the metric has the form 

d? = 2(11 1112 - 11 311 4), (6) 

and in a local coordinate system (Xi), 

11 1= ni dxi 112 = Ii dxi 

11 3 = - mi dxi 114 = - m i dXi. 
(7) 

The basis dual to 11 a is denoted by {Xa } and the corre­
spondence with the NP operators is given by 

·a XI=D=/'-., 
ax' 
·a 

X3=~=m'-., 
ax' 

·a X2 = ~ = ",'-. , 
ax' 

- -i a 
X4=~=m -.' 

ax' 

(8) 

The differential of a scalar function / is, in this nota-
tion, 

d/= (DF)11 I + (~/)112 + (~/){}3 + (S/){}4 . (9) 

The integrability conditions of ( 4) and (5) are simply 

d 2AI = d 2..1.2=°. (10) 

In the NP formalism, conditions (to) can be written 
as8,14 
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11'1T = r7, (11a) 

p,u = Pit ' (11 b ) 

D(1T-r) = (p+p)(1T-r) 

+ (€-E+p)(1T-r), (llc) 

~(1T - r) = - (It + ,u)(1T - r) 

+ (Y-Y+It)(1T-r), (lId) 

~(p + p) = (p + p)(a + /3 - 1T) 

-(p+p)(1T-r), (lIe) 

~(It +,u) = - (It + ,u)(a + /3 - r) 

-(It-,u)(1T-r), (llf) 

~(11'-7) -;5(1T-r) = (a-/3)(1T-r) 

- (a -(3)( 1T - r), (llg) 

D(It+,u) +~(p+p) = (p+p)(y+r) 

- (It + ,u)(€ + E). (11h) 

The canonical form of the [ ( 11) (11)] Killing tensor is 
conserved under the transformation 

l' = eal, (12a) 

n' = e-an, (l2b) 

m'=eibm, (l2c) 

where n, I, m, and m are the four null vectors forming the. 
covariant null tetrad (6). Relations (lla) and (lIb) sug­
gest that we choose our tetrad, imposing the conditions 

It=/p, 11'=r, (l3) 

where / = ± 1 (we can also make 11' = - r without any 
change in the results). Imposing r = 11', we have that r = ° 
implies 11' = ° which is in agreement with (11a), but It = ° 
does not necessarily imply p = ° as we can see from (lIb). 
Thus the condition It = /p does not cover all cases and we 
have to consider also It = 0, p,#O: 

1t=/p'#O, 11'=r, (14) 

It = 0, p '# 0, 11' = r. ( 15) 
Before we present the metrical forms for the (1,1) sub-

family of HM spaces, we have to mention an important 
theorem of HM.8 

Theorem: The null vectors 1 and n are shear-free geode­
sic and are therefore principal null vectors ofthe Weyl ten­
sor. 

The proof of this theorem is based on relations (3). 
Equations (3 )-( 5) and (11), combined with the NP 

equations (14), permit us to obtain the following forms for 
the metric. 14 

Cia) Al and 42 are not constants, It =/p,#O, 11' = r, 
(p-p)'(r+7),#0, 

(16) 
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(ib) Al and A2 are not constants, J.L = 0, p=l=O, 1T = r, 
(p - .0)( r + r) =1=0, 

ds'l = 02{ 2r/Jy E dy(dt + Adz) 
G (B-A) 

_ H2 (dt+Bdz)2- (t/JX dX )2} , (17) 
(B_A)2 4F2 

where 

0 2 = Al + A2, Al = t/J(x), A2 = r/J(y) , 

A = A (x,z,t) , H = H(x,z,t) , B = B(y,z,t), 

E=E(y,z,t), G=G(y), F=F(x), /= ±1. 
The unknown functions A, H, B, and E of both metrics 

have to also satisfy the following two differential equations 
on t and i',9,14: 

~,_aE_ + _aA _ _ _ A __ a....;...(B_-_A-,-) 
E at at B -A at 

1 aE a(B -A) (18) 
E az B-A az 

!LaH + aB __ B_ a(B-A) 
H at at B-A at 

1 a(B -A) (19) 
B-A az 

These differential equations have been integrated by 
HW and in a different way by the present authorlS with the 
same results. Metrics (16) and (17) belong to the (1,1) 
subfamily of HM spaces. 

Metric (16) does not admit, in general, any isometry 
group. Hauser and Malhiot have proved8 that a sufficient 
condition for the existence of a two-parameter, invertible 
Abelian group with the generators a/at and a / az is 

R ii(ViAI)(VjA2) = 0. (20) 

Condition (20) can be written in the NP formalism as 
follows: 

R ii(ViAI)(VjA2) = - 12/(AI + A2)2(p +.0) 

X [/(t/JOI - t/JIO) + t/J21 - t/J12] 

=0, (21) 

and if we replace the Ricci traceless tensor components by 
their expressions obtained by the NP equations we have the 
equivalent relation, 

R ii(ViAI)(VjA2) 

= - 12/(AI + A2)2(p +.0) (r - r) (.or - pr) = ° . 
(22) 

Then, condition (20) reduces to 

/(t/JOI-t/JIO) +t/J21-t/J12=6/(,or-pr) =0, (23) 

where the assumption that Al and A2 are not constants, 
(p + .0) (r - r) =1=0, has been made. 

Relation (23) is the necessary and sufficient condition 
for the separability of the SchrOdinger equation.8,14 

We have to remark that, by imposing condition (20), 
Hauser and Malhiot exclude a class of spaces, namely, those 
spaces which admit the two-parameter invertible Abelian 
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group and are not SchrOdinger separable [Carter's metric 
(77) without condition (79)], For this reason we have 
searched and found the sufficient and necessary condition 
for the existence of the above-mentioned group,14 a condi­
tion that does not imply the separability of the SchrOdinger 
equation, 

(24) 

The group's orbits may be timelike (/ = 1) or spacelike 
( / = - 1) and in the case of electrovac field equations, met­
ric (16) reduces to Carter's metric [A]. 

Metric (17) also does not admit, in general, any group 
of motion and it belongs to the (1,1) subfamily of HM 
spaces.9 The necessary and sufficient condition for the exis­
tence of a two-parameter Abelian group is l4 

t/J21 = 0, (25) 

t/JOI - t/JIO = 3 (.or - pr) , (26) 

In this case the group is noninvertible but orthogonally 
transitive with null orbits and the generators a/at and a / az. 
In the presence of a nonsingular electromagnetic field, met­
ric (17) reduces to a metric found by Leroyl6 and Debever 
and McLenhaghan. 17 

(ii) Al = const, A2 =l=const, J.L = /p =1= 0, 1T = r, (p -.0) 
x(r+r)=I=0, 

ds'l=/ E2 2(dt+Adz)2_02 H2 2 

(B-A) (B-A) 

X (dt + B dz)2 - fR 2 dr - 02r2 dx2, (27) 

where 

0 2 = Al + A2, Al = const, A2 = ,p(y), 

A = A (x,z,t) , H=H(x,z,t), B=B(y,z,t), 

E=E(y,z,t), R=R(y), r=r(x), /= ±1. 

(iii) Here Al =1= const, A2 = const, J.L = /p =1= 0, 1T = r, 
(p - .0)( r + r) =1=0, 

ds'l=/02 E2 2(dt+Adz)2- H2 2 

(B-A) (B-A) 

X (dt + B dz)2 - /02az dr - S2 dx2, (28) 

where 

0 2 = Al + A2, Al = t/J(x), A2 = const, 

A = A (x,z,t), H = H(x,z,t) , B = B(y,z,t) , 

E = E(y,Z,t), a = aCyl, S = Sex), / = ± 1. 

Functions A, H, B, and E have to satisfy the differential 
equations [Eqs. (18) and (19)] for both cases. These met­
rics do not admit, in general, any group of motion, but, under 
certain conditions on the Weyl and the traceless Ricci ten­
sors, they admit a two-parameter (at least) invertible Abe­
lian isometry group, with the generators a/at and a / az 
whose orbits are timelike (/ = 1) or spacelike (/ = - 1).18 
In the case of electovac field equations, metrics (27) and 
(28) reduce to [B( - )] and [B( + )] Carter spaces, re­
spectively. 

In Secs. 111-V we are going to consider metric (16) 
when/ = 1, and metrics (27) and (28) when/ = ± 1 in the 
presence ofa perfect fluid source. We have neglected to con­
sider metric (17) because it does not admit a perfect fluid 
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energy-momentum tensor. IS Also we have not examined 
metric (16) when 1= - 1 because the equations are very 
complicated and we hope to present a solution fori = - 1 as 
well as for the rest of the HM subfamilies in the presence of a 
perfect fluid source. 

III. METRICS (16), (27), AND (28) IN THE PRESENCE OF A 
PERFECT FLUID SOURCE 

We consider the Einstein equations with a perfect fluid 
energy-momentum tensor: 

Rij -!Rgij +Agij = (e+p)u;uj -pgij' (29) 

where A is the cosmological constant, e is the rest energy 
density, p is the fluid pressure, U is the velocity field of the 
fluid, and 

(30) 

Here, k l,k2 are real and k3,k4 complex functions of the co­
ordinates 

k3 = k4 = <PI + i<P2; (31) 

also, 

u;u; = l<=>k,k2 - k3k4 = ! . 
We assume that the energy conditions are satisfied: 

e>O, e+p>O. (32) 

The Einstein equations (29) give the following expres­
sions for the components of the traceless Ricci tensor in the 
NP notation: 

tPoo=!(e+p)ki, tP22=!(e+p)Q, 

tP02 = !(e + p)k L tP20 = !(e + p)k ~ , 

tPOI = !(e + p)klk3, tP21 = !(e + P)k2k4' (33) 

tPJO = !(e + p)klk4, tPl2 = !(e + P)k2k3' 

tPII = !(e + p) (klk2 + k3k4) , A -!R = !(e - 3p) . 

The NP equations and the relations between spin coeffi-
cients permit us to distinguish two cases for metrics (16), 
(27), and (28), which are dependent on whether 1= 1 or 
1= _1. 14.18 
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(a) 1= 1, one timelike Killing field and one spacelike, 

k, = k2' k3 = k4 = <PI' k i - <P i = !, 
tPoo = tP22 = !(e + p)ki , 

tP02 = tP20 = ! (e + p) <P i , 
tPOI = tP21 = !(e + p)k,<P, , 

2tP II = tPoo + tP02 = ! (e + p)( k i + <P D , 
A-!R=!(e-3p), 

tPoo - tP02 > 0, tPoo > 0, tP02 > 0 . 

(b) 1= - 1, both Killing vectors are spacelike, 

k, = k2' k3 = - k4 = i<P2' k i - <P ~ = ! ' 
tPoo = tP22 = ! (e + p) k i , 
tP02 = tPzo = - !(e + p)<p i , 
tPOI = - tP21 = i!(e + p)k,<PI' 

2tPII = tPoo - tP02 = !(e + p)(ki + <p~), 
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(34) 

(35) 

A-R/4=!(e-3p), 

tPoo + tP02 > 0, tPoo> 0, tP02 < 0 . 

We note that in case (a) the HJ and Schrodinger equa­
tions are separable while in case (b) only HJ is separable. 

Ifl = - 1 and tPOI #0 then the Schrodinger equation is 
not separable for metrics (16), (27), and (28).14.18 We do 
not consider here non-Schrodinger separable spaces. 

Now we can state the following theorem. 14.18 

Theorem I: The (1,1) subfamily of HM spaces in the 
presence of a perfect fluid source always admits a two-pa­
rameter (at least) Abelian invertible isometry group with 
a/at and a / az as generators, and whose orbits may be time­
like (I = 1) or spacelike (I = - 1). 

The proof of this theorem is based on the remark that 
relations (34) and (35), which express the perfect fluid 
source presence for metrics (16), (27) and (28), satisfy the 
necessary and sufficient conditions of the existence of the G2 

group. As an example for metric (16) we have, from (34) 
and (35), 

tPOI=tPW 1=1; tPOI= -tPw 1= -1. 

Clearly these relations are the necessary and sufficient 
conditions for the existence of the group for the same metric 
[relation (24)]. 

IV. INTEGRATION OF FIELD EQUATIONS FOR 
METRICS (16) AND (27) 

The fact that 1 and n are principal null vectors of the 
Weyl tensor leads us to distinguish two cases for the four­
velocity field of the perfect fluid (see Wainwright '9 ), 

U[;TJik 1#0, 

UUTJik ) = 0 . 

(36) 

(37) 

Condition (36) implies that u; does not lie on the space 
spanned by 1 and n while condition (37) implies that it does 
lie on the above mentioned two-space. 

For metric (16) we can state a theorem. 
Theorem II: The only perfect fluid solution of Einstein's 

equations for the (1,1) subfamily of HM spaces, when Al 
and A2 are not constants and 1= 1, is the Wahlquist solu­
tion. '4.2o 

The metric takes the following form20
: 

E Z 
ds2 = 2 + Z [dt + roD (x~ - x2)dz]2 

X Y 

2H2 2 [dt + roD(x~ + r)dzP 
x +y 

where 

- (X2+yZ) [H2(1~2k2x2) + EZ(1~k2r)]' 
(38) 

EZ(y) = 1 +r 

+y[y-k-I(1-k2r) 1/2sin-l(ky)]g-l, 

H2(x) = l-x2 

- x[x - k -1(1 + k2x2)1/2sinh-l(kx) ]g-I , 

r 0' D, x A' k, and g are constants, and 

u; = [(2)1/2/2] (E 2 - H 2){E(n; + 1;) + H(m; + m;)}. 
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Here, U is the fluid four-velocity and belongs to the fam­
ily obeying relation (36). Also U is nonexpanding with zero 
acceleration and shear tensor but with a nonzero two­
form. 20 There is no solution with A I and A2 nonconstant and 
/ = 1 and (37) satisfied. 

For metric (27) the obtained solutions belong to the 
(37) family and we have 

d~ = E2(y) [dt + 2bx dzF 

_ 02[ ~X2 + B2(X)d~] _ R 2(x)dy (39) 
B (x) 

when/= 1, and 

d~ = dt 2 - E2(t) [dy + 2bx dZ]2 

_02[ ~X2 +B2(X)d~] 
B (x) 

(40) 

when/= - 1. 
In metric (40) we put y = t, t = Y and we have dropped 

the caret, the Killing vectors being in this case a lay and a 1 az 
(spacelike) . 

For metrics (39) and (40), 

¢Ol = ¢21 = 0, B2(X) = CzX2 + clX + Co. 

The field equations are solved for special cases: 

E=R=1. (39') 

These are the locally rotationally symmetric (LRS) so­
lutions oftype I found by Ellis.21 Between them we mention 
the G6del universe corresponding to 0 = 1: 

b = 0, e = const. (39") 

This is the Schwarzschild interior solution. 
Metric (41) is the LRS solution oftype IW8,21 and the 

field equations have been solved for the special cases 

L=O, 

which are the Friedman solutions,21 and 

b=O, 

which are the Kantowski-Sachs solutions.22 

(40') 

(40") 

v. INTEGRATION OF FIELD EQUATIONS FOR METRIC 
(28) 

For this case, the expressions for the traceless Ricci ten­
sor and the energy conditions imply that the metric takes the 
following form: 

d~ =/02E 2(y) [A (x)dt - dZ]2 - H2(X)dt 2 

0 2 
2 dx2 

- / E2(y) dy - H2(X) . 

The only possible cases are 

U[inik 1 #0, / = 1, 

U[inik 1 = 0, /= ± 1. 

When (42) holds, then, 

Ui = kl(n i + Ii) - flJl(m i + mi ) • 

The integration of the field equations yields 

E2(y) = a sine ± aoy + a3 ) + alla~, 

(41) 

(42) 

(43) 

(44) 

(45) 

where a = (ai - 2 ai a~ )/ao, ao, ai' and a2 are constants; 
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(46) 

H 2(x) = - (allb ~ )exp[ - (boX + bl )] + b2 + b3 , 

(47) 

A(x) = + (aolb~ )exp[ - (boX + bl )] + Co, 

where bo, bl> b2, b3 , Co are constants; and 

(2) 1/2 4aoE 
k) = --------""------

2 (16E2a~ _ H 2bo0 2] 1/2 ' 

(2)1/2 boRE 
fIJI = --2- [16E2a~ _ H2b~02] 1/2' 

e + 3p = H - 4A + 2bob2] , 

where A = cosmological constant. 

(48) 

(49) 

(50) 

(51) 

This solution is a generalization of Kramer's solution,23 
which is obtained by making a) = 0, A = 0, and adjusting 
the remaining parameters. 

This same metric has also been found by Kramer inde­
pendently under different assumptions24 (the vanishing of 
the Simon tensor). 

The NP coefficients obey the following relations: 

It = p, E = y, 1T = 1", a = f3 , (52) 

k = v = u = A = p + P = 1" + r = a + a = ° . (53) 

The fluid four-velocity is nonexpanding and is shear-
free, its acceleration and the rotation vector are orthogonal 
to the group orbits. The solution is of Petrov type D. 

The Abelian group generated by a 1 at and a 1 az is the 
maximal group of motion. 

The corresponding vacuum case (e = p = 0) is a sub­
case of [B( + )] spaces of Carter. Obviously then, this solu­
tion cannot be matched to the Kerr solution, which belongs 
to the [A] family of Carter's spaces, but it could be matched 
to the [B( + )] spaces. 

When (43) holds, we obtain, for/ = 1, 

d~ = x2[dt - (a - bx- 3 )dzF 

- H2(X)d~ - x2 dy2 - [dx2IH 2(x)] , (54) 

where 

H 2(x) = CzX2 + CIX- I + (b 2/2)x-4 
• 

The pressure and the rest energy density are 

p = ~b 2X -6 + 3c2 - A , 

e = lib 2X -6 - 3c2 + A, 

where a, b, C I , and C2 are constants. 
The equation of state is 

e - 5p = const. 

(55) 

(56) 

(57) 

(58) 

The metric (54) admits a three-parameter Abelian 
group generated by the vectors a 1 at, a lay, and a 1 az. 

The corresponding vacuum metric (e = p = 0) also be­
longs to the [BC + )] Carter spaces. 

If we put a = 0, and make some variables changes, we 
obtain a special case of the stationary cylindrically symmet­
ric perfect fluid solution with rigid rotation found by Kra­
sinski.25 

For spacelike orbits (/ = - 1) we obtain 
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ds2 = X2 dt 2 - x2[dy + (a - bx- 3 )dz]2 

- H2(X)d~ - dX2/H2(X) , (59) 

wherewehaveputy = t, t = y, and have dropped the caret in 
(41). We have 

H2(X) = cx + cx - b 2X-4 , 

P = ~b 2X -6 + 3c2 - A , 

(60) 

(61) 

e = 1(b 2x- 6 
- 3c2 +..1.. (62) 

The fluid's four-velocity is nonexpanding, shear-free, 
and nonrotating but it has a nonzero acceleration. Metrics 
(54) and (59) are of Petrov type I and the Killing tensor is, 
for both of them, 

Kij = x2(n;lj + l;nj ) - k 2gij . 

Metric (59) could represent a cosmological model but it 
does not depend on the time coordinate and. consequently. it 
is without physical interest. 

This paper makes a generalization of Bonanos' results 7 

by finding metric (41), which, although it belongs to the 
family of spaces examined by him, he did not find since he 
considered only metrics with u[in/k J = 0 (for this classifi­
cation see also Wainwright 19). Another kind of generaliza­
tion of Bonanos' results is coming from the fact that we have 
also found spaces with spacelike group orbits (with both 
Killing vectors spacelike). In order to complete this last kind 
of generalization. we have to examine the Schrodinger non­
separable spaces, an assumption that in the case of a perfect 
fluid imposes! = - 1 (space-like orbits) and ifJOI #0. It will 
be interesting then to search for spaces that admit the two­
parameter invertible Abelian group as the maximal group of 
motion because it could be used in the study of colliding 
waves.26•27 
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A possible direction can also be the study of spaces with 
(p - p) ( 'T + T) = 0 in the presence of a perfect fluid or with 
another matter tensor in order to answer the problem posed 
by Hauser and Malhiot, that being if there is any physically 
plausible matter tensor permitted by the existence of a 
[( 11) (11)] Killing tensor without any other symmetry. 
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A review is given of the perfect fluid solutions which can be constructed by conformal 
transformations of non flat vacuum solutions of Einstein's field equations. In addition a proof is 
given that (a) under physically reasonable restrictions all solutions for which the gradient of 
the scalar field is orthogonal to the fluid velocity and (b) all solutions sharing with the 
corresponding vacuum solution a symmetry group of dimension n~2 are necessarily shear- or 
vorticity-free and hence are explicitly known. 

I. INTRODUCTION AND REVIEW OF KNOWN RESULTS 

Exact solutions for inhomogeneous perfect fluid solu­
tions of Einstein's field equations are important for a better 
understanding of several aspects of cosmology and astro­
physics. Only relatively few such models are known, and 
very often restrictions of a purely geometrical nature are 
used to construct new classes of solutions. In view of the 
successful construction of all conformally flat perfect 
fluids,' one can wonder whether one could take, more gener­
ally, one of the vacuum models as a "seed solution" and 
conformally transform it to a perfect fluid solution. Some 
simple questions one would like to see answered are then, for 
example, the following. 

(a) Can the Schwarzschild solution be transformed by 
tP(r,t) to yield an expanding fluid sphere? 

(b) Can the stationary axisymmetric vacuum models be 
transformed by tP(p,z) to rigidly or differentially rotating 
perfect fluids? 

(c) Can spatially homogeneous cosmological vacuum 
models be transformed by tP(t) to spatially homogeneous 
perfect fluids? 

(d) Can arbitrary vacuum solutions always be trans­
formed into perfect fluid solutions by a suitable choice of tP? 
So far, the investigation of these-and related-questions 
has resulted in the following conclusions2-4: A necessary and 
sufficient condition in order that the metric gab of a perfect 
fluid model [with energy-momentum tensor 
(w+p)uaub +pgab] should be conformally related to a 
vacuum metric gab = e2

¢> gab is the existence of a solution tP 
of 

tPa;b - tP.atP.b + !/5abtP.etP·e = [(w + p)/2]uaub + iwgab . 
(1.1 ) 

One may suppose w + p =1= 0, as otherwise5 gab is the de Sitter 
or anti-de Sitter metric or a vacuum pp wave. 

When V tP is aligned with the fluid velocity u, the result­
ing space-times are conformally flat, and are just the FR W 
models.4 When the fluid is shear-free and V tP is orthogonal to 
u, the resulting models are locally rotationally symmetric. 
They are either rotating class I or nonrotating class lIe solu­
tions in Stewart and Ellis' classification6 and have a (non-r­
law) equation of state p = p( w). When the fluid is shear-free 
and V tP is not orthogonal to u, the models are conformally 
flat. They are either the expanding Stephani universes or 
generalizations of the interior Schwarzschild solution. ' 

When none of the previous conditions hold and when 
the fluid is vorticity-free with VtP orthogonal to u, the only 
solution4 is a nonstatic model admitting a three-dimensional 
isometry group of Bianchi type VIo acting on timelike hyper­
surfaces. The fluid has an equation of state p = p( w). When 
V tP is not orthogonal to u, solutions4 are (pseudo- ) spherical­
ly or plane symmetric [and hence the answer to question (a) 
above is affirmative], but an equation of state does not exist. 
It also has been shown that the answer to question (d) is 
negative: Vacuum solutions of Petrov type N cannot be con­
formally transformed to perfect fluid solutions. 

Questions (b) and (c), and related ones, in which one 
assumes that space-times (M,g) and (M,g) share some iso­
metry group Gn (n~2), have remained unanswered so far. 
In Sec. II it will be shown that, when VtP is not orthogonal to 
u, the resulting perfect fluid models are always vorticity-free. 
When V tP is orthogonal to u no immediate answer can be 
given. However, when one assumes the existence of an equa­
tion of state, the orthogonal case can be completely solved 
without making any assumptions about the existence of an 
isometry group: In Sec. III, a proof is given that all such 
solutions are shear- or vorticity-free and hence belong to the 
known cases discussed above. As a consequence the answer 
to questions (b) and (c) is negative, too. 

In contrast with the investigation of the general cases, 
where the Newman-Penrose formalism was used, the situa­
tions where VtP is orthogonal to u, or where Killing vectors 
are present, are most easily discussed within the orthonor­
mal tetrad formalism, 7 by choosing a frame such that eo = u 
and a2tP = a3tP = 0. With F = a,tP and G = aotP (and hence 
F =1= 0, as a consequence of the first result mentioned above) 
one obtains for the frame components of ( 1.1 ) the following: 

and 

2 aoG - 2Fu, - F2 - G 2 = !(2w + 3p) , 

a,G = F(O, + G) , 

a2G = F(u12 + (U3) , 

a3G = F(u13 - (U2) , 

2a,F- 2GO, _F2 - G 2 = jw, 

aoF= G(u, + F), 

a2F= G(U'2 + (U3) , 

a3F= G(u13 - (U2) , 

( 1.2) 

(1.3 ) 

(1.4) 

( 1.5) 

( 1.6) 

( 1.7) 

( 1.8) 

( 1.9) 
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- 2G()2 - 2F(n23 + a.) + F2 - G 2 = jw, 

- 2G()3 + 2F(n23 - a.) + F2 - G 2 = jw, 

GU2 - ffi3 = 0 , 

GU3 + ffi2 = 0 , 

G(U.2 - W 3 ) + F(n 13 - a2 ) = 0 , 

G(U. 3 + W 2 ) - F(n 12 + a3 ) = 0 , 

2Gw. - Fnll = 0, 

2GU23 + F(n33 - n22 ) = 0 . 

( 1.10) 

(1.11) 

(1.12 ) 

(1.13) 

(1.14 ) 

(1.15 ) 

(1.16) 

(1.17) 

II. (M,g) AND (M,g) SHARING A GROUP OF ISOMETRIES 
Gn ;;.2 

When one supposes that space-times (M,g) and (M,g) 
admit at least a two-dimensional group G2 of isometries, 
with generators K and L, such that 

£Kg= £Kg= £d= £Lg=O, (2.1) 

then obviously also 

(2.2) 

i.e., the conformal transformation "preserves" the symme­
tries. Taking now the directional derivative of (2.2) along 
V ¢l, one obtains 

(Ka¢l.a);b¢l·b=O, (2.3) 

or, with the aid of Killing's equations, 

(2.4) 

Substitution of ( 1.1) in the latter equation results in 

(Kaua )(¢l.bUb) = 0, (2.5) 

whereas for L one obtains similarly 

(L aua ) (¢l.bUb) = 0 . (2.6) 

The case ¢l,b ub = 0 will be dealt with in Sec. III in its full 
generality. So now assume ¢l,b ub # 0 (hence F and G # 0), 
such that, by (2.5) and (2.6), K and L are orthogonal to u: 

K aUa = L aUa = 0 . (2.7) 

From Killing's equations one also obtains then 

(2.8) 

whereas (2.2) implies that K and L lie in the (e2,e3 ) plane. 
First notice that G #0 always implies w. = 0: Indeed 

(1.4 ) , ( 1.5 ) and ( 1. 8 ) , ( 1. 9 ) show that 
J2(F

2 
- G 2

) = J3 (F 2 
- G 2

) = 0 and hence that 
[J2,J3 ](F

2 
- G 2) = O. With the aid of ( 1.16) this can be 

written as Gw. (w + p) = 0 or w. = O. Unless the fluid is 
vorticity-free, the frame can then be invariantly fixed by re­
quiring W 2 = O. By (2.2) and (2.7) the operators J2 and J3 

will then yield identically 0 when applied to any invariantly 
defined scalar. 

In particular one will have J2F = J3F 
= J2G = J3G = 0, as the scalar-field ¢l for a nonflat CRF 

solution is uniquely defined up to a constant factor. 8 By 
( 1.4) one then has 

(2.9) 

such that (1.14) yields 
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(2.10) 

Acting now with [J.,J2 ] on F2 - G 2 gives 

- 2W3 JO(F2 - G 2
) + (n 13 - a2 )J. (F

2 
- G 2

) = 0, 
(2.11 ) 

which, together with (2.10), shows that W3G(W + p) = 0 
and hence that W3 = 0, a contradiction. As a consequence we 
have shown that all CRF perfect fluids sharing at least a 
group G2 with their corresponding vacuum solution, are vor­
ticity-free provided V ¢l is not orthogonal to u. Together with 
the result of Sec. III, one obtains that they are precisely given 
by the classes of shear-free or vorticity-free solutions dis­
cussed in the Introduction, provided the fluids have an equa­
tion of state p = p(w). 

III. CRF PERFECT FLUIDS WITH V~ ORTHOGONAL 
TOu 

When ¢l,a ua = 0 (i.e., G = 0) strong restrictions on the 
rotation coefficients can be obtained, provided one assumes 
the existence of an equation of state p = p(w). From (1.2)­
( 1.17) one immediately obtains the following relations: 

and 

J.F= W2 
- w/6, 

JoF= J2F= J3F= 0, 

with p and w determined by 

w = 3F 2 
- 6Fa., 

p= -3F 2 +4Fa.-2Fu •. 

(3.1 ) 

(3.2) 

(3.3 ) 

(3.4) 

(3.5) 

The relevant Jacobi equations and field equations are given 
in the Appendix. 

Acting now with the commutators [Jo,J.], [J.,J2 ], and 
[J3,J.l on F yields with the aid of (3.1) and (3.2): 

(3.6) 

When w + p # 0 this implies that the resulting fluids are non­
expanding: 

()3= -()2' (3.7) 

Also, whenp = p(w) one has 

(3.8) 

whereas (3.4) and (3.5) show that u. and a. satisfy relations 
similar to (3.2) or (3.6). 

Consider first the case W 2 = W3 = 0: Under a rotation in 
the (e2,e3 ) plane, e2 = cos ae2 - sin ae3, e] = sin ae2 
+ cos ae3, one has 

U 23 = sin 2a()2 + cos 2au23 , (3.9) 

and hence (ea ) can be chosen to be a shear eigenframe. 
From the Jacobi equations (A2) and (A3) one then obtains 
n22()2 = 0, which implies that solutions are either shear-free 
(and hence are explicitly known2

), or that n22 = 0 and 
()2#0. In the latter case, however, the field equation (AS) 
implies 11. = 0, which, after substitution in (A2), shows 
that w. (u. + a.) = O. As u. + a. = 0 would imply with 
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(3.4) and (3.5) that w + p = 0, one haswi = 0, i.e., the only 
possible solution is the temporally homogeneous vorticity­
free solution discussed earlier. 4 

Assuming henceforth that w~ + w~ #0, the frame can 
be invariantly fixed by choosing 

(3.10) 

Then (Al) implies S23 = WI - .0. 1, and, for the remaining 
variables F, UI' ai' az, a3, WI' W3, n22, (}2' and .0. 1, Jacobi 
equations and field equations can be combined to yield the 
following: 

and 

aoF= azF= a3F= 0, 

alF= F(F - al ) , 

aou l = a2UI = a3UI = 0, 

alu l = - ui + 2alu l + 3F(al - F - UI) 

+2«(}~ +.o.i -20IWI)' 

aoa l = a2al = a3a l = 0, 

(3.11 ) 

(3.12) 

(3.13 ) 

(3.14) 

(3.15 ) 

alai = (a l - F)(a l + UI) + ()~ + 0i - 20 lwi , 

aoWI = 0, 

aoliJ3 = - (}ZW3 , 

a2W 3 = 2w3a2 , 

aOn22 = 4w1 (U I + al ) + 2n22(}2 + 8w3a3 , 

aO(}2 = 201(w l - 0 1), 

al (}2 = 2n22 (w l - .0. 1) - UI (}2 - 4W3a2' 

aoo l = 2(}20 1 , 

(3.16 ) 

( 3.17) 

(3.18 ) 

(3.19 ) 

(3.20) 

(3.2l) 

(3.22) 

(3.23 ) 

alo l = 2(u l + al)wI + 2nZ2(}2 + 4w3a3 - UIO I ' 
(3.24) 

alWI + a3W3 = WI(U I + 2a l ) + 2w3a3 , 

a20 1 - 2aOa3 - 2(}za3 - 40 laz = 0, 

2aoaz + a2(}2 = 4a3 (2w I - 0 1 ) 

- 4(u + al )w3 + 6(}Za2. 

(3.25) 

(3.26) 

(3.27) 

The essential step is now the careful calculation of some 
of the resulting integrability conditions. Acting first with 
[ao,al ] on 0 1 one obtains with the aid of (3.11 )-(3.24) and 
(A6): 

282 [w l (a l +u I ) +a3w3 ] 

- W3[a2.o. 1 - 2 aoa3 - 4.o. la2] = 0, (3.28 ) 

which, with (3.26), results in 82wI (a l + ul ) = 0 or, as 
a l +UI =Owouldimplyw+p=O, 

(3.29) 

Two more integrability conditions are required: acting with 
[ao,az] on W3 and with [ao,al ] on 82 yields, by (A6), (A7), 
(3.26), and (3.27): 

0 1 a3W3 = 2W3 [(2w I - .0. 1 )a3 + 282a2 - W3 (u I + a l )] 
( 3.30) 

and 
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0 1 aiw i = 4w3[(.o. 1 - wl )a3 + (u l + al )w3] 

+ 2wi (a l + UI) - 0IWIU I - 48zw3aZ. 
( 3.3l) 

Together with (3.28) the latter two equations result in the 
algebraic restriction 

[wi +WI(WI-.o.I)](UI +a l ) =0, (3.32) 

or, as U I + a I = 0 would imply w + p = 0, 

(3.33) 

It is clear now that the case 82 # 0 admits no solutions: then, 
in fact, by (3.29), WI = 0 and hence, by (3.33), W3 = o. On 
the other hand, when 82 = 0, (3.2l) implies that 
.0. 1 (WI - .0. 1 ) = 0 and hence .0. 1 = 0 [WI - .0. 1 = 0 would 
give us by (3.33) W3 = 0]. Then, however, (3.33) leads to 
w~ + wi = 0, which is in contradiction with our assumption 
W3#0. 

Herewith we have obtained the result that all CRF per­
fect fluids having an equation of state p = p (w) and having 
V¢J orthogonal to the fluid velocity u are either shear-free or 
vorticity-free, and hence belong to explicitly known classes 
of solutions. 2,4 
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APPENDIX: EQUATIONS USED IN SEC. III 

The Jacobi equations relevant for the first part of Sec. 
III are the following: 

aOW2 - W3 (01 - WI + 0"23) - 82W2 = 0, 

aOn22 - a l (0"23 + 0 1 ) 

+ a2W2 - a3W3 - UI (0"23 + 0 1 + 2w l ) 

- 2w la l - 2w2a2 - 6w3a3 - 2n2lJ2 = 0, 

aOnZ2 + a l (0"23 - 0 1 ) 

- a2W2 + a3W3 + UI (0"23 - 0 1 - 2w l ) 

- 2w l a l - 2w3a3 - 6W2a2 + 2n2282 = 0, 

a2W3 - a3W2 - 2w3a2 + 2w2a3 = 0 , 

together with the (23) field equation 

a00"23 + 282.0. 1 = o. 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

The commutator relations relevant for the system 
(3.13)-(3.31) are 

(A6) 

and 

(A7) 
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The relationship between global anomalies of quantum theory and the topology of spaces of 
real Fredholm operators is shown. The spectral properties of such operators and how they are 
seen in examples of global anomalies on both compact and noncompact space-times are 
discussed. 

I. INTRODUCTION 

It has become clear that many of the anomalies of quan­
tum field theory are due to the nontrivial topology of various 
moduli spaces, such as the space of connections on a fixed 
vector bundle modulo the group of gauge transformations. I 
More abstractly, one can view the moduli space as parame­
trizing a family of Dirac-type operators, and so one is using 
the particular family of operators in order to view the space 
Y of all complex Fredholm operators. 

If one captures a nontrivial cohomology class of Y by 
means of a family of operators then this may prevent one 
from defining the renormalized determinant of the operators 
in a nice way. To be more precise, in free fermionic path 
integrals there are two types of determinants which arise. In 
the Lagrangian the relevant differential operator (the in­
verse of the covariance) may either map one function space 
to itself, or to another. 

In the second case the determinant can be complex and 
its anomalous symmetry properties reflect the topology of 
Y. In the first case the determinant is always real. One can 
view the underlying function space as a real vector space and 
because fermion fields anticommute, the differential opera­
tor must be real and skew adjoint. It turns out that the space 
Y IR of real skew-adjoint Fredholm operators has a very 
rich topology2 and we wish to show that much of this topol­
ogy can be seen in quantum field theories (QFT's). This is 
manifested both in the existence of zero eigenvalues for 
Dirac-type operators and in the occurrence of global anoma­
lies, the original example of which is Witten's SU (2) anoma­
ly.3 

When one rotates fermions from Minkowski space to 
Euclidean space, one may seem to lose special properties, 
such as the existence of Majorana or Weyl representations. 
In Euclidean space, these special Minkowski properties are 
seen in the existence of operators which anticommute with 
the Euclidean Dirac operator. In general, one can consider 
the spaces Y k R which consist of the elements of Y IR 
which anticommute with a Clifford algebra of operators. 
These spaces have a topology which is different but related to 
that of YIR. We also give examples of how this refined 
structure is seen in QFT's. 

The structure of this paper is as follows. In Sec. I, we 
review the topology of some spaces of Fredholm operators. 
In Sec. III, we discuss how this topology is seen in terms of 
the spectra of such operators. In Sec. IV, we give examples of 
QFT's on compact space-times which see the topology of the 
Y k R 'so These examples are more-or-Iess known, but we 

hope that it may help to see them in a unified way, and that 
the derivations of the indices may be new. In Sec. V, we give 
some new examples of global anomalies on noncompact 
space-times. These examples are analogs of the Gell-Mann­
Levy u model4 and show that the existence of a global anom­
aly does not necessarily ruin consistency of a QFT. In Sec. 
VI, we sketch how the anomalies involving real operators 
can be understood in terms of analogs of the determinant line 
bundle of Quillen. 5 

Notation: {o-'}j= I will denote the Pauli matrices: 

u l = (0 1) ~ = (0 
1 0 ' i 

- i) ~ = (1 
o ' 0 

{r:w.}~=o will denote the (- + + + ) real Dirac matri­
ces: ~=I®ir, r1t=I®r, rM=UI ®1"i, and 
rM = ~ ® 1"\ and rM will denote fMr1trMrM' satisfying 
(rM)2= -I, (rM)T= -rM' {r~}~=o will denote 
( + + + +) complex Dirac matrices satisfying 
rEr~ + r~r~ = 2oij, and]{ will denote 11rk~r1, satis­
fying ( ]{ ) 2 = I, (]{) t = ]{. A handy reference for Clifford 
algebra structures is Ref. 6. 

II. REVIEW OF TOPOLOGY OF OPERATOR SPACES 

Let Hbe a complex Hilbert space and consider the space 
of Fredholm operators 

Y = {TEB(JfP): dim ker T < 00 and dim ker T* < oo}. 

(If one wishes to consider unbounded Fredholm operators 
one can generally modify the function spaces to reduce the 
bounded case.) Put Y I = {TEY: T * = - Tand the essen­
tial spectrum of iT intersects both components of R - {O}}. 
One has that Y is a classifying space for complex K theory, 
i.e., for all compact topological spaces X, the Grothendieck 
group K(X) of virtual vector bundles over X satisfies 
K(X) ~ [X,Y], where [X,Y] denotes the homotopy 
classes of maps from X to y.7 The relationship is as follows: 
over Y one has the virtual vector bundle Index with fiber 
(Ker T]-[Coker T] over an element TEY. Then any ele­
ment of K (X) can be written as ¢* Index for some ¢E [X,Y] . 
As a consequence, Y has the homotopy type of Z X B U( 00 ) 

where the Z factor refers to the ordinary index of an operator 
and B U( 00 ) is the classifying space for the group U ( 00 ). By 
Bott periodicity, 1Tk + 2 (Y) = 1Tk (Y) and these homotopy 
groups 1T/(Y) ~K(S/) are listed in Table I. 

Similarly, Y I is a classifying space for K -I, i.e., 
K -J (X) ~ [X,Y J ]. Then 1Tk + 2 (YJ ) = 1Tk (Y J ) and the 
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TABLE I. Homotopy groups of complex operator spaces. 

IF 

'I.. 
o 

IF, 

o 
'I.. 

homotopy group are listed in Table I. The relationship 
between Y and Y I can be seen as a suspension. 8 Let o.y 
denote the paths in Y from I to - l. Then there is a map ¢: 
yl--+o.y given by ¢(n = {COS17't + Tsin17't: O..;;t..;;l}, 
which can be shown to a homotopy equivalence. Similarly, 
let J be an operator unitarily equivalent to (~ .:! j ) and put 

Y 2 = {TEY I : TJ + JT= O}. 

Let o.Y I denote the paths in Y I from J to - J. Then there 
is a homotopy equivalence ¢ I: Y z --+ nY, given by 
¢I (n = {J cos 1Tt + Tsin 17't, O..;;t..;; l}. Because Y z is iso­
morphic to Y, one has Y -Yz-o.yl-o.zy, which 
shows the Bott periodicity. 

It is now easy to state the relationship between the axial 
anomaly ofQFT and the topology of Y. Consider, for exam­
ple, the space d' of connections on S4 X SU(N), N> 2, and 
the group ::1 of gauge transformations which are the identity 
at a point 00 on S4. Then the determinant line bundle Am

8X 

Index has first Chern class which is a nontrivial element of 
HZ(Y,R) = 17'z(Y) ® R = R, and which is pulled back via 
the Dirac operator to give a nontrivial element of HZ (d' / 
::1,R) = H Z(o.3(SU(N»),R) = R. I (More precisely, under 
~: d' --+ Y, the pullback ~ * A max Index is a ::1-equivariant 
line bundle over d' which pushes forward to a line bundle on 
d' /::1.) To see this another way, fix AoEd' such that ~ A is 
invertible. Put " 

% = {TED(H): T - lis compact and Tis invertible}. 

Then there is a map p: ::1--+% given by peg) = ~ ;.:."I~g'Ao' 
Now % is homotopically equivalent to U( 00), or Y I, and 
p*:H I (%,R) --+H I (::1 ,R) is nontrivial from R toR. This is 
a precise form of the intuitive idea that the phase of the chiral 
determinant changes by a nontrivial multiple of 217' when 
going around a nontrivial loop in ::1. Finally, from the Ham­
iltonian viewpoint consider the analogous spaces for 
S3 X SU(N). The Dirac Hamiltonian ~A: r(S) --+ r(S) is 
skew adjoint and gives a map u: d' / ::1--+Y I . The nontrivia­
lity of u*H 3(Y I,R)EH 3 (d' /::1 ,R) leads to a Hamiltonian 
interpretation of the axial anomaly. 9 

Let us now consider the space YoR of real Fredholm 
operators on a real Hilbert space J¥' R' For a compact topo­
logical space X with involution T, let KR (X) denote the 
Grothendieck group of virtual complex vector bundles over 
X with an antilinear involution covering T. 10 [If T is the iden­
tity then KR(X) = KO(X)]. One has KR(X) ~ [X,YoR]. 
It follows that YoR is homotopically equivalent to 
ZXBO( 00) and17'k +s(YoR) = 17'k (Y oR). The homotopy 
groups are listed in Table II. 

In order to get the higher KR functors, let C k denote the 
real Clifford algebra generated by {eJ7~ I with relations 
ejej + eje j = - 28 jj .er = - ej . Let p: Ck --+B(HR ) be a 
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TABLE II. Homotopy groups of real operator spaces. 

IF"R IF,R IF2 IF3R IF4R F5R IF6R F7R 

11'" 'I.. '1..2 22 0 'I.. 0 0 0 
11', '1..2 '1..2 0 'I.. 0 0 0 'I.. 
11'2 '1..2 0 'I.. 0 0 0 'I.. '1..2 
11'3 0 'I.. 0 0 0 Z Z2 '1..2 

11'4 'I.. 0 0 0 Z Z2 Z2 0 
11', 0 0 0 2 '1..2 Z2 0 Z 
11'6 0 0 Z '1..2 Z2 0 2 0 
11'7 0 'I.. 22 '1..2 0 'I.. 0 0 

faithful * representation of Ck • Put 

::1 k = {TEYoR: T= - T*, Tp(e j ) 

+p(ej)T=O for l..;;i..;;k-l}. 

For k=-l (mod 4) put Y kR=::1 k . For k=-l 
(mod 4) there is a slight subtlety: put Y k R = {TE::1 k : the 
essential spectrum of p(el)"'p(ek_I)T intersects both 
componentsofR - a}. ThenKR -k (X) ~ [X,YkR].z Asa 
consequence, the homotopy groups are those listed in Table 
II. The various Y k R 's are again linked by suspension maps: 
put o.Yk_IR = {paths in Yk-tR from p(ek-I) to 
- peek _I)}' Then ¢: Y kR ->o.Y k _IR is given by 

¢(n = {p(ek _ 1 )cos 17't + Tsin 17't, O..;;t..;;l}. 

The various spaces Y k R have simple interpretations. 
k = 1: YIR is the space of real skew-adjoint Fredholm 

operators on HR' 
k = 2: Because Y zR consists of the elements of Y IR 

which anticommute with (_°1 b), they all have the form 
(~ _ ~) with A and B real and skew adjoint. Then 
(v,w) -> (Av + BW,Bv - Aw) and v + iw-> (A + iB) 
(v - iw), showing that Y zR is the space of skew-adjoint 
antilinear Fredholm operators on a complex Hilbert space. 
Note that 

(;r ~ _~) (;) = Re(v - iw)t(A + iB)(v + iw), 

showing that Y zR can also be thought of as skew-symmetric 
Fredholm operators from a complex Hilbert space to its 
complex conjugate. Finally, because 

= Re(v + iw) T(A + iB) (v + iw), 

these operators arise when writing complex Berezin inte­
grals (i.e., Berezin integrals whose total integral is a complex 
Pfaffian). 

k = 3: Y 3R consists of the underlying real Fredholm 
operators coming from skew-adjoint operators on H R ® C2 

of the form iao + ula l + ~az + ~a3' with 
aO,al,a2,a3ED(HR)' which satisfy the essential spectrum 
property. This anticommutes with the operators p(e l ) and 
p(ez) given by p(el)x = uzx, p(e2 )x = iuzx: the complex 
structure comes fromp(el)p(ez)' 

k = 4: Y 4R consists of Fredholm operators of the form 
(_~T g) acting on (H R ®J¥') Ell (H R ®J¥'), where 
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BElJ(H R ® JY) commutes with the quaternions JY. The op­
erators p(e l ), p(e2)' andp(e3) are i ® u3,j ® u3, and k ® u3. 

k = 5: Y 5R consists of Fredholm operators of the form 
(~g) acting on HR ® (JYEBJY) where BElJ(HR ®JY) is 
skew and commutes with JY. The operators p(el), p(e2), 
p(e3), andp(e4 ) are 1 ® iu2, i ® u3,j ® u3 , and k ® u3• 

k=6: For MEM(2,JY) , let L(M) denote left multipli­
cation by M on JY EB JY and for qE£', let R (q) denote right 
multiplication by q on JY EB JY. Then Y tft. consists of Fred­
holm operators of the form BIR(j) + B2R(k) acting on 
(HR ®JY) EB (HR ®JY), withBI andB2 being self-adjoint 
operators in B(JYR ). The operators p(el ), ... ,p(e5 ) are 
L (_~ ~) RU), L (_~ b) RU), L (_Ok ~) RU), 
L (~ 6) RU), and L C6 _°1 ) RU). 

k=7: Because C6 =M(8,R), YIR consists of 
(p(e l )" 'p(e6 )T: TElJ(JYR ), T* = T, Tis Fredholm and 
the essential spectrum of T lies on both sides ofR - {O}}. 

k=8: LetJI , ... ,J6 denote a representation of the genera­
tors of C6 on R8 and put E = J W •• ,J6 • Then Y 8R consists of 
Fredholm operators of the form (~ ~~) acting on 
H R ® (R8 EB R 8

) with AElJ(H R ) skew and BElJ(H R ) self­
adjoint. The operators p(e l ), ... ,p(e7 ) are JI ®ul, ... ,J6 ®UI 
and I ® iu2• The Bott periodicity is seen in the fact that Y 8R 
is isomorphic to YoR. 

III. SPECTRAL PROPERTIES OF REAL INDEX THEORY 

We will be interested in the 'TT0 and 'TTl homotopy groups 
of operator spaces. First, for the complex Fredholm opera­
tors 'TTo(Y) = Z shows that Y breaks into connected com­
ponents labeled by the index of an operator. That 'TTl (Y I) 

equals Z can be seen using spectral flow. Given a smooth 
map: S I_y I' we have that the spectrum ofi<l> (e21TiE

) is uni­
formly bounded away from zero as E varies in [0,1], with the 
possible exception of a finite number of eigenvalues. Because 
the spectrum for E = 1 is the same as that for E = 0, the 
generic circle of operators will have a finite number of eigen­
values which flow from negative to positive when going from 
E = 0 to E = I; this number defines the spectral flow F: 
[S I ,yl] -Z. If the operators i<l>(e21TiE

) are actually self-ad­
joint first-order elliptic differential operators acting on cross 
sections of a vector bundle E over a compact manifold M, 
one can compute F( <1» by means of the eta invariant. II Giv­
en such an operator H, define 

If H(E) is a one-parameter family of such operators then 
1J(H (E) ) can have integer jumps as eigenvalues cross the ori­
gin, but (d IdE)1J(JY(E») has a smooth extension which can 
be computed in terms of local quantities. Then 

(1) 

gives an effective way to compute F( <1». One can also com­
pute F as an index by means of a "desuspension." Consider 
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the operator D = alaE + i<l>(e21TiE
) acting on cross sections 

of the pullback of E to S I X M. Then F( <1» = Index D. II 
Similarly, for some Fredholm operators on a noncompact 
complete manifold, one can define a generalized eta invar­
iantl2 and the spectral flow is again given by (I); however, 
the expression (d IdE) 1J(H ( E») then depends both on local 
quantities and on the behavior of H(E) at infinity. 

For an operator TEYkR, one has that ker Tis a Ck - I 
module. 2 If it is not a Ck module then T represents a nontri­
vial element of 'TT ° (Y k R). Thus the connected components 
of Y k R are labeled as follows: 

k = 0: Index T, k = 1: dim ker T (mod 2), 

k = 2: ~ dim ker T (mod 2), 

k = 4:! dim ker T= IndexKB. 
In order to see 'TTl (YkR) spectrally, consider first the 

case k = 1. Then one has a one-parameter family iT(E) of 
self-adjoint operators, each of which has spectrum symmet­
ric around the origin. As E ranges from 0 to 1 the spectral 
flow of iT(E) is zero because of the symmetry, but a finite 
number of pairs of eigenvalues can be switched. This number 
(mod 2) then labels the class of 'TTI(YIR) = Z2 in which 
T(E) lies. [Because the switching can be seen by watching 
what happens near the origin of the spectrum, the definition 
makes sense even if the operators iT(E) have continuous 
spectrum.] 

For the case k = 3, let T(E) be a one-parameter family 
in Y3R. Viewing T(E) as a complex operator as in Sec. II, 
one sees that if x is an eigen vector of iT( E) with real eigenval­
ue A. then u;x is also an eigenvector with an eigenvalue A.. 
Thus there is an action of the complex Clifford algebra Cf 
on the discrete eigenspaces of iT(E) given by x-u2x and so 
the eigenspaces have even complex dimension (one cannot 
solve u~ = ax with aEC). The class of nE) in 
'TT I (Y 3R) = Z is labeled by ! of the spectral flow of T( E) . 

Finally, for k = 7 the operators are self-adjoint and 
'TT1(Y7R) is labeled by the spectral flow. 

For real first-order differential operators there is a de­
suspension which maps 'TTI(Y kR) to 'TTo(Y k +IR). If nE) 
is a one-parameter family of operators in Y k R then formal-

ly (;iE) ~(a;) is in Y k + IR, as a differential operator on 
S 1 XM. However, there is a slight subtlety, since to obtain 
the isomorphism between 'TTl (Y k R) and 'TT ° (Y k + IR) one 
must also twist the bundles over S I by the Hopf bundle H, 
the flat R bundle over S I with holonomy - 1. To be more 
precise, we state the following. 

Proposition 1: Let T(E) be a circle of elliptic first-order 
E 

real differential operators acting on r(E), with! being a 
M 

real vector bundle over a compact manifold M. Suppose that 
each T(E) is in YkR. Let <1>1: SIXM-SI and <1>2: 
S I X M -+ M be the projection maps. Consider the first-order 
operator D acting on r(<I>TH ® (<I>t E EB <l>t E») given locally 

by D = (;(E) ~"j,). Then under the isomorphism 
KR - k (S I ) _ KR - (k + l) (pt), the topological index of the 
family nE) is mapped to the topological index of D. 

Proof; Let T ve,t denote the vertical directions in 
T(S I XM),i.e., T vert = S I X TM. Let 1J be a fixed element of 
KR - I ( TS I). Consider the diagram 
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where the maps are as follows: t-ind is the topological index 13 

which generally maps KR *(P X TX) to KR *(P), where P 
andX are compact manifolds. 1T*: KR * (S I) -+ KR * ( TS I ) is 
the map induced from the projection 1T: TS I -+ S I. a is multi­
plication in KR *(T(S I XM») and [3 is multiplication in 
KR * ( TS I ). The multiplicative property of t-ind ensures 
that that diagram commutes. Thus the only problem is to 
find 'IJ such that t-ind 0[30 ( 1T* ® 'IJ) is the identity map from 
KR -k (S I) toKR -(k + I)(pt. ).It is easily checked that this 
'IJ is the symbol of the operator aE acting on r(H), which 
proves the proposition. • 

One can easily generalize the Proposition to the case of a 
fibration over S I. In a special case, the element of 1T 1 (:7 IR) 
represented by a circle of real skew-adjoint operators can be 
computed by means of spectral flow. Suppose that for all e2

'friE 

ES 1
, T(E) commutes with a fixed JEB(H R ) satisfying 

J 2 = - I, J * = - J. Then J provides a complex structure 
on H R and we can write T(E) as ( _ 'Wl) !~:~). Over the 

I h" . I (A + iB(E) 0 l' comp exes t IS IS eqUlva ent to 0 (A _ iB)(E) ) and lor 
each eigenvector xEH R ® C of (A + iB) (E) with eigenvalue 
iA., there is a corresponding eigenvector x of (A - iB)(E) 
with eigenvalue - iA.. It follows that each eigenvalue iA. of 
A + iB gives a pair (iA, - iA.) of eigenvalues of T, and the 
spectral flow of i(A + iB) equals the number of eigenvalue 
rearrangements of T( mod 2). Thus the class in 
1T I (:7 IR) = Z2 represented by T(E) is labeled by the spec­
tral flow ofi(A + iB)(E) (mod 2). 

IV. QFT's ON COMPACT SPACES 

The topology of real operator spaces arises in two dis­
tinct ways in QFT. The first way uses the 1To. invariant to 
ensure zero eigenvalues for some differential operator T. The 
physical interpretation of such a zero eigenvalue depends on 
whether the operator arises from a Lagrangian or a Hamilto­
nian. If T enters in a Euclidean fermionic Lagrangian in the 
form ('11,1'1') then a zero eigenvalue can prevent tunnelling 
between different "f} vacua." 14.15 On the other hand, if T 
gives the spatial Hamiltonian for a fermionic theory then 
there are degenerate ground states arising from ker T.16 

The second way uses the 1T I invariant to label global 
anomalies. This means that there may be an obstruction to 
defining a renormalized determinant function for a family of 
operators. If one is dealing with a circle of operators then it is 
possible that when one attempts to define the the determi­
nant smoothly along the loop, the spectral properties of the 
operator force the putative determinant to change sign when 
going around the circle. (For a more precise interpretation, 
see Sec. VI.) 

Our examples all involve Dirac-type operators. Because 
the Clifford algebra structure depends strongly on the di-
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mension of the manifold, we will list examples by dimension 
and restrict to the case ofperturbatively renormalizable field 
theories, i.e., dim<4. Of course, there are mathematically 
interested examples in all dimensions. In general, one has 
that on a k-dimensional manifold, the real Dirac operator 
(involving only the metric) lies in:7 kR.17 

A. One dimension 

Let M be an oriented Riemannian manifold with 
1T I (M) = 0, let y: S I -+ M be a smooth path in M, and let 
( y, 'II) : S I -+ TM cover y. The Lagrangian for N = ! super­
symmetric geodesic motion is 

L(y,'II) =1. r [Iif- ('II,Vy'll)]dT, 
2 Js' 

where the'll fields are formally anticommuting. Upon doing 
a formal integration over 'II in the functional integral 
Se- L gyygy'll, one is left with Se-(l/2)f,·IYT'dT 

X (det 1/2 V y) gy y. If one tries to define det I /2 V y by a regu­
larized product of the positive eigenvalues of iVy then the 
obstruction to a smooth definition is the possibility of an odd 
number of eigenvalue rearrangements of iVy when going 
around a loop ofy's, i.e., thepossibilityofamapS 1-+ [S I,M] 
giving a nontrivial element of1T1 (:7 IR). In this example one 
can compute Idet l

/
2 Vyl explicitly and see whether there is a 

smooth definition of det l
/
2 V Y' 18 but one can also see this via 

Proposition 1. 

Proposition 2: There is a loop in Map (S I,M) whose im­
age is nontrivial in 1T I (:7 IR) iff M is not spin. 

Proof Let y: T 2_Mbe a loop in Map(S l,M). Because 
M is oriented, y*TM is an SO(N) bundle over T2. Let A be 
the pullback of the Riemannian connection on TM to y* TM. 
LetSbethe flat Rbundle on T2 = S I xS I with theholonomy 
- 1 on the first S 1 factor. By Proposition 1, the element of 

1TI (:7 IR) given by yis the same as the element of 1To(Y 2R) 
given by (a~'+A, a,-"a,:') acting on r(E), 
E = (y* TM $ y* TM) ® S. Because the index of D in 
1To(Y2R) is a homotopy invariant, it only depends on the 
topological class of the real vector bundle E. For n > 2 the 
SO ( n) bundles on T 2 are classified by H 2 ( T 2,Z2) = Z2' 
which can be considered to be the element of 1TI(SO(n») used 
in gluing the ends of S I Xl to construct a bundle over T2. 

Let V denote a nontrivial R3 bundle over T2. Nowy*TM 
is classified as a real bundle by y*w2 (M), where 
w2(M)EJY'2(M,Z2) is the second Stiefel-Whitney class, and 
so we can instead compute the index of jj = ('ls, _ ~: ) acting 
on either Q(T2XRdi

mM) ®S) if y*w2(M) is trivial, or 
r«(T2xRdimM-3) $ V)®S) if y*w2(M) is nontrivial. 
However, this is computed to be y*W2 (M) [ T 2] EZ2, the eval­
uation ofy*w2(M) on T2. As one can pick up a nontrivial 
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w2(M) by some mapping of T2, it follows that the index of 
V r in 1T1 (Y IR) is zero for all y: T2--+M iffw2(M) = 0, i.e., 
M is spin. One has the same story for n = 2. • 

Under canonical quantization one sees that the Hamil­
tonian corresponding to L( y, \}I) is ! D ~,I8 which makes 
sense iff M is spin. Thus in this case a global anomaly causes 
nonexistence of the quantum theory. 

B. Two dimensions 

As one has Majorana-Weyl spinors in two-dimensional 
Minkowski spaces, one can consider the fermionic Lagran­
gian L(\}I) = f'Va+ \}I, where a+ maps S+ to S_. The total 
integral f eiL('IIl 9"\}I is formally dee/2 a+, which Wick ro­
tates to det l/2 az . Now on a compact two-dimensional Rie­
mannian spin manifold one only has Majorana spinors, and 
the real Dirac operator can be written as D = o.lDo + a3DI. 
The Minkowski-Weyl property can be seen in the fact that D 
lies in Y 2R, as it anticommutes with iq2' Then Do + iDi is 
skew symmetric and one can form the complex Berezin inte­
gral f9"\}1 exp - f\}lT (Do + iDl)\}I, with total formal inte­
gral dee /2 az . 

The class of D in 1T 0 ( Y 2R) is labeled by ! dimR ker D 
(mod 2). On a Riemann surface of genus g there are 
2g 

- I (2g + 1) spin structures for which it is nontrivial and 
2g - I (2g - 1) for which it is trivial. 19 

c. Three dimensions 

Let A be a real gauge field and consider the Minkowski­
Majorana action 

L = J 'V(i~Do + qlDI + a3D2 ) \}I d 3x. 

After integrating out the fermions in feiL('IIl9"\}I one is left 
with det l/2 DA • 

As there are no Euclidean Majorana spinors in three 
dimensions, let Sbe the complex spinor bundle over S 3, let E 
be an RN vector bundle over S 3 with connection A, and con­
sider the Euclidean Lagrangian 

L = L, \}It(qlDI + ~D2 + a3D3 ) \}I, for \}IEr(S®E). 

The Minkowski-Majorana property is seen in the fact 
that DA = qlDI + ~D2 + a3D3 lies in Y 3R, which implies 
that all eigenspaces of iDA are even dimensional. We may try 
to define the formal integral fe - L('IIl 9" \}I = det l/2 DA by 
multiplying the eigenvalues of iDA with half-multiplicity. 
This will only be well-defined when going around a circle of 
operators if one-half of the spectral flow around the circle is 
even, i.e., if the circle is trivial in 1T1(Y3R) (mod 2). 

Proposition 3: Let A (E) be a one-parameter family of 
connections on E, O<E<l, withA(1) =g'A(O) for a gauge 
transformation g: S3 ..... S0(N). Then the class of DA (El in 
1T I (Y 3R) = Z isg*w [S 3], where w E H 3(SO(N) ,Z) is given 
by the three-form w = ( - 1/48~)Tr(g-1 dg)3. This can 
be odd for some choice of A (E) iff N > 3. 

Proof: Let L be the RN bundle over S I X S 3 formed from 
the trivial bundle over I X S 3 by identifying the fiber over 
{I} X S 3 with the g-twisted fiber over {O} X S 3, and by then 
tensoring with the pullback ofH to S I X S 3. Let T denote the 
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real Dirac operator on S I X S 3 twisted by L and let T denote 
the complex Dirac operator on S I X S 3 from S + ® L to 
S - ® L. By Proposition 1, the class of D A (El in 1T1 (Y 3R) 
equals the class of Tin 1To(Y4R), which is one-half of the 
index of T. Now the family of connections A (E) give a con­
nection B on the trivial bundle over I XS 3 by Bo = 0, 
B i (EX) = Ai (E) (X), which extends to a connection on L. 
We can homotopy B toBo = O,Bi (E,x) = E(g-I dg)i with­
out changing the index. Then the index of T is given by 

( Tr e(Pl/21Ti 
JSI X S3 

- ~ ( Tr(dE /\g-I dg 
811 Jsoxs' 

+ (E-C)(g-I dg)2)2 = _ 1-2 f Tr(g-ldg)3, 
2411 Js' 

so the class in 1To(Y4R) is 

_ 1-2 ( Tr(g-I dg)3. 
4811 Js' 

One can check that for N = 3, the pullback of w from 
SO ( 3) to SU ( 2) is twice the generator of JY(SU (2) ,Z). 
Since every map from S 3 to SO (3) factors through SU (2), it 
follows the evaluation of g*w on S 3 on S 3 is always even. On 
the other hand, for N = 4 the pullback of w from SO ( 4) to 

',1 

SU(2) via SU(2) --+SU(2) X SU(2) -SOC 4) gives the gen-

eratorof JV3(SU(2),Z). As one can embed SO(4) in SO(N) 
for N>4, it follows that g*w [S 3] can always be odd for some 
gifN>4. • 

One could also compute this invariant by computing 
one-half of the spectral flow directly. This is perhaps more 
physical, as for fixed E there will be a term in the Euclidean 
effective action equal to ± ~ i1T1](iDA (El ).20,21 

D. Four dimensions 

In four-dimensional Minkowski space we have massive 
or massless Majorana spinors, or massless Weyl spinors, but 
not both simultaneously. To see how this is reflected in the 
Euclidean action, consider the real Euclidean Dirac opera­
tor D = ~!=ot'DIl with ,,0 = "oM ®irandyj = y~ ®l.As 
D anticommutes with the operators p(el) = "oM ® 1'1, 
p(e2) = "oM ® r, and p(e3) = rM ®I, it lies in Y4R and 
gives a quatemionic operator. The natural way to form a 
massive Dirac operator is by D m = D 1 + mp (e3 ), which lies 
in Y 3R, as itanticommutes withp(e l ) andp(e2 ). Using the 
complex structure provided by p (e I)P (e2 ), one can see that 
Dm is the underlying real operator for the complex skew­
adjoint operator Tm = irl:(~!=o71:DIl + m). One can 
then use the action L(\}I) = f\}ltTm \}I to form a complex 
Berezin integral f 9" \}I e - L('IIl to describe massive Euclidean 
Dirac spinors. This Berezin integral satisfies reflection posi­
tivity and the reconstructed Hilbert space is the Fock space 
of the massive Minkowski Dirac spinor, with the standard 
second-quantized Dirac Hamiltonian. Although this way of 
handling Euclidean Dirac spinors may be unconventional, 
one can see, for example, that the total Berezin integral is 
formally det irl:(~!=o71:DIl + m), which formally equals 
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det(~!=o~DI' + m), the result obtained from the usual 
field-doubling method.22 

In order to deal with Euclidean Majorana spinors, one 
must use the symmetries of D m • Because D m is Y 3R, there is 
an operator A satisfying AT = - A and AT! + T mA = O. 
Then (A -ITm)T = - A -ITm and one can use A -IT to _ m 

form the action L(\fI) = S\fIT A -ITm \fI for complex four­
~omponent \fl. In terms of the charge conjugation operator, 
L can be written in the following way. In a given representa­
tion {r!}! = 0 of the Dirac algebra, let C satisfy 
Cr'C- 1 = - r'T, CT = - C, ct = C- I = - C·. Then 
the charge conjugation operator \fI- \fIC = C -I\fI. is intrin­
sically defined and one can write L (\fI) as 
S(\fIC)t (~!=or'DI' + m)\fI, with C(~!=or'DI' + m) a 
skew-symmetric ~perator. One can form the complex Bere­
zin integral Se - L(\fI)lP\fI whose total integral is the com­
plex Pfaffian det l/2 C(~!=or'lP I' + m), the! reflecting 
that one is dealing with Majorana spinors. This gives the 
same way to handle Euclidean Majorana spinors as was 
probably by Nicolai. 23 

The Weyl property is seen in the fact that D anticom­
mutes with the self-adjoint operator p(el )p(e2)p(e3 ). Writ­
ing D as ( _ °B T ~), the quatemionic operator B is the Euclid­
ean equivalent of the chiral Minkowski Dirac operator a and 
dee 12 D~det B is the Wick rotation of det D. One can cou­
ple an O(N) gauge field A to D to obtain an operator D A in 
Y 4R, but one can go further and use the quatemionic nature 
of D to naturally couple an Sp(N) gauge field V. Let us write 
V as V(I) + V(l)i + VUJ + V(k)k with VO) skew 
symmetric and Veil, VU), and V(k) symmetric. Then 

3 

Dv = I r'(al' + V~I) + V~i)i + V~)j + V~k)k) 
1'=0 

lies in Y IR and anticommutes withp(e l )p(e2)p(e3 ). 

The c~ss of Din 1T 0 (Y 4R) = Z is labeled by ! Index B, 
which is! A (M) for a pure Dirac operator acting on the real 
spinors r(S). As the other homotopy groups of Y 4R vanish 
up to 1T 3' a more interesting example is given by D coupled to 
an Sp(N) gauge field, the original global anomaly of Wit­
ten. 31f V( E) is a one-parameter family ofSp (N) connections 
on an trw vector bundle E over M, with V( 1) differing from 
V( 0) by a gauge transformation g, then by Proposition 1 the 
class of Dv in 1T1 (YIR) = Z2 is given by ~ dimR ker T 
(mod 2), with T = ( !. D::'(l/ ) acting on cross sections of 

LlV(E) E 

the ~N vector bundle over S I X M created by twisting the 
ends of I X (E ® S) Ell (E ® S») together by - g. Now 

~ dimR ker T = ~ dime ker T 

= ~ dime ker p(el )p(e2)p(e3 )T 

=! dime ker p(e l )p(e2)p(e3 ) 

( 
a - iaE + DV(E») 

X iaE + DV(E) a 
= ! dime ker p(el )p(e2 )p(e3 ) (aE + iDv(E) ) 

+! dime ker p(el)p(e2 )p(e3 ) 

X (aE - iDv(E) ). 

However, over the complexes both p(el )p(e2)p(e3 ) 
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X (aE + iDv(E» and p(el )p(e2)p(e3 ) (aE - ilJV(E» are 
equivalent to the real operator p(el )p(e2)p(e3 )aE 
+ DV(E)' Thus 

! dimR ker T = dimR ker(p(e l )p(e2)p(e3 )a(E) + DV(E»)' 

In the case of M = S4, the Sp(N) bundles over S I XS4 are 
classified by ~(S I XS4,~) = Z2' which can bethought of 
as the element of 1T4(Sp(N») =~, used to join the ends of 
I XS4. Upon twisting by the Hopfbundle over S I, one can 
check that dimR ker(p(e l )p(e2 )p(e3 )aE + DV(E») (mod 2), 
equals the class of gin 1T4(Sp(N»), which is Witten's orignal 
calculation. [In this case, because one is dealing with chiral 
spinors, one can also see that there is a global anomaly using 
the results ofWitten-Bismut-Freed.24 They showed that the 
holonomy of the Quillen connection on the determinant line 
bundle is, when going around the loop VeE), 
exp - 1Ti(1/(~) + dime ker~) where, in our case, 
~ = i(p(e l )p(e2)p(e3 )a(E) + ~ V(E»)' Because - i~ lies 
in Y IR, the spectral symmetry ensures that 1/(~) is zero. 
Thus the holonomy is 1 if dime ker ~ is even and - 1 if 
dime ker ~ is odd, showing that in the latter case there is a 
global anomaly in the sense that the Quillen connection has 
nontrivial holonomy.] 

v. aFT's ON NONCOM PACT SPACES 

In general the index of a family of Fredholm operators 
on a noncom pact space is harder to compute than in the 
compact case. We will only consider complex skew-adjoint 
operators Twhose underlying real operator T R lies in Y IR. 
In general det 1/2 T R = 1 det T I, and so an odd spectral flow 
in a family T(E) prevents the smooth definition of 
det l/2 T R (E). This is seen in the fact that a class [T R (E)] in 
1T1(Y IR) = Z2 can be computed using the spectral flow 
(mod 2) of a circle of operators T( E), which in tum can be 
computed using the generalized eta invariant. If H(E) is a 
skew-adjoint operator which arises in the Lagrangian of a d­
dimensional Euclidean QFT, the most practical way that we 
know to compute 1/(H(E») is to regard H(E) as the Hamilto­
nian for a (d + 1 )-dimensional Minkowski QFT and com­
pute the vacuum expectation of the change operator 
Q=S<r(X»ddX, which then gives 1/(H(E») via the 

. Q 12 equation = - !1/. One can calculate Q (or more precise-
ly, dQ IdE) for the (d + 1 )-dimensional theory via a gradi­
ent expansion25 and then the spectral flow is simply the 
change in Q when going around the circle. 

One way of producing the d-dimensional Lagrangian is 
as follows: let {M; }7~ t I be mutually anticommuting self­
adjoint matrices and for a map ¢J: Rd _ Rd + I, consider the 
operator T = ~1 = 1M jaj + ~J~"!i ~ liM VI with ¢J approach­
ing constants radially. This will be Fredholm iff 1¢J(x) 12 is 
bounded away from zero for large x and then the large x 
behavior of ¢J/I¢JI gives a map ~: s<i -I_s<i. We will show 
that under the one-parameter family of ~'s that starts and 
ends with a point map, and covers s<i, there is an odd spec­
tral flow and so a global anomaly. 

A d-dimensional Euclidean Lagrangian incorporating 
Tis 
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The tP-f/! couplings are Yukawa type, and these Lagrangians 
can be thought to be analogs of the Gell-Mann-Levy umod­
el4 (as opposed to the more recent definitions of au mod­
eI26!). L has an SO(d + 1) global symmetry, which we will 
argue to be broken by the global anomaly. 

A. One dimension 

Consider the Euclidean action 

L (\)(tP,f/!) = r 1..- (8 ItPl)2 + 1..- (8 ItP2)2 + V(tPi + tP~) JR 2 2 

+ ~ 'lJt(if 8 1 + iUltPl + ia2tP2)'IJ, 

for tPl' tP2EC'~ (R I) and 'lJECoo (R I) ® C2, where V goes to ~ 
as its argument goes to ~. Here L (I) has an SO (2) symmetry 
given by 

(
tPl) (COS a sin a) (tPl) 
tP2 - - sin a cos a tP2' 

'IJ _ e(l/2);au,'IJ. First consider the case that V has a minimum 
away from the origin. Then there will be finite action bosonic 
paths which (as XI ranges from - ~ to ~) go from one 
point in the minimum well to another. Formally, the integra­
tion over these paths gives the SO (2) symmetry in the quan­
tum theory. 

Let T denote the skew operator if 8 1 + iUltPl + ia2tP2' 
Consider a family tP(E) of background bosonic configura­
tions with tPlE ( - ~ ) = tP2E ( - ~) = 0 and tPlE (~ ) 
= cos E, tP2E ( ~ ) = sin E, as sketched in Fig. 1. As the fer­

mionic integration in f e - L(I) fiJ tP fiJ 'IJ leaves a factor of 
I det T I, if there is an odd spectral flow in T( E) then one 
might expect that the instanton sum is ill-defined and the 
SO(2) symmetry is broken. 

For the operator iT(E) one can show that the derivative 
of the generalized 1/ invariant is 

d. 1 1 (dtP I A. dtP2 A. ) II 00 

dE 1/(zT(E») = -;; tPi + tP~ dE '1'2 - dE '1'1 _ 00 

=1..-~TAN-ltP'lloo 
1T dE tP2 - 00 

(Refs. 12 and 25). This can be seen by computing the vacu­
um charge for the two-dimensional Minkowski Lagrangian 

L (2)('IJ) = i r 1..- 'V (80 + if 81 + iUltPl + ia2tP2)'IJ, 
JR' 2 

as was done in Ref. 25; the relevant Feynman diagram is that 
of Fig. 2. Thus there is odd spectral flow as E goes from 0 to 
21T. 

FIG. 1. A one-parameter family of background t/J's in one dimension. 
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As our model is quantum mechanical, one can also ana­
lyze it in a Hamiltonian approach. The Hamiltonian K, 
acting on Coo (R2) ®A*(C2

), is 

K=!(-8i-8D 

+ V(Xi + X~) +! 'lJt (a2XI - UIX2)'IJ 

where the operators 'IJ; satisfy {'lJr,'lJj } = 2li;j. The U(1) 
charge is 

Q = - i(X 182 _ X 2 81) + ! i'IJtu3'IJ, 

and commutes with K. Representing the complex Clifford 

algebra generated by the 'IJ's on A*(C2) via 'IJ;-{iI(e;), 
'lJr-{iE(e;), we can split H as HI eH2 where HI and H2 
act on Coo (R2) ® Aeven (C2) and Coo (R2) ® Aodd (C2), re­
spectively, and are given by 

HI =!( -8i -8~) + V(Xi +X~) 

and 

H2 = ! ( - 8 i - 8 ~ ) 

(
0 - iXI -X2) 

+ VeX i + X ~ ) + iX, _ X
2 

0 . 

Because Q has integer spectrum on Coo (R2) ® Aeven (C2) 
and half-integer spectrum on CU(R2)®Aodd (C2), the 
SO ( 2) symmetry of the ground state will be broken iff the 
ground state is in Coo (R2) ® Aodd (C2). However, for all 
'lJECO' (R2), ('lJIHII'IJ) = ('IJ® (~)IH21'IJ® a» and so 

(inf'llECQ' (R'H' Aodd(C' ) ('lJIH21'IJ» 

< (inf'llECQ' (R') .. Aeven(C') ('lJIH,I'IJ», 

implying that the ground state is indeed in 
Coo (R2) ® A odd (C2). In this example it is clear that the exis­
tence of a global anomaly does not make a theory inconsis­
tent but merely breaks a global symmetry; this appears to be 
related to the fact that the anomaly occurs in a global rather 
than local symmetry. 

The functional integral argument for global symmetry 
breaking required that V have a nontrivial minimum in order 
that the fermionic operator in the background field be Fred­
holm. However, from the Hamiltonian argument one sees 
that symmetry is broken no matter what V is. This can be 
seen in the functional integral approach by compactifying 
the space-time from R to [ - {3,{3]. If there is a symmetry 
breaking for each {3 then one would expect the same as {3 
goes to ~. A convenient choice of fermionic boundary 
conditions which preserves the SO(2) symmetry is the 
Atiyah-Patodi-Singer (APS) boundary condition." This 
requires that 'IJ ({3) lie in the positive eigenspace of 
- a2tP, (/3) + U'tP2({3) and that 'IJ ( - {3) lie in the negative 

eigenspace of -a2tP,( -{3) +U'tP2( -{3). 
Proposition 4: Let T(E) be a family of operators on 

Coo ([ - {3,{3]) ® C2 given by if81 + iultP, + ia2tP2 with the 

FIG. 2. One-dimensional spectral flow. 
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APS boundary condition, where (!:: ~ := ~~ ) is a nonzero vec­

tor independent of E and (!:: ~~~ ) = G!:::) . Then au goes 
from 0 to 21T, there is an odd spectral flow of iT(E). 

Proof Let V( E) denote the vector ( _ ~!: ~ i:~) ~ := ~~ ) and 

let W(E) denote the vector (f:'~-+i:'~) ~~~ ); theAPS condition 
is that 'I' E ( - /3) is proportionate to V( E) and 'I' E (/3) is pro­
portionate to W( E). Because the spectral flow is a homotopy 
invariant, we can compute it for any loop in Y I homotopic 
to T(E). In particular, forO<a< 1, consider the loop ofoper-

ators on Coo ( [ - f3,f31 ) ® e2 given by (Fla l + aiu'¢, 
+ ai~¢2 with the boundary condition that 'I' E ( - /3) is 

proportionate to V( E) and 'I' E (f3) is proportionate to W( E). 

One can check that this gives a smooth homotopy within the 
class of elliptic self-adjoint boundary value problems27 and 
so it suffices to compute the spectral flow at a = O. Then the 
spectrum is 

1_1_[ (2n + 1 )i1T + In ¢! + i¢2 (- f3) 
\ 4f3 ~¢~ + ¢~ 

-In ¢I + i¢2 (f3)]) nEZ, 
~¢~ + ¢~ 

which has an odd spectral flow as E goes from 0 to 21T. • 
In higher dimensions, we will only consider the case 

when V has a minimum away from the origin, so that the 
instantonlike background fields give Fredholm fermionic 
operators. Presumably one could put the theory in a finite 
volume, as we have done in one dimension, and conclude 
that there is a global anomaly with no restriction on V. 

B. Two dimensions 

Consider the two-dimensional Euclidean Lagrangian 

L(2)= 1'jt. + (aJl ¢j)2+ vet! ¢J) 

+ ~ 'l't (t! tEaj + iYk¢! + ire¢2 + in:¢3) 'I' 

for¢.,¢2'¢3ECOO (R2) and'l'ECoo (R2) ®~. HereL (2) has an 
SO(3) symmetry which rotates the ¢'s. If T(E) is a one­
parameter family of skew Fredholm operators of the form 

2 

T= L r~aj + iYk¢. + ire¢2 + in:¢3 
j~' 

then we will compute the generalized '1J invariant of T(E) by 
considering iT to be equivalent to the Hamiltonian of the 
three-dimensional Minkowski Lagrangian 

FIG. 3. Three-dimensional spectral flow. 
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It('" E = I 

FIG. 4. A one-parameter family of background ¢/s (at 00) in two dimen­
sions. 

L (3) = f iii 
JR' 

x( - iYkao + jt. tEaj + ¢! - ire¢2 - in:¢3) '1'. 

The Feynman diagram to compute the vacuum charge is 
that of Fig. 3 and letting n° denote ¢o II¢I, one finds 

dQ _ d 1 1 0d b c -d - -d - Eobcn n I\dn. 
E E R' 81T 

This is simply the infinitesimal change in the volume on 
S2 swept out by the curve ¢/I¢I: S !-+S2, where the S I is a 
large circle in R2, and we have normalized the volume form 
on S 2 to have mass 1. Consider a one-parameter family of 
loops on S 2 as in Fig. 4. If each loop represents the behavior 
of ¢/I¢I for large radius in R2, for some E, then as E goes from 
o to 1 it follows that there is an odd change in the vacuum 
charge, and so an odd spectral flow in iT(E). Presumably 
this spectral flow breaks the global SO ( 3) symmetry. 

C. Three dimensions 

Consider the three-dimensional Euclidian Lagrangian 

L(3)= 1, ~ jto (aJl ¢j)2+ V (to ¢I) 

+ ~ 'l't (t. tEaj + iYk¢o + in: ® ¢.:r) '1', 

with ¢o""'¢3ECoo (R3) and 'l'ECoo (R3) ® e8
. There is a na­

ive SO ( 4) symmetry which rotates the ¢'s, and as before we 
will compute the spectral flow for the fermionic differential 
operator by computing the vacuum charge of the four-di­
mensional Minkowski Langrangian 

L (4) = r ~ iii ( - iYkao + jt! tEaj + ¢o + ir¢·:r) '1'. 

This calculation was done in Ref. 25 and the relevant Feyn­
man diagram is that of Fig. 5. Letting n° denote ¢o II¢I, the 
result was 

FIG. 5. Three-dimensional spectral flow. 

J.Lott 1462 



                                                                                                                                    

FIG. 6. Four-dimensional spectral flow. 

dQ d i 1 a d b 1\ d C 1\ d d -=- ~Eabcdn n n n. 
dE dE R'1211 

As before, this is the infinitesimal change in the normalized 
volume on S 3 swept out by a family ofimmersed S 2,S, and by 
choosing the family to cover S 3, we ensure that there is an 
odd spectral flow in the fermionic differential operator. 

D. Four dimensions 

Let {7]'}1= I be another copy of the Dirac matrices 
{rD~=o and put 7]5 = 7]lrl7]37]4. Consider the four-dimen­
sional Euclidean action 

L (4) = 1, jto (al't/Jj)2 + V (to ifJJ) 

+ ~ 'lit (± r1:al' + ir{(t/J07]5 + ¢.;]») 'II, 
2 1'= I 

where t/Jo, ... ,t/J4ECoc (R4) and 'IIECoc (R4) ® C 16
• This is an 

analog of the linear (T model4 with the target space being R5 

instead of R4. The naive SO (5) global symmetry rotates the 
t/J's. The corresponding five-dimensional Minkowski La­
grangian is 

L(5)= r ~~ 
JR' 2 

x ( - ir{ao + I'tl r1:al' + t/J07]5 + ¢.;]) 'II. 

The Feynman diagram to compute the vacuum charge is 
that of Fig. 6, and the result is (letting na = t/Ja II t/J I ) 

dQ =.!!.- _1_ rEna dn b 1\ dnc 1\ dnd 1\ dne. 
dE dE 64r JR' abcde 

Once again, this is the infinitesimal volume on S4 swept out 
by the t/J field at 00, and by a suitable choice of t/J ( E) there will 
be an odd spectral flow in the fermionic differential operator. 

VI. DETERMINANT BUNDLES 

Over the space of Fredholm operators .'7 one has the 
virtual index bundle Index and its highest exterior power, 
the line bundle Det. For Dirac-type operators Quillen 
showed how to define a natural metric on Det.5 We wish to 
show how to extend these constructions to the other classes 
of Fredholm operators. 

First, consider the space .'71 of skew-adjoint complex 
Fredholm operators. The heuristic obstruction to defining a 
determinant function on .'7 I is the possible change of sign in 
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going around a loop, that is, the mod 2 reduction of 
17'1(.'71) = Z. Abstractly one can form a flat R bundle over 
.'71 via the homomorphism p: 1TI(YI)-+End(R) which 
takes 1 E1TI(YI) to the operator of multiplication by - 1. 
To be more concrete, let us consider a space Y of skew­
adjoint Dirac type operators Ds on a compact spin manifold, 
possibly coupled to an external vector bundle. As in Ref. 5, 
Y can be covered by open sets {U a} aER + , so that for SE U a' 
iDs has no eigenvalue of ± a. Then the transition functions 
(for a </3) ga/3 (S) = na< IA;I <I:/",.t; UDs ) define an R bundle 
PET over Y. That is, Va ER in a trivialization over Up cor­
responds to vp = gaP Va in trivialization over UP' and so 
there is a well-defined Quillen metric on DET given by 

II Va 112 = V~ ( II A ;UDs ») , 
IA;I>a 

where the product is understood to be defined using zeta­
function regularization. The unique connection on r (DET) 
which preserves 11'11 is given in trivialization a by 

Aa=lim L A;-s-ldA; 
s-o IA;I >a 

and is flat. Thus under parallel transport in patch a, the 
quantity (n IA;I > a IA; I) Va is constant. One can convince one­
self that the holonomy around a loop is the spectral flow 
(mod 2). 

Now consider the space Y IR of real skew-adjoint Fred­
holm operators. We can abstractly define a flat R bundle via 
the homomorphism p: 1TI (Y IR) = Z2-+End(R) which 
takes 1 to - 1. For a space Y of real skew-adjoint Dirac­
type operators, define the covering {U a} aER +, as above. 
Over U a we have the R bundle A max ( Va ), where Va 

= EB; {eigenspacesofeigenvalueA;, IA; I <a}. Ifa </3 then 
over U an Up, T defines a two-form on Vp - Va (by 
~a<A;<pA;e; 1\ e;, e; orthonormal) and an isomorphism 
from A max ( Va ) to A max ( Vp ) via exterior multiplication by 
TO/2)(dimR VIl-dimR va); then the bundles Amax (Va) patch to­

gether to give an R bundle Pfaff over Y. There is a metric on 
Pfaff given by 

IIA(e;)aIl 2 = IA(e;)I~ II A;UDs), 
A;>a 

where l'IJiY denotes the metric induced from the Hilbert 
space JY' and there is a compatible flat connection. One can 
see that the holonomy of the connection around a loop is the 
number of eigenspace rearrangements (mod 2). 

Because the elements of Y 2R, can be written as A + iB 
with A and B skew symmetric, the natural function to con­
sider is the complex Pfaffian. Freed has shown that for 
Dirac-type operators in Y 2R, the determinant line bundle of 
Quillen has a natural square root, the complex Pfaffian line 
bundle, with induced metric and connection.24 

Finally, the elements of Y 3R can be considered to be 
skew-adjoint complex operators which anticommute with a 
complex antilinear map. Then the even dimensionality of the 
eigenspaces allows us to canonically take the square root of 
the transition functions used to define DET for the Y I case. 
In this way one obtains a flat line bundle DETI/2 which has 
holonomy around a loop given by ~ (spectral flow) (mod 2). 

J.Lott 1463 



                                                                                                                                    

ACKNOWLEDGMENTS 

I wish to thank L. Alvarez-Gaume for discussions 
which caused the consideration of Proposition 4, and D. 
Freed for valuable help with Proposition 1 and Sec. VI. I also 
wish to thank M. Jacob, J. Ellis, and the CERN Theory 
Division for their hospitality while part of this research was 
performed. 

'M. F. Atiyah and I.M. Singer, "Dirac operators coupled to vector poten­
tials," Proc. Natl. Acad. Sci. 81, 2597 (1984). 

2M. F. Atiyah and I.M. Singer, "Index theory for skew adjoint Fredholm 
operators," Publ. Math. IHES 37,5 (1969). 

3E. Witten, "An SU(2) anomaly," Phys. Lett. B 117, 324 (1982). 
'M. Gell-Mann and M. Levy, "The axial vector current in beta decay," 
Nuovo Cimento 16, 705 (1960). 

'D. Quillen, "Determinants of Cauchy-Riemann operators over a Rie­
mann suface," Funkts. Anal. i. Prilozn 19, 37 ( 1985). 

6R. Coquereaux, "Modulo 8 periodicity of real Clifford algebras and parti­
cle physics," Phys. Lett. B 115,389 (1982). 

7M. F. Atiyah, K-theory (Benjamin, New York, 1967). 
"I. M. Singer, "Operator theory and periodicity," Indiana Univ. Math. J. 
20,949 (1971). 

9G. Segal, "Faddeev's anomaly and Gauss' law," preprint, Oxford. 
10M. F. Atiyah, "On K-theory and reality," Quart. J. Math. Oxford 17,367 

(1966). 
"M. F. Atiyah, V. K. Patodi, and I. M. Singer, "Spectral symmetry and 

Riemannian geometry III," Math. Proc. Cambridge Phil. Soc. 79, 71 
( 1976). 

1464 J. Math. Phys., Vol. 29, No.6, June 1988 

12J. Lott, "Vacuum change and the eta function," Commun. Math. Phys. 
93,533 (1984). 

13M. F. Atiyah and I.M. Singer, "The index of elliptic operators IV," Ann. 
Math. 93, 119 (1971). 

I·C. G. Callan, R. F. Dashen, and D. Gross, "The structure of the gauge 
theory vacuum," Phys. Lett. B 63,334 (1976). 

I5R. Jackiw and C. Rebbi, "Vacuum periodicity in a Yang-Mills quantum 
theory," Phys. Rev. Lett. 37,172 (1976). 

lOR. Jackiw and C. Rebbi, "Solitons with fermion number 1/2," Phys. Rev. 
D 13, 3398 (1976). 

"N. Hitchin, "Harmonic spinors," Adv. Math. 14,1 (1974). 
'"E. Witten, Global Anomalies in String Theory, Symposium on Geometry 

and Topology (World Scientific, Singapore, 1985). 
19M. F. Atiyah, "Riemann surfaces and spin structures," Ann. Sci. Ecole 

Norm. Sup. 4, 47 (1971). 
20J. Lott, "The eta function and some new anomalies," Phys. Lett. B 145, 

179 (1984). 
21L. Alvarez-Gaume, S. Della Pietra, and G. Moore, "Anomalies and odd 

dimensions," Ann. Phys. (NY) 163,288 (1985). 
22K. Osterwalder and R. Schrader, "Euclidean Fermi fields and a Feyn­

man-Kac formula for Boson-Fermion models," Helv. Phys. Acta. 46, 
277 (1973). 

23H. Nicolai, "A possible constructive approach to (Super tfJ3). I," Nucl. 
Phys. B 140, 294 (1978). 

2'D. Freed, "On determinant line bundles," in Mathematical Aspects of 
String Theory, edited by S. T. Yau (World Scientific, Singapore, to be 
published) . 

25J. Goldstone and F. Wilczek, "Fractional quantum numbers on solitons," 
Phys. Rev. Lett. 47, 986 (1981). 

20G. Moore and P. Nelson, "The aetiology of sigma-model anomalies," 
Commun. Math. Phys. 100,83 (1985). 

27p. Gilkey, Invariance Theory, The Heat Equation and the Atiyah-Singer 
Index Theorem (Publish or Perish, Wilmington, DE, 1984). 

J.Lott 1464 



                                                                                                                                    

Collapse and exponentiation of infinite symmetry algebras of Euclidean 
projective and Grassmannian C1' models 

Guy Arsenault 
CRM and Departement de Physique. Universite de Montreal. CPO 6128. Succ. A. 
Montreal H3C 3J7, Canada 

Michel Jacquesa> 

CRM and Laboratoire de Physique Nucieaire. Universite de Montreal. CPo 6128. Succ. A. 
Montreal H3C 3J7, Canada 

Yvan Saint-Aubin 
CRM and Departement de Mathematiques et de Statistique. Universite de Montreal. CPO 6128. Succ. A. 
Montreal H3C 3J7, Canada 

(Received 18 November 1987; accepted for publication 3 February 1988) 

Various two-dimensional u models enjoy an infinite set of infinitesimal transformations acting 
on their solution space. The action of these symmetries is investigated for the Euclidean 
projective a~d ~rassmannian u models. On the (anti-) self-dual sector of the latter, the algebra 
ofsymmetnes IS shown to collapse to a finite-dimensional algebra isomorphic to sl(n + I,C) 
for the models with fields in the Grassmannians Gn + I.p' The finite action obtained by 
exponentiation is given in a closed form. For cpn models, this result is extended to the whole 
space of finite action solutions and the structure of the algebra remains sl(n + 1,C). Hence the 
action is not transitive on the solution space. 

I. INTRODUCTION 

A great deal of work is currently under way to investi­
gate the structure and applications of infinite-dimensional 
Lie algebras. From the mathematical point of view, they 
constitute the most recent development of group theory. For 
physicists, they are expected to playa role analogous to the 
one played by usual group theory for the understanding of 
the properties of elementary particles. Indeed, one hopes 
that infinite-dimensional Lie algebras and their representa­
tion theory will shed some light on string theories. 

Two-dimensional models playa special role in that re­
spect. Let us recall that the conformal algebra in two dimen­
sions has the structure of two commuting Virasoro algebras. 
Sigma models are interesting in their own way because of 
their privileged link with string theories and also because 
infinite-dimensional Lie algebras often show up in their 
properties. Here we want to concentrate on the infinite alge­
bra spanned by symmetry transformations, first introduced 
by Dolan I for the unitary principal sigma models. This field 
of research has been developed significantly by Wu2 and 
Uhlenbeck,3 among others. The general case of a sigma mod­
el with values in an arbitrary Riemannian symmetric space 
has been treated in a previous paper.4 

The results obtained in Ref. 4 are particularly important 
because they show similarities between the structure of sig­
ma models and the structure of the Kadomtsev-Petviashvili 
(KP) equation introduced by the Kyoto school.5 Assuming 
that the infinitesimal transformations can be integrated to a 
group action, we are led to the following interesting ques­
tion: Can we expect this symmetry group to act transitively 
on the space of solutions or, at least, can we characterize 

a) On leave of absence from the Institut de Physique Theorique. Universite 
Catholique de Louvain, Belgium. 

physically the orbits under that group? This question consti­
tutes the first motivation for the present paper. 

A second motivation is given by the existence of finite­
dimensional orbits under the action of the symmetry group. 
(Such orbits are known to exist for the KP equation.5

) On 
these orbits, the infinite-dimensional group would then col­
lapse into a finite-dimensional one. Some distinguished Eu­
clidean sigma models (those with values in a Kahler mani­
fold6

) admit instanton solutions. The subspaces of instant on 
solutions of given charge are finite dimensional. If the sym­
metry transformations map k-instantons into k-instantons, 
we get an example of the collapse process described above. 

We propose to examine these problems in the case of the 
Euclidean sigma models with values in a complex Grass­
mann manifold. The instantons of these models are well 
known.6 Actually, much more is known when the Grass­
mann manifold is a projective manifold. Indeed, Din and 
ZakrzewskC gave a construction of all finite action solutions 
starting from the instantons. The present paper deals with 
the fate of the symmetry transformations on all these solu­
tions. 

The paper is organized as follows. Section II is a review 
of the projector formulation of the Grassmannian sigma 
models, their instanton solutions, and their Lax formulation. 
In Sec. III, the infinitesimal transformations derived in Ref. 
4 are introduced for the subspace of instant on solutions: It is 
shown that they map instantons into instantons and that the 
infinite-dimensional symmetry algebra collapses into a fin­
ite-dimensional one when restricted to the instanton sector 
of the model. The resulting symmetry generators can be inte­
grated explicitly into a finite action. However, the resulting 
group does not act transitively on the instanton subspace. 
Section IV is devoted to the same questions, but this time for 
the whole space of finite action solutions of the projective 
sigma models. After a description of the construction of Din 
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and Zakrzewski,7 we give the proof that the infinite-dimen­
sional symmetry algebra also reduces to a finite-dimensional 
algebra on the whole solution space of the cpn models. This 
algebra is also integrated explicitly into a group action con­
sistent with the construction of Din and Zakrzewski7 and 
does not act transitively on the solution space either. Section 
V contains some comments and open questions, together 
with an explicit example for the CP2 case. 

II. GRASSMANN IAN MODELS 

Euclidean sigma models are defined on a two-dimen­
sional space with the coordinates (x+,x_). The particular 
models we consider here are those where the field takes its 
values in the Grassmann manifold G(n + l,p) ofpplanes in 
cn + I. A useful parametrization of points in G( n + 1,p) is 
given by (n + 1) X (n + 1) Hermitian rankp projectors l:: 

l:t=l:, l:2=l:. (2.1) 

The equations of motion are 

(2.2) 

A particular subset of the solution space of the field equation 
(2.2) is given by the solutions ofthe self-duality condition6

: 

l: a+l: = O. (2.3) 

From now on, we only consider finite action solutions, i.e., 
configurations l: such that Str(J+l: a_l:)d 2x < <X). With 
this additional condition, solutions of (2.3) are called in­
stantons. 

Let us now tum to the Lax formulation of the model. It 
is well known8

•
9 that Eqs. (2.2) are the integrability condi­

tions for the following linear system: 

a± R(X+,X_;A) 

= [11(1 ±A)] 2I[a± l:,l:]IR(x+,x_;A), (2.4) 

whereR is an SL(n + 1,C)-valued function depending on an 
additional complex parameter A and 1= diag( lp, 
- 1 n + 1 _ p ). On the other hand, the Hermiticity condition 
l:t = l: imposes the following condition on R: 

(2.S) 

In the particular case of instantons, a solution of (2.4) satis­
fying condition (2.S) is found to bew 

R(x+,x_;A) = 1(1 - [2/(1 - A) ]l:). (2.6) 

III. SYMMETRY TRANSFORMATIONS IN THE 
INSTANTON SECTOR OF THE GRASSMANNIAN 
MODELS 

A. Infinitesimal transformations 

As explained in the Introduction, one of the goals of this 
paper is to examine the fate of the infinite-dimensional Lie 
algebra acting on the solution space of the Grassmannian 
models when restricted to the instanton sector. We refer the 
reader to a previous paper4 for the detailed derivation of the 
action of the symmetry algebra. In the case at hand, the 
generating function for the infinitesimal transformations 
takes the form 

(3.la) 
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with 

4 T(A)l:== [IR(A)TR -1(A)I,l:]. (3.lb) 

The generating function is to be understood as defining an 
infinite set of symmetries 4T(ill:: 

'" 4T(A)l:== LA - i4 T( il l:. (3.2) 
;=0 

In order to preserve the Hermiticity condition (2.S), the 
parameter Tesl(n + 1,C) in 4 T(ill: must be such that 
T= - Tt ifiis even and T= Tt if iis odd. 

Using (2.6), the symmetry generators for the instantons 
read as 

4T(A)l: = [(1 +A 2)/(1-A 2)][T,l:] 

+ [U/(1-A2)]({l:,T}-2l:Tl:), (3.3) 

where again, in the first terrtl, T has to be taken anti-Hermi­
tian while in the second term, it has to be taken Hermitian. 

'Although the general results4 ensure that l:' is a new 
solution of the full equations of motion (2.2), they do not 
guarantee that l:' is still a solution of the self-duality condi­
tion (2.3). In fact, one can check explicitly that 
l:' a + l:' = 0 by going into the basis where l: is diagonal. On 
the other hand, it will be possible to integrate the infinitesi­
mal law (3.3) and obtain the explicit form of the finite trans­
formation to which it corresponds. We thus postpone the 
proof that l:' is indeed an instanton to Sec. III B. 

The next step is to identify the algebraic structure 
spanned by the symmetry generators {4 T(i>, ieN, T = - Tt 
for i even, T = Tt for i odd}. A general result may be de­
duced immediately from the explicit form of the transforma­
tion (3.3): All the generators 4 T( il with an even index will 
act in the same way on l:, as will all the generators 4 T(il with 
an odd index. This observation solves one of the problems 
discussed in this paper: The infinite-dimensional symmetry 
algebra of the Euclidean sigma models with values in a 
Grassmann manifold collapses into a finite-dimensional al­
gebra when restricted to the instanton sector of the model. 

The structure of this finite-dimensional algebra is easily 
read by computing the commutators between the generators 
that are now referred to by the notation 

4;l: == [T,l:], with Tt = - T, 

4,;!.=={l:,T} - 2l:Tl:, with Tt = T. 

(3.4a) 

(3.4b) 

The result is 

with u= - Ut, v= - Vt, 
( 3.Sa) 

with U= Ut, V= Vt, (3.Sb) 

with U= - Ut, V= vt. 
(3.Sc) 

The finite-dimensional symmetry algebra thus has the struc­
ture of sl(n + 1,C) by using the decomposition 
sl(n + 1,C) = gEBm, where g is the subalgebra su(n + 1) 
(corresponding to 4~) and m is the subset of Hermitian ma­
trices (corresponding to 4~). 

This finite-dimensional structure embeds into the infi­
nite-dimensional structure in the following way. We expect 
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the above symmetric space decomposition to fit into the 
structure of a twisted loop algebra by identifying all the gen­
erators with even indices in the gradation and all those with 
odd indices. However, we have to check that this idea corre­
sponds indeed to the structure spanned by the infinity of 
generators in (3.3). The commutators are 

[~U(A),~V(A') ]l: 

= [lI(A' -A) ]{A ,~[u.vJ(A) - A ~[u.VJ(A ')}l: 

+ [lI(AA' - 1) ]{~[u'V)(A) + ~[U.vl(A ')}l:. 
(3.6) 

We have already encountered such a form for a commutator 
of generating functions in the general case.4 In Ref. 4 it was 
proved that, under a change of basis, these commutation 
rules have the structure of the twisted loop algebra 

g = C~N (su (n + 1) ® t 2i)) ffi C~N (m ® t 2i + I) ), 

where m is the space of(n + 1) X (n + 1)) Hermitian ma­
trices. 

The conclusion of this analysis is that the algebraic 
structure spanned by the symmetry generators of the instan­
ton sector of the Grassmannian models is the above twisted 
loop algebra. However, all the even (odd) generators in the 
gradation act in the same way as the subspace of index 0 ( 1 ) 
and the infinite-dimensional structure thus collapses into the 
structure of the finite-dimensional algebra su(n + 1) ffi m 
= sl(n + I,C). 

B. Finite transformations 

Returning to the transformation laws (3.4), we see that 
(3.4a) can be integrated immediately. This is not the case for 
(3.4b). However, both cases can be treated simultaneously if 
we observe that they are both special cases of a linear trans­
formation on a Grassmann manifold, expressed in affine co­
ordinates. II With this remark, the transformations (3.4) can 
be seen as the infinitesimal forms of 

l:; = e1'I,e - T, with Tt = - T, 

l:~ = e1'I, (e - T + 2 sinh T l:) -I 

(3.7a) 

= e1'I,(e- 2T(l-l:) + l:)-Ie - T, with Tt = T. 
(3.7b) 

We are now left with the problem of proving that the 
laws (3.7) are indeed symmetries of the instanton sector. 
For (3.7a), this fact is trivial. The new information is con­
tained in (3. 7b), which is a far from obvious symmetry of the 
self-duality equation. 

First, let us show that the inverse in (3.7b) always ex­
ists. This will be done in the basis where l: is diagonal: 
l: == diag [ 1 p ,0] . Denoting e - 2 T in this basis as 

(3.8a) 

we obtain 

e-
2T

(l_l:) + l: = [~ ~:]. 
This proves that the matrix appearing in (3. 7b) is invertible 
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as soon as 1'4 is invertible. However, 1'4' being a submatrix of a 
positive definite matrix, is itself positive definite and hence 
always invertible. 

For later convenience, we also denote e2T in this basis as 

7'2] . h -t - -t - -t -_ , WIt 1'1 = 1'1' 1'4 = 1'4' 1'3 = 1'2' 
1'4 

(3.8b) 

The properties of the l:~ are (i) l:~t = l:~, (ii)l:~2 = l:~, 
and (iii) l:~ a+l:~ = 0 and should be proved in that order. 
Since the proofs are similar, we give only the calculation for 
the self-duality condition (iii). Observe first that 

a+l:~ = eTa+l:(e- 2T(l-l:) + l:)-Ie - T 

so that 

-l:~eT(l- e- 2T)a+l: 

x(e- 2T(l-l:) + l:)-Ie-T 

l:~ a+l:~ = l:~e- T a+l:(e - 2T(l - l:) + l:)-Ie - T. 

Now let A be the unitary matrix that diagonalizes l:. Then 

l:~e- T = e1'I,(e- 2T(l-l:) + l:)-le -2T 

= e1'I,((l-l:) + e21'I,)-1 

0]-1 
1 A 

and thus 

l:~ a+l:~ =eTA-I[7'~1 ~]Al:a+l: 
X(e- 2T(l-l:) + l:)-Ie - T = O. (3.9) 

Before concluding this section, we want to make two 
remarks. First, let v be an eigenvector of l: with eigenvalue 1. 
Then l:~eTv = eTv, which means that the eigenspace of l: is 
"rotated" by eT with T Hermitian for the odd case, whereas 
it is obviously rotated by eT with T anti-Hermitian in the 
even case. 

Second, there is an obvious discrepancy between the di­
mension ofthe symmetry group SL(n + I,C) and the num­
ber of parameters of the instanton solution.6 Thus the action 
of the above symmetry group is not transitive on the space of 
solutions since it is not even transitive on the subspace of self­
dual solutions. 

IV. SYMMETRIES ON THE SOLUTION SPACE OF THE 
CpnMODELS 

Among all (complex) Grassmannian models, it is the 
projective models whose solution spaces have been investi­
gated most thoroughly. Indeed, because of the studies of 
Borchers and Garberl2 and Din and Zakrzewski,7 the space 
of solutions with finite action of the Euclidean cpn models is 
well understood: Its characterization is explicit enough so 
that we can extend the results obtained for the self-dual and 
anti-self-dual solutions of the Grassmannian models to the 
whole finite action solution space of the cpn models. 

As a first step toward the description of the symmetries 
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on the whole space of finite action solutions, we shall sum­
marize the results of Din and Zakrzewski. 7 Since the fields of 
the cpn models are rank-l projectors P(x+,x_), it is con­
venient to introduce the unit vector field z(x+,x_) 
ECn+ I, Izl = 1, on which P(x+,x_) projects. The field 
equations are 

D_D+z + (ztD_D+z)z = 0 (4.1) 

and can be shown to be equivalent to (2.2) for P. Here, the 
covariant derivatives D ± are defined by 

D± =.J± - (ztJ±z). (4.2) 

In terms of the unit vector field z, the (anti-) self-duality 
condition takes the simple form 

D~:z = 0, (4.3) 

where the lower sign is for anti-self-duality. The general in­
stanton solution is given by (n + 1) polynomials PI (x + ) of , 

is a solution of the cpn model with finite action; and (iii) all 
the elements of the set (4.6) are mutually orthogonal, 

(p i_ z)t(pj+ z) = 0, all i,j, 
(4.7) 

(P i_ z)t(pj_ z) = (P i+ z)t(pj+ z) = 0, i=/=j. 

Hence the set (4.6) constitute a moving frame of en + I 
whose elements are solutions of the cpn model. We shall 
refer to such a set as a family of solutions. Since 
P~+ IZ = P~ + IZ = 0, pk+ Z and P~ z are, respectively, 
an anti-instanton and an instanton. [According to Din and 
Zakrzewski,7 it might occur, for particular z's, that 
pk++ IZ= P~+ IZ= 0 for k and m such that k + m <no In 
these degenerate cases, the family (4.6) is not a en + I frame. 
However, these z's can be approximated continuously by 
nondegenerate families. We shall not consider any further 
these peculiar solutions.] Since any solution z with finite 
action gives rise to an instanton by repeated action of the 
operator P _, it is easier to describe the families as generated 
from an instantonf, i.e., P J = 0: 

(4.8) 

where pn+f /IP~fl is the anti-instanton ofthe family. 
This family structure can be translated in terms of a 

family of projectors {PO,PI"",Pn}, Ifzk =.pk+f, for O.;;;;h;;n, 
define Pk to be the Hermitian projector on Zk' Since the Zk'S 
are solutions of (4.1), the projectors P k are solutions of 
(2.2). Moreover, the orthogonality of the Zk'S is equivalent 
to PiPj = 8ijPj , There is no compact form for the action of 
the operator P + on the projectors Pk and the recursive con­
struction of the family (4.8) is more easily written in terms 
of the Zk 's: 

PHI (P+zd = (P+zk ). (4.9) 

A set of projectors {PO'PI, ... ,Pn} verifying the above condi­
tions gives rise to a unique family {zO,ZI, ... ,Zn} verifying con­
ditions (i )-( iii). 

To take full advantage of the formalism used to describe 
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The anti-instantons bear the same definition, with x+ re­
placed by x_. The (anti-) instanton number is k 
= maxo<l<n(deg(PI»)' 

Define the operators P ± by the following action on a 
fieldf(x+,x_ )Een + I: 

(4.5) 

Let z be any finite action solution of the cpn model. Din and 
Zakrzewski7 were able to show the following remarkable 
properties: (i) there exist k and m such that pk++ IZ 
= P ~ + IZ = 0 with k + m = n; (ii) every element of the set 

(4.6) 

the symmetries introduced in Sec. III, another description of 
the families {ZO,ZI, ... ,Zn} or {PO'PI, ... ,Pn} is also useful. Let 
the !.k' k = O,I, ... ,n + 1, be the matrices 

k-I 
~o=.O and !.k =. I PI' 

I~O 

Obviously, the set 

(4.10) 

{!.O'!.I'''·'!.n'!.n+ I =.l} (4.11) 

contains the same information as the families {ZO,ZI, ... ,Zn} 
and {PO,PI, ... ,Pn} since the Pk's can be retrieved from (4.11) 
simply by Pk = !.k+ I - !.k' The conditions on the family 
{PO'PI, .. ·,Pn} are equivalent to the conditions (4.12)­
(4.15) on the corresponding family {!.O'!.I'''''!.n + I}. The 
!.k are projectors of rank k: 

!.~ =!.! = ~k' with rank !.k = k, (4.12) 

satisfying the self-duality equation (2.3) of the Grassman­
nian models 

(4.13 ) 

The image of!'i is a subspace of the image of!.j if i.;;;;j: 

!.i!.j = !'j!'i = !.i' if i.;;;;j. (4.14) 

Finally, the projectors ~k satisfy the supplementary differ­
ential conditions 

!.k+ I J+!.k = J+!.k' 0.;;;; k.;;;; n, (4.15) 

where !.n + I = 1. The equivalence of the purely algebraic 
conditions on the family {PO'PI, ... ,Pn} on one hand, and on 
the family {~O'!.I""'~n + I} on the other hand, is straight­
forward. The equivalence between the differential relations 
on the two families can be derived by direct manipulations. 
We give here only an outline of the proof that [DPk,Pk ] = 0 
holds given (4.13) and (4.15). The self-duality equations 
(4.13) on !.k imply the field equations [D!.k'!.k] = 0 for 
all k. Then 
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[DPk,Pd = [D(l:k+ 1 -l:k ),(l:k+ 1 -l:k)] 

- [Dl:k+ pl:d - [Dl:k,l:k+ d 

-a+(a_l:k+ll:k ) +a_l:k+ 1 a+l:k 

+ a+(l:k a_l:k+ I) - a+l:k a_l:k+ 1 

-a_(a+l:kl:k+l ) +a+l:k a_l:k+ 1 

+a_(l:k+1 a+l:k ) -a_l:k+1 a+l:k· 
( 4.16) 

Using various derivatives ofl:k + Il:k = l:kl:k+ 1 = l:k' the 
self-duality equations, and (4.15), Eq. (4.16) becomes 

[DPk,Pk ] = -a_(a+l:k ) +a_(a+l:k ) =0. 

Since each element of the family {l:k' O<k<n + t} is a 
self-dual solution of a Grassmannian u model, the symme­
tries studied in Sec. III transform each of them into a new 
solution of the same model. If the symmetries can be shown 
to leave the conditions (4.12 )-( 4.15) satisfied, they will in­
duce symmetries of the families {Pk, O<k<n} and then, of 
the whole space of finite action solutions of the CP" model. 
In the case of the even generators, the transformations 
(3.7a) are 

l:ic = e12ke - T, for O<k<n + 1 and TEsu(n + 1), 
( 4.17) 

and this verification is trivial since all the projectors l:k and 
P k become transformed in the same rigid fashion 
l:k .... l:ic = e12ke - T, Pk .... P ic = eTPke - T. The conditions 
(4.12)-(4.15) are obviously satisfied by the l:ic's if they are 
by the unprimed l:k'S. For the odd generators, the finite 
action (3. 7b) is 

l:ic = e12d e- 2T(1 -l:k) + l:d -Ie - T, 

for O<k<n + 1 and T Hermitian, ( 4.18) 

but the verification here is, however, a nontrivial one. Condi­
tion (4.12) was discussed in Sec. III. Condition (4.14) can 
be shown to hold following steps similar to the ones leading 
to (3.9). Since the self-duality equation has been verified in 
Sec. III, only condition (4.15) still remains. The derivative 
a+l:ic has the form 

a+l:ic = eT {a+l:k -l:d e- 2T(1 -l:k) + l:d- I 

X (1- e- 2T)a+l:k} 

X [e - 2T(1 - l:k) + l:d -Ir T. 

With the notation [k] == [e - 2T( 1 - l:k) + l:k ], condition 
(4.15) becomes, using (4.14) and (4.15) for the unprimed 
l:k'S, 

l:ic+ 1 a+l:ic 

=e12k+ 1 [k+d-I{l:k+1 a+l:k -l:k+Il:dd-1 

X (1- e- 2T)a+l:k }[k] -Ie - T 

= e12 k + 1 {a+l:k -l:k [k] -1(1- e- 2T)a+l:k} 

X [d-1rT 

because of (l:ic + 1 )2 = l:ic + 1 . Hence 
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l:ic+1 a+l:ic = eT{l:k+ 1 a+l:k -l:k+ll:dk]-1 

X (1 - e- 2T)a+l:k}[k] -Ie - T 

= a+l:ic· 

Thus all the symmetries described in Sec. III are symmetries 
not only of the (anti-) instanton solutions, but also of the 
whole space of finite action solutions. However, the explicit 
action of the odd generators on the Zk, which are neither 
instanton nor anti-instanton solutions, cannot be expressed 
solely in terms of Zk and eT

, but also requires the first few 
derivatives a i+ Zk and aj 

_ Zk' Since the family structure is 
conserved, the simplest expression for the zic for 1 < k < n is in 
terms of/==zo, the instanton of the family (see the remark at 
the end of Sec. III): 

zic = P"+f'/IP"+f'1 = P,,+ (e'i)/IP"+ (e'i) I. (4.19) 

Because Tis Hermitian, I f' 12 = lit e2'i1 is not equal to 1/12 
in general and then P + (e'i) -=/=eTp + f Section V provides 
an example of an "odd" transformation. 

The action just described is not transitive on the solution 
space. It is not even transitive on the instanton solutions, as 
was underlined for the general Grassmannian case. In the 
CP" model, the general k-instanton solution takes the form 
(4.4), where the maximum degree among the PI(X+), 
O<I<n + 1, is k and the polynomials PI (x+) have no com­
mon root. Since both the even and odd symmetries act on Zo 
aszo .... eTzoileTzol, where Tisinsl(n + I,C) and eTis always 
invertible, eTzo have no common root since, otherwise, eTzo 
would represent an I-instanton solution with 1< k and 
e- T(eTzo) would not be a k-instanton. Hence, the action of 
the group described above is onto the k-instanton solution 
subspace. Since the algebra sl(n + I,C) has 2n(n + 2) real 
dimensions and the general k-instanton solution depends on 
2 (n + 1) (k + 1) - 2 real parameters, the action is obvious­
ly not transitive for k> n. 

To conclude this section, we reformulate the result just 
obtained through the technique used in Sec. III to see 
whether that same technique could provide a group of sym­
metries for the solutionszk, l<k<n - 1, bigger than the one 
just described here. The answer will be that both techniques 
coincide. (The details will be skipped; only the major steps 
will be outlined.) Din et al., 10 gave the solution ofthe linear 
system associated to a given Pk in terms of the PI' O<I<k, as 

Rk(A) =I{l + [4AI(A _1)2]l:k - [2I(1-A)]Pk}. 
(4.20) 

The generating function for the symmetry generators is 

AT(A)Pk = [(1 +A 2)/(1-A 2)l[T,Pk ] 

+ [UI(1-A2)]({Pk,Tk}-2PkTkPk)' 
(4.21 ) 

The (point-dependent) matrix generator Tk appearing in 
the odd part of the generating function is 

Tk == (1 - 2l:k ) T( 1 - 2l:k ). (4.22) 

Again, all the even generators coincide and are equal to 

A;Pk=[T,Pd, TEsu(n+l); (4.23) 

their exponentiation is obvious and has been given before. 
The odd generators are also identical: 
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4.~Pk = {Pk,Tk} - 2PkTkPk, T Hermitian, (4.24) 

but their exponentiation is difficult since it depends on the 
evolution of the PI' O<J<k, under that symmetry. One does 
not know a priori what the elements z; of the family of Zk are, 
except by the action of P _ on Zk' However, it is not difficult 
to prove, up to first order in T, that the set 
{po + 4.~PO,PI + 4.~PI' ... 'Pn + 4.~Pn}' where the 4.~Pk 
are given by (4.24), is still a family. This very fact allows us 
to sum the 4.~PI and then define the family 

{l:o + 4.~0,l:1 + 4.~I'··· ,l:n + 4.~n}' wherethe4.~n 
are obtained from (4.24): 

k-I 

4.~k = L 4.~PI = {l:k,T} - 2l:k 'IT.k, (4.25) 
1=0 

where Tnow appears nonconjugated. However, this is exact­
ly the infinitesimal form (3.4b) obtained in Sec. III for the 
projector l:. The conclusion is then that the finite symme­
tries introduced earlier in this section coincide, in the infini­
tesimallimit, with the transformations obtained through the 
solution of the linear system and the technique used in Sec. 
III. 

v. CONCLUDING REMARKS 

As a first remark, we present a nontrivial example of the 
action of the odd generators on a family of the projective 
model cpn. In order to be nontrivial, the family has to be 
from a model with n;;"2 since the Cpl model has only instan­
tons and anti-instantons as finite action solutions. We 
choose the simplest of these models, the CP2 model. 

The family will be generated from the following two­
instanton solution: 

(5.1 ) 

and 

Z2 = 1 [:~ 1 
~ 1 + 4x2 + X4 1-

(5.3 ) 

Observe that Z2 is an anti-instanton, as it should be. The 
Hermitian generator T is chosen to be 

T~ [~ ~ ~l (5.4) 

so that 

(5.5) 
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where c=cosh e, s=sinh e, and a(x+,x_) is the real func­
tion of x + and x _ such that Z& 0) is of unit length. The second 
member of the new family is 

P (0) 

z(O)= +Zo 
I -IP +Z&O) I 

and the new anti-instanton is 

[

CX2 -s] 
z~O) 1;:+ :~::I = r(x+,x_) - 2x_ , 

+ 0 -sx2_ + c 
(5.7) 

where, again, the functions /3 and r normalize the length of 
zjO) and z~O) to unity. It can be checked explicitly that these 
new Z& 0), zj 0), and zi 0) are indeed solutions of the equation of 
motion. The explicit form of zj 0) can hardly be traced back to 
Zl' However, the form Z~0)=p2+ Z&0)/IP 2+ Z&O) I happens to 
be precisely z~O) = e-OTz2/Ie-OTz21. At first sight, this 
might seem surprising, since the action defining Z&O) is 
through eOT, not e - OT. However, this can be shown to hold in 
general. Indeed, using (4.24) for P n = 1 - l: n' one finds 

4.~Pn = - {Pn,T} + 2Pn TPn (5.8) 

for the anti-instanton, instead of 

4.~Po = {Po,T} - 2PoTPo (5.9) 

for the instanton. Hence the two vectors Z&O) and z~O) are 
obviously orthogonal: 

z~6)tZ&O) 0:: (e-OTzn )t(eOTzo) = z~zo = 0, 

as it should be. Finally, a direct calculation shows that 
neither in the instanton Z&O) nor in the anti-instanton z~O) is 
there any common root (for any e) in the three polynomial 
components. 

As last remarks, we want to list a few open questions. 
The first to come to mind is whether a similar construction of 
the symmetries for the whole space of finite action solutions 
of the Grassmannian models could be calculated along the 
lines of the discussion of Sec. IV. The problem here is that 
there is no explicit description of the whole solution space for 
Grassmannian models other than for the cpn models. Sec­
ond, it would be interesting to have a geometrical explana­
tion of why the larger group Sl(n + I,C) appears as a sym­
metry group of the field equations since only its real form 
SU (n + 1) is an explicit symmetry. It probably originates in 
the Kiihlerian nature of the Grassmannian manifolds and 
from the fact that the self-dual equations are nothing but the 
Cauchy-Riemann equations for this complex structure. 
This conjecture allows one to hope that a similar result holds 
for any 0' model whose field takes its values in a Kahler 
symmetric space. A third (more ambitious) question is to 
try to calculate the explicit action of the infinite symmetry 
algebra around solutions of other models. This task might be 
too difficult or even worthless for solutions on Minkowski 
space. Even though solitons known to exist for principal 0' 
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models on Minkowski space bear some conceptual similari­
ties with the Euclidean instantons, they are very different at 
the mathematical level. As pointed out by Uhlenbeck,3 the 
unitarity condition (2.5) on Minkowski space 
[R t- 1(A) = R(A)] does not have any finite power series 
solutions. Hence the collapse of the infinite-dimensional al­
gebra to a finite algebra might be a peculiarity of the Euclid­
ean sector. Nevertheless, the question of finding the explicit 
action of the symmetry algebra could be interesting for other 
models on Euclidean space. Finally, let us recall that, in the 
Kyoto school approach5 of the Korteweg-de Vries and Ka­
domtsev-Petviashvili equations, an infinite-dimensional 
(affine) algebra also acts on the solution space. Moreover, 
this action defines, as in the present case, finite-dimensional 
orbits. It would be of prime interest to know if the finite 
orbits in both cases bear any similarity more than coinciden­
tal. 
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The gauge model based on the Yang-Mills equations for the Poincare group cannot be 
con~istently quantized, at least in a perturbative approach. The regulated theory, obtained by 
addmg the counterterms required by consistency and renormalizability, is just the gauge theory 
for a de Sitter group. 

I. INTRODUCTION 

Gauge theories for the Poincare and de Sitter groups 
have been extensively studied as alternative theories for 
gravitation. 1 In this paper, "gauge theories" are to be consid­
ered as synonymous for models in which the field equations 
are the Yang-Mills equations for the group. That the gauge 
model for the Poincare group could describe gravitation has 
already been shown elsewhere.2 On the other hand, the 
quantization of such a model is expected from the start to 
face difficulties because of two peculiarities of the group: it is 
nonsemisimple and it acts on space-time itself. As a conse­
quence of the first peculiarity, the Yang-Mills equations are 
not derivable from a Lagrangian. 2 As a result of the second 
peculiarity, all source fields belong, besides some tensor or 
spinor representation, to a "kinematic" representation 
whose generators are derivative fields on space-time. The 
number of derivatives appearing in currents and invariants is 
thereby augmented, representing a great threat to renormali­
zability. It will be shown here that such a model presents an 
inconsistency in the gauge field vertices, a problem that 
seems to stem from the absence of a Lagrangian. In order to 
illustrate what happens let us consider an unrealistic but 
instructive model. Suppose we did not know the Yukawa 
coupling Lagrangian .Y I = gqJ'I'\Ii, but we had somehow 
arrived at the field equations in the form 

..... 
D'I' = gqJ'I', (1.1) 

\liD = - gqJ\Ii, 

(02 + m2 )qJ = g'\Ii'l', 

( 1.2) 

(1.3 ) 

where D = iyft aft - m. Suppose further that we had some 
evidence (say, "experimental") thatg' #g. This is a baffling 
situation from an intuitive point of view, but the problem can 
be made more definite if, ignoring the Lagrangian, we try to 
quantize the system by the Kiillen-Yang-Feldman (KYF) 
formalism. 3 The trouble is clear: as seen from the channels of 
'I' and \Ii, the coupling constant isg; as seen from the qJ chan­
nel, it would be g'. The qJ\Ii'l' vertex obtained from Eqs. ( 1.1 ) 
and ( 1.2) would be different from that obtained from ( 1.3). 
This trivial remark points to a fundamental inconsistency of 
those equations, which are coherent only when g = g'. On 
the other hand, if we examine them in the light of Vain berg's 
theorem,4 which gives necessary and sufficient conditions 
for the existence of a Lagrangian for a given set of equations, 
we find that g = g' is necessary for (1.1 )-( 1.3) to be deriv­
able from a Lagrangian. 

We show in Sec. II, by using the KYF formalism, that 
this kind of inconsistency is present in the Yang-Mills equa­
tions for the Poincare group. 

The fact that the Poincare group comes out as an Inonii­
Wigner contraction limit of the de Sitter groups is exploited 
in Sec. III to provide more insight on the problem. The de 
Sitter groups being semisimple, a Lagrangian model can be 
built up, the path integral formalism may be used to supply 
the Feynman rules, and the Poincare model is then seen as a 
limit case. The comparison of the de Sitter and Poincare 
cases sheds some light on the way the inconsistencies, absent 
in the former, emerge in the latter. Geometrical consider­
ations suggest that the de Sitter models can be viewed as 
smoothed versions of the Poincare model. 

Inconsistencies in field theories appear mainly when re­
normalization is involved, and sometimes find remedy in the 
addition of counterterms to the Lagragian, with consequent 
modifications in the field equations. A notorious example is 
the electrodynamics of scalar mesons, which only becomes 
renormalizable if a self-interaction term AqJ 4 is added to the 
purely electromagnetic Lagrangian. As here no Lagrangian 
is at hand, we may think of changing the equations directly. 
A study of the possibilities arising in this line of thought is 
given in Sec. IV, where, by combining requirements of vertex 
consistency and renormalizability, successive counterterms 
are introduced in the Yang-Mills equations. Curiously 
enough, the final well-behaved resulting theory is just a de 
Sitter gauge model, which in this way appears as a "function­
ally corrected" Poincare model. 

II. VERTEX INCONSISTENCY 

The Poincare Lie algebra is the semidirect product of 
the Lorentz algebra and the algebra of the translations in 
space-time. It is convenient to use the double index notation 
laf3 (a,{3 = 1,2,3,4, with a </3), for the Lorentz generators 
and to take la for the translation generators. Individual in­
dices can be raised and lowered by the Minkowski metric 
TJaf3 . 

Taking Aa 
13ft and B Yft as the gauge potentials related, 

respectively, to the Lorentz sector (which constitutes a 
gauge subtheory) and the translation sector, the correspond­
ing field tensors tum out to be2 

F af3 = a A af3 _ a A af3 _ gA a A yf3 + gA a A yf3 
pv It v v Jl Yll 'V yv J.t ' 

(2.1 ) 
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r'Jlv = aJlB~ - avBaf.t - gA aYf.tB ~ + gA a yvB Y,... (2.2) 

The Yang-Mills equations for the Poincare group are 

af.tFapf.tV - gA a Yf.tFYPf.tV + gFa yf.tVA YPJ.L = gsaPv, (2.3) 

a r'f.tv_gAa rYf.tv+gFa f.tVBY =g/2()av (2.4) 
f.t Yf.t Y f.t ' 

where saPv is the source spin density, oav is a source energy­
momentum including coupling to the gauge fields, and / is 
the Planck length. 

There is no Lagrangian density from which the above 
field equations can be derived.2 It will be seen in Sec. IV that 
some pieces of this system of coupled equations can have 
Lagrangians, but the fact is that the whole system cannot. 
Attempts to redefine the fields so as to make the theory more 
tractable either disfigure its character by changing the mean­
ing of the fundamental fields or make it trivial. For example, 
if the treatment used for the Korteweg-de Vries equation is 
applied here, the fields B a f.t must be some derivative af.t<p a, 
corresponding to the vacuum of the model. 

In the absence of a Lagrangian, the natural way possibly 
open to quantization is the KYF formalism. It is convenient 
to use (2.1) and (2.2) in (2.3) and (2.4) so that equations 
acquire the form 

DA ap _ a (af.tA ap ) v v f.t 

= gVaP
v [A] - g 2WaP

v [A] + saPv, (2.5) 

DB av _ a V(af.tBaf.t ) 

= gUpX[A ]BP" - g 2ZpX[A ]BP" + /2()av, (2.6) 
where 

V ap [A ] = (A P 8a _ A a 8 p) 
v YP£ Epr 

X(8/a u -ifUav)AEYu ' (2.7) 

W aPv [A ] = (8£ a~r - 8
E
P7]0Y) 

X (8 Un"P - 8 "nUP)A E A 'P A I) 
v ., v " 'PP I)" yu' 

up;. [A] = 8" V(af.tA apf.t + 2A apf.t af.t) 

-A apva" -A ap" a v 

(2.8) 

+avA ap" _2a"A apv, (2.9) 

ZpX[A] =AaYf.t(AYpf.t8"v-2AYpv8"f.t) 

+AayvAYp,,' (2.10) 

Gauge-fixing terms should be added to the left-hand side but 
they will not be important for the argument that follows. 

Let us consider the sourceless case. To simplify the dis­
cussion, we shall rewrite (2.5) and (2.6) symbolically as 

KA =gV[A] -g2W[A], (2.11) 

KB=gU[A ]B-g 2Z[A ]B. (2.12) 

In the KYF formalism, we look for a perturbative solu­
tion in the form 

A =A +gK-1V[A] -g2K- 1W[A], 

B=B+gK-1U[A ]B-g 2K- 1Z[A ]B. 

(2.13) 

(2.14 ) 

Iteration to the desired order is then performed by replacing 
the A 's and B's successively in terms of the free solutions 
A and B. The operator K -1 represents a convolution with 
the Green's function of the differential operator in the lhs of 
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(2.5) and (2,6) with Feynman boundary conditions.5 We 
shall refer to K - 1 simply as the Feynman propagator in 
some supposedly fixed gauge. The Feynman rules are ob­
tained by projecting each one of these perturbative solutions 
on outgoing fields of the same kind. Each time they "hit" the 
free propagator, these outgoing fields produce free-fields of 
the same kind, so that the first contributions give precisely 
the basic vertices for the Feynman rules. In the case (2.11), 
such vertices are of the form gA V[ A] and g 2 A W[ A] and 
from them just the expected three-leg and four-leg vertices 
for a gauge model for the Lorentz group are obtained. Equa­
tion (2.11) is, of course, a set of coupled equations, one for 
each potential Aa Pf.t' Take, for instance, the component 
A 12f.t' The projection is to be made on an outg,oing fi~ld, A 12f.t' 
of exactly the same kind. Other potentials A 23f.t' A 30f.t' etc. 
appear in the vertices. In the equations for A 23f.t and A 30f.t' 
the projections are made on outgoing fields A 23f.t and A 30f.t' 
respectively. The important point is that the three-leg vertex 
involving A 12f.t' A 23f.t' and A 30f.t will appear the same when 
obtained from each one of their respective equations. In oth­
er words, the expression for a vertex can be obtained from 
the equation related to any of its legs, and the result is inde­
pendent of the choice of the leg. This general fact ofpertur­
bative field theory is easily found for (2.11), which are in 
reality the Yang-Mills equations for a Lorentz gauge model. 
Ghost fields could be introduced in principle through the old 
laborious Feynman method,6,7 but (2.11) alone has a La­
grangian and in fact it would be simpler to pursue the whole 
treatment for the Lorentz sector by the path integration 
methods. 

Now we come to the main point. The same consider­
ations above, when applied to the whole set (2.11) and 
(2.12), lead to an insurmountable difficulty: vertices like 
gB(aA)B,gBA(aA), andg 2BAAB do come out from (2.12) 
but not from (2.11). There are AB couplings in (2.12) but 
no field B appears in (2.11 ). Thus the expression for a vertex 
is no longer obtained from the equation for any of its legs, it is 
now dependent on the choice of the leg. With some freedom 
of language, we might say that the B 's are able to "feel" the 
A's, but not the other way round. Or still, that vertices in­
volving B 's and A 's are present for outgoing B 's but not for 
outgoing A's. The same kind of inconsistency would appear 
in our defective Yukawa model [( 1.1 )-( 1.3)] with g = 0 
andg'#O. 

From this fundamental vertex inconsistency we con­
clude that, at least from the point of view of the KYF formal­
ism, a model with (2.3) and (2.4) as field equations is not 
amenable to quantization. 

III. RELATION TO DE SITTER MODELS 

For usual gauge models, it is simpler to obtain the whole 
set of Feynman rules by the path integral approach and it 
will be instructive to examine our special case in the light of 
this standard procedure. It requires a Lagrangian, which is 
missing, but we can resort to the well-known fact that the 
Poincare group P is an Inonii-Wigner contraction8 of the 
two de Sitter (dS) groups.9 As dS is semisimple, we can 
easily write down both the Yang-Mills equations ahd the 
corresponding Lagrangian for a dS gauge model. The com-
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parison of the two cases will allow us to see why and where 
the procedure breaks down in the Poincare model. 

The relations between classical gauge models for P and 
dS have been studied in detail2•10 and here we shall only 
recall the main poi:l1ts. In order to see what happens to gauge 
fields in the contraction process it is convenient to look at the 
contraction as acting on the group parameters wab 

(a,b= 1, ... ,S, a<b). The parameters wafJ (a,{3= 1, ... ,4), 
related to the Lorentz subgroup, remain untouched. The pa­
rameters waS represent "rotation" angles, compact or not, 
depending on the relative sign of 1Jaa and 1Jss, where 1Jab is 
the diagonalized dS invariant metric. Contraction requires 
redefining such angles as LwaS = aa, where the aa are the 
translation parameters and L is a length parameter taken to 
infinity in the contraction limit. A translation is thereby 
viewed as the limit of some infinitesimal rotation with an 
infinite radius. The dS generators Jab obey 

[ Jcd ,Je!] = - ifab cd.e! Jab' 

where 

(3.1 ) 

rbcd.e! = 1Jde8~a8;] - 1Jd~~a8:] - 1Jce8ka8;] + 1Jc~ka8:], 
(3.2) 

with [ab] meaning antisymmetrization in the indices. If 
A ab I' are the gauge potentials for the dS gauge model, then 
A atJl' remain the same through the contraction process, but 
A as I' must be redefined so that A as I' = L -I B aI" where 
Ba 

I' is the translation gauge potential of the previous sec­
tion. This can be checked, for example, by comparing the 
vacuum potentials A as I' = a I' waS and B a I' = a I' aa . By the 
same process, if pab 1''' are the dS field strengths, the patJl''' 
become the field strengths (2.1) related to the Lorentz sub­
group, while ~ 1''' = Lpasl''' become the translation field 
strengths (2.2). The Yang-Mills equations for the dS model, 

a pabl'V _ gA a pcbl'V + gpa I'vA cb = 0 (3.3) 
I' cl' c I' ' 

reduce exactly to the sourceless versions of (2.3) and (2.4) 
in the contraction limit L ..... 00, and the same happens to the 
corresponding Bianchi identities. 

The contraction procedure has been frequently used to 
approach questions involving P, II mainly because it allows a 
point to point comparison to the better behaved dS group. It 
has been so in the demonstration of the nonexistence of a 
Lagrangian for the set of equations (2.3) and (2.4).2 Equa­
tion (3.3) comes from the typical Lagrangian 

w Ipab p I'V 
oZ = - 4 JLV ab , (3.4 ) 

in which the algebra double indices are lowered and raised 
by the Cartan-Killing metric of dS. In the contraction limit, 
such a metric becomes degenerate and the field equations 
lose some terms. In particular, the cubic term in B, present in 
(3.3) and related to the four-leg vertex typical of gauge the­
ories, is suppressed (as discussed below). 

Path integral quantization can be performed without 
too much ado and Feynman rules of the usual kind are ob­
tained for the dS model. For the Pmodel, we start by making 
the substitution A as I' = L - I B a I' and follow the same pro­
cedure while keeping in mind what happens at the limit. 
Also, the ghost fields with (as) indices must be substituted 
in an analogous way, but as they will not be important for 
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our central problem we shall not discuss them. In reality we 
shall concentrate on the inconsistency of the P model, leav­
ing aside all the details having no bearing upon it. Once the 
substitution is made, (3.4) becomes 

!f = - H(patJl'v +gL -2Ba,..BtJv )2 +L -2(~l'v)2]. 
(3.S) 

It is clear that the limit cannot be taken immediately: only 
the part 

!f - l(p atJ)2 (3.6) .Y - - 4 I'V' 

corresponding to a Lorentz group gauge model, with only 
(2.3) for the field equations, would remain. As is frequently 
the case in the contraction formalism, we should first per­
form all the calculations and take the limit at the last step, 
although here we shall keep an eye on the relations to the 
field equations. Because it will be enough to make our point, 
we shall only examine in detail the three-field vertex: (3. S) is 
written as 

!f =!f .y - (L -2/4) [(a[,..B a
V ])2 

+ 2gfatJ,yS.ES (a[I'A atJv]B rl'B rvB \ 

+a[,..B E
v]A atJ[I'Brv ]) +o(g2)], (3.7) 

where we have kept the dS structure constants (3.2). 
We can obtain (2.3) and (2.4) from (3.S) simply by 

taking variations with respect to AatJv and B av' respectively, 
and then taking L ..... 00. An important point is that (2.4) is 
obtained with an overall factor L -2, which cancels out. A 
consequence is that the contributions coming from the three­
field terms in (3.7), proportional to L -2, will remain in 
(2.4) but will be suppressed in (2.3). We see in this way how 
it happens that the BA coupling, present in (2.4), vanishes in 
(2.3), and find the same inconsistency of the previous sec­
tion. The same happens to the terms A 2 B 2 omitted in (3.7). 
The terms in B 4 have aL -4 factor and are totally suppressed. 

Another consequence of (3.S) is that, once the B a I' be­
come (beside the AatJ v) the fundamental fields in substitu­
tion to the A as 1" the conjugate momenta become ill-defined. 
The vanishing of their time components is usual in a gauge 
theory, but here also the space components vanish: the mo­
menta conjugate to ~ j is 7r"j = L - 2~j 4' so that in the limit 
the canonical quantization is jeopardized. 

In the Feynman rules for gauge models, the group de­
pendence rests basically in the structure constants, 12 whose 
cyclic symmetry is used precisely to make the vertices sym­
metric in the external legs. 13 The cyclic symmetry is absent 
for nonsemisimple groups, which suggests that the inconsis­
tency found here might be a common illness of all models 
involving such groups. 

We have seen that, as long as we take the Yang-Mills 
equations as the very foundations of the theory, the Poincare 
model is inevitably inconsistent. Let us forget the equations 
for a moment and use the contraction procedure to obtain a 
quantized theory. This amounts to taking (3.S) seriously 
and obtaining the resulting Feynman rules. The task is rath­
er lengthy albeit standard. The results are simple and, once 
found, easily understood. Here we shall only describe the 
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main points of the resulting theory, trying to justify them by 
general arguments. 

(i) The Lorentz sector constitutes a gauge subtheory, 
with the usual rules. 

(ii) As seen in (3.5), the propagator of the B fields will 
be just the usual one, in some fixed gauge, times a factor L 2; 
the same applies to the corresponding ghosts. 

(iii) Vertices are as usual, with the difference that each 
B leg (or corresponding ghost) gains a factor L - I (an ob­
vious consequence of the A a5 

p, -L -IB ap, substitution). 
Note that no final factor of L comes out from internal B 

lines in a diagram, since the L 2 factor in the propagator is just 
compensated by the L - I factors in the two vertices connect­
ed. Graphs with external B legs will retain L - I factors. 
However, if we calculate an S matrix element with N exter­
nal B legs, the same L - N factor will appear in each term in 
the perturbative series and, consequently, cancel out. Only 
when graphs with different numbers of external B legs are 
compared will the L - I factors playa role. 

The geometric setting for a P gauge model is best seen as 
an associated bundle, with Minkowski space as the base 
manifold and the fibers being tangent (also Minkowski) 
spaces on which the group acts. In the analogous setting for a 
dS model,2 each tangent space is replaced by a dS space char­
acterized by a length parameter L. When L -+ 00, each dS 
space approaches a tangent Minkowski space. Ifwe use con­
formal coordinates8 for each dS space, its points will be pro­
jected on a Minkowski space. In such coordinates, the natu­
ral dS group parameters are precisely {J)aP and aa, and the 
gauge fields become naturally A ap p, and B a p,' The quantized 
theory sketched above is in reality a dS model, viewed in 
conformal coordinates. To use an analogy, a dS model stands 
to a P model like a parabola to its asymptote, which is ap­
proached more and more when L becomes larger and larger, 
but it is never really attained. The dS model appears as a 
"smoothing" of the incongruous P model and seems to be its 
nearest quantizable theory. In Sec. IV we shall arrive again 
at a dS model from a rather different approach. 

IV. CONSISTENCY AND LAGRANGIAN CHARACTER 

Lagrangian theories do not exhibit the inconsistency de­
scribed above. We could ask whether or not vertex consisten­
cy implies the presence of a Lagrangian or, in other words, 
whether only Lagrangian theories are quantizable in a co­
herent way. We shall not consider this very general question 
here. We shall restrict ourselves to Eqs. (2.3) and (2.4) in 
the sourceless case and proceed to a kind of naive patchwork, 
trying to see which terms should be dropped or added to 
make them into consistent equations. We find that every 
time they become consistent, they also become derivable 
from a Lagrangian. 

We can start by simply dropping all terms coupling B to 
A in (2.4). The field equations become 

a FaPp,v_gA a Fy{Jp,v+gF a p,vAYP =0 (4.1) p, yp, y p, , 

ap, (aP,B av - a VB ap,) = 0, (4.2) 

which are derivable from the Lagrangian 
51' = - !(FafJ p,v)2 - !(aP,Bav - a VBap,)2. They are the 
field equations of gauge models for the Lorentz group 51' 
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and for the Abelian translation group T 3.1 • Their set would 
describe a model for the direct product 51' ® T 3,1' Notice, 
however, that, as the fields B a p, are Lorentz vector fields, 
they should in reality couple to a Lorentz gauge potential. 
We take this into account by treating Bap, as a source field: 
usual derivatives are replaced by covariant ones and a source 
current appears in (4.1). As B a p, is a vector, it is its rota­
tional that goes into the covariant derivative T" p,v given in 
(2.2). Also the divergence in (4.2) becomes covariant. Ver­
tex consistency then fixes the source current, and the new 
equations are 

a FafJp,v _ gA a FYPp,v + gFa p,VA yp = gT"P,vBP 
p, yp, y p, p,' 

(4.3) 

ap, T"P,v - gA a yp, rYP,v = O. (4.4) 

These equations are derivable from 51' = - !F2 - !r, from 
which it can be checked that the source current in (4.3) is, as 
it should be, the spin density. We have been treating B a p, as 
"normal" vector fields with the canonical dimension 
(mass)l. In reality, they have a defective dimension, as is 
clear from the redefinition A asp, = L - I ~ p, used in the 
contraction procedure. In order to correct this in the above 
equations, it is enough to add a factor L - I to each ~ p, field 
(and consequently to every T" p,v ). The only novelty will be a 
factor L -2 in the spin density. 

We can now compare the resulting equations with the 
sourceless cases of (2.3) and (2.4); the only difference is the 
term gFayP,V BYp, in (2.4). If we simply add this term to 
( 4.4), vertex inconsistency comes out, but now we can relate 
it to a simple cause: such a term is obtained from a Lagran­
gian 51" = - (g/2)Fap p,vBap,BPv when variations are tak­
en with respect to Bay; however, 51" should also contribute 
to (2.3) or (4.3) through its variations with respect to Aapy . 
This contribution to (2.3) reestablishes vertex consistency. 
The new Lagrangian, 

51' - - IF p,Y(FaP + 2gL -2B a BP ) - "ap p,v p, v 

4L -2 p,v-cz 
- Ta" }lv' (4.5) 

leads to a rather complicated theory. Then comes a beautiful 
point: this theory, as it is, is nonrenormalizable because of 
the graphs with four external B legs and exchange oftwo or 
more A's. When we look for the necessary counterterms, we 
find that [- (g2/4)Bap,BPy B aP,Bp

V] must be added to 
(4.5). This is quite natural for the four-legged graphs be­
cause they have a zero divergence degree. This situation is 
analogous to the case of scalar electrodynamics, where the 
renormalization of the higher order graphs with four exter­
nal scalar legs, also of vanishing divergence degree, enforces 
the presence of aA.tp 4 term in the Lagrangian. 12 The addition 
ofthe B 4 term puts (4.5) into the form 

51' = - !(FapP,V +gL -2BaP,BpV)2 - (L -2/4)(rap,v)2. 
(4.6) 

This is the same Lagrangian as (3.5). The added B4 
term leads to a cubic term in (2.4) ,just that one we have seen 
suppressed by contraction in Sec. III. Therefore, summing 
up, by adding to (2.3) and (2.4) the terms necessary to wash 
out the vertex inconsistency, and then adding a last term to 
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make the model renormalizable, we arrive at a de Sitter theo­
ry. 

V. FINAL COMMENTS 

The absence of a Lagrangian is a most grievous flaw in a 
field theory. In the case considered here, the group contrac­
tion procedure can be used to show that the conjugate mo­
menta of the translation gauge potentials are vanishing, so 
precluding a coherent canonical quantization. The existence 
of a Lagrangian for the Yang-Mills equation is closely relat­
ed to the structure constants cyclic symmetry,2 which fails 
for nonsemisimple groups. Such a symmetry is used to ob­
tain the Feynman rules for gauge models, 13 which have con­
sequently to be reexamined. We have seen that, for the Poin­
care group, the very definition of a vertex becomes 
impossible and quantization, at least in a perturbative ap­
proach, unfeasible. The addition of counterterms required 
by consistency leads to an intricate theory. Interestingly 
enough, the addition of a B 4 term required by renormalizabi­
lity turns the model into a gauge theory for the de Sitter 
group, which appears as the nearest coherently quantizable 
theory. 
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This paper extends the results of an earlier article [J. Math. Phys. 27, 1154 (1986)] to include 
the solution of the s-wave Bethe-Goldstone equation for the interaction of two nucleons 
characterized by a potential with an infinite repulsive core and a nearby attractive well. The 
solution again exhibits band-limiting behavior and is obtained in closed form via the prolate 
spheroidal wave functions. It is shown that the attractive part of the interaction potential 
perturbs the far-field scattered wave so that healing of the nucleon wave function is achieved 
only when the attractive part is weak. Finally, asymptotic results for the case of small core 
radius are also calculated. 

I. INTRODUCTION 

This paper is an extension of an earlier article, where we 
treated the s-wave Bethe-Goldstone equation for a pure 
hard core potential and obtained a closed form solution. The 
results are in excellent agreement with the approximate iter­
ative solution found in the original paper by Bethe and Gold­
stone.2 Here, we utilize the methods developed earlier and 
apply them to the solution of the Bethe-Goldstone equation 
for the so-called standard hard core potential ofMoszkowski 
and Scott.3 It is simply an interaction potential with a repul­
sive hard core plus an attractive well. Again, we seek only the 
s-wave solutions because they are the only ones that pene­
trate to small relative distances, where the effects of the sin­
gular potential are strongest. Any perturbative treatment of 
the problem is still inapplicable in this case since the matrix 
elements of the singular part of the interaction potential with 
respect to the independent particle wave functions are all 
divergent. The present problem exhibits band-limiting be­
havior and we are, once again, prompted to seek a solution in 
terms of prolate spheroidal wave functions. 

As a brief refresher, consider two nucleons interacting 
in the Fermi sea according to the Brueckner independent 
pair model. In the center-of-mass coordinate system, the 
two-nucleon wave function "p(r) satisfies the Schrodinger 
equation4

-6 

[(1l2/m*)a + E]"p(r) = QFv(r)"p(r) , (1.1) 

with relative coordinates r; effective mass m*; and the Pauli 
projection operator QF' which effectively removes from 
v(r)"p(r) those Fourier components with relative momen­
tum k < kF' the Fermi momentum. 

The projection operator, defined by 

( 1.2) 

is idempotent, i.e., Q} = QF' Consequently,7 its spectrum is 
u( QF) = {O, I}, which, when translated in terms of the Fer­
mi distribution, is 

QFIAJl) = {IAJl), k>kF' 
0, otherwise. 

( 1.3) 

If we consider only s-wave solutions in the form "p(r) 

= r-1u(r), Eq. (1.1), together with Eq. (1.3), can be trans­
formed into the scalar integrodifferential equation (2.1 ).1,2 
This will be the focal point of the present paper. 

We have demonstrated in the present paper that the far­
field scattered wave is perturbed, the severity of which de­
pends on the strength of the attractive part of the interaction 
potential, contrary to the normal plane wave assumption 
usually adopted in most nuclear matter calculations. Modu­
lation of the scattered wave is slight only, however, when the 
attractive part is weak. 

We have also shown that the contributions ofthe hard 
core and the attractive part can be distinctively separated. In 
short, the present paper concentrates only on the effects of 
the attractive part of the interaction potential. To achieve 
consistency with our earlier notations,1 all new terms repre­
senting the contributions from the attractive well are indi­
cated by the superscript asterisk(s). Finally, in some of the 
present sections the calculations are quite involved. In order 
to preserve the continuity of the discussions, we have dele­
gated some of these calculations to the Appendixes. 

This paper is organized as follows: In Sec. II, we present 
the s-wave Bethe-Goldstone equation for the standard hard 
core potential. Section III briefly summarizes some useful 
results concerning band-limited and prolate spheroidal wave 
functions. A closed form solution of the Bethe--Goldstone 
equation is given in Sec. IV. In Sec. V, we demonstrate that 
an approximation for small core radius c (the case of most 
physical significance) can be obtained quite readily. Section 
VI is concerned with the far-field scattering problem, where­
in we show that the scattered wave is perturbed. Finally, an 
approximation of the normalization constant for small c is 
calculated in Sec. VII. 

II. THE s-WAVE EQUATION WITH THE STANDARD 
HARD CORE POTENTIAL 

Consider the dimensionless integrodifferential equa­
tion l 

(~22 + K 2)U(r) = v(r)u(r) - 100 

x(r,r')v(r')u(r')dr' , 

(2.la) 
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where the kernel is 

x(r,r') = (I/1T) 

X [sin(r - r')/(r - r') - sin(r + r')/(r + r')] . 

(2.1b) 

This will be referred to as the s-wave Bethe-Goldstone equa­
tion. 

The interaction potential v(r) to be considered is the 
phenomenological standard hard core potential of Mosz­
kowski and Scott,3 with a single bound state at zero energy 
and an effective range of2.5 fm (fermi) defined by (dimen­
sionless) 

(2.2) 

where vo, 1", and c are dimensionless quantities consistent 
with Eq. (2.1). More precisely, c=kFc, l"=jllkF, and 
Vo = 2m~ed vollf k ~, with m~ed the reduced nucleon effective 
mass. The original parameters of Moszkowski and Scote are 
C = 0.4 fm, jl = 2.084 fm -1, and Vo = 260 MeV. In the fol­
lowing analysis, it should be clear that all calculations are 
done in terms of dimensionless quantities. 

This more realistic choice of potential, although it over­
simplifies the actual nucleon-nucleon force, is a one-step 
improvement of the grossly simplistic pure hard core poten­
tial. The attractive exponential well is chosen to be rather 
weak so that it does not contain large momentum compo­
nents. This guarantees that the two-nucleon wave function 
cannot be "bent" to produce more than one bound state. The 
expression "the attractive part is rather weak" is then taken 
to mean that the attractive part of the interaction potential 
does not cause appreciable modulation of the two-nucleon 
wave function after scattering. This, as will be seen later, is 
essential to the convergence of any nuclear matter calcula­
tions using this potential. A similar observation, albeit based 
on a different approach from this paper, is discussed in Refs. 
4 and 6. The criterion for weakness is determined in the 
discussion following Eq. (6.5), wherein it is shown that the 
depth of the attractive potential Vo must be much smaller 
than the effective kinetic energy of the nucleon pair in the 
Fermi sea. 

The two-nucleon wave function u(r) and its slope van­
ish inside the hard core and are finite elsewhere. Further­
more, in order to obtain a nontrivial solution ofEq. (2.1), it 
is necessary for the slope to be discontinuous at the core 
boundary r = c. Consequently, the product v(r)u(r) has a 
l5-function discontinuity at r = c and must remain finite for 
r> c. Finally, to include the attractive part of the potential, 
we write 

v(r)u(r) = A [15(r - c) - voe-I'(r- c)O(r - c)] 

+ w(r)O(c - r) , (2.3) 

where 0(·) is the Heaviside step function, 15(·) is the Dirac 
delta function, and A is the normalization constant to be 
determined approximately from the condition that the wave 
function asymptotically approaches the unperturbed free-
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particle wave function so that there is no s-wave phase shift. 
This condition is 

lim [u(r)/r] -jo(Kr) , (2.4) 
r- + 00 

wherejo is the spherical Bessel function of zeroth order. 
This important stipulation [( 2.4 )] is a consequence of 

the Pauli projection operator QF which effectively blocks 
any interaction between nucleons at large separation. In ef­
fect, the nucleons return to their independent particle states 
before the next collision occurs and the two-nucleon wave 
function is said to have "healed." However, it will be shown 
in Sec. VI that, unlike the pure hard-core problem, this is 
only true when the attractive part of the interaction potential 
is very weak. Otherwise, healing will not be complete and 
there will be an appreciable phase shift. The strength of the 
attractive well is embodied in the number Vo' In Sec. V [cf. 
Eqs. (5.7) and (5.8f) ], the wave function is calculated with 
an explicit corrective term due to Vo' The overall normaliza­
tion constant A is also calculated in Sec. VII with corrective 
terms arising from Vo [cf. Eq. (7.8) ].It is interesting to note 
that this "healing" phenomenon is related mathematically 
to the fact that the kernel x(r,r') has no singularity. 

A few words of clarification are necessary at this point. 
In the absence of the attractive part of the interaction poten­
tial, we have vo=O so that Eq. (2.3) reduces to the same 
expression used in Ref. 1, in agreement with the original 
work of Bethe and Goldstone. 2 It has been shown that for 
this pure hard core problem, the asymptotic limit (2.4) is 
reached very rapidly, resulting in virtually no scattering and 
hence no modulation of the wave function for large separa­
tion distance r. 1

,2.4,6 The healing of the wave function for 
large r is complete in this case. A healing distance has also 
been calculated!! and was shown to be less than the internu­
cleon distance so that, in essence, the nucleons return to their 
independent-particle wave function before the next collision 
takes place. In the present problem, however, due to the 
presence of the attractive well, we do not expect complete 
healing. This means that, depending on the strength of the 
attractive well, the far-field scattered wave may not quite 
reach the plane wave limit, viz. jo(Kr). In fact, as demon­
strated by the result ofEq. (6.5), healing will be complete 
only if the term involving Vo is negligibly small. The wave 
function in this case is said to be "wounded." Gomez et ai.,4 
using very crude plane wave approximations, have calculat­
ed the phase shift due to the attractive part of the potential 
(modeled as a weak square well); it turns out to be signifi­
cantly small for large separation distance. A similar discus­
sion concerning the weakness of the square well potential 
can also be found in Ref. 8. The asymptotic limit (2.4) is 
therefore used only as an approximation in calculating the 
normalization constant A under the condition that the at­
tractive part is weak. This is entirely consistent within the 
framework of Brueckner's independent pair theory. 

The extra contribution w(r) in Eq. (2.3) is nonvanish­
ing only inside the core and is to be determined from the 
condition that u (r) vanishes inside the hard core. From Eqs. 
(2.1) and (2.3), this translates to 
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w(r) - f x(r,r')w(r')dr' 

= Ax(r,c) -voA 1"" x(r,r')e-Il(r'-C) dr', r<c, 

(2.5) 

subject to the condition that 

() {
a, r> c, 

w r = 
finite, r < c . 

(2.6) 

Equation (2.5) is a Fredholm integral equation of the sec­
ond kind and can be solved for the unknown w(r) once the 
integral 

l(r,c) = 1"" x(r,r')e-Il(r'-C) dr' (2.7) 

is evaluated. Clearly, the integral l(r,c) accounts for the 
contributions due to the attractive part of the potential. This 
innocent looking term considerably complicates the calcula­
tions to follow. 

The equation for a pure hard core, i.e., for vo=O, was 
originally solved by Bethe and Goldstone using an approxi­
mate iterative procedure.2 The approximate solution is valid 
only for small c. Recognizing that condition (2.6) implies 
that the function w(r) is band limited, we have solved the 
corresponding hard core equation in closed form using pro­
late spheroidal wave functions. Here, the contribution w(r) 
remains band limited; this suggests that Eq. (2.5) can also be 
solved using the method developed in Ref. 1. 

To facilitate the solution of the integral equation (2.5) 
via band-limited functions, it is first necessary to extend the 
equation into the region - c < r < 0. This requires the exten­
sion of w(r) and the nonhomogeneous part H(r,c), defined 
by 

H(r,c)=x(r,c) - vol(r,c) , (2.8) 

as an odd function of r in the interval - c < r < 0, i.e., 

{
w(r), O<r<c, 

w(r) = 
- w( - r), - c<r<O; 

{
H(r,C), O<r<c, 

H(r,c) = 
-H( -r,c), -c<r<O. 

In doing so, Eq. (2.5) becomes 

() 1 IC 

sin (r - r') w r - - w(r')dr' = AH(r,c), 
rr -c r-r' 

subject to the condition 

w(r) = { 0, Irl >c, 
finite, I rl < c. 

(2.9a) 

(2.9b) 

Irl <c, 

(2.10) 

(2.11 ) 

The integral equation (2.10) is of the same form ob­
tained in Ref. 1, but with a very different nonhomogeneous 
term H (r,c). The problem at hand is still of the same band­
limiting variety as before and its solution can be obtained 
similarly using prolate spheroidal wave functions. In Ref. 1 
we have presented a summary of the theory concerning the 
band-limited solutions of the homogeneous integral equa­
tion 
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Af(t) = II f(s) sin c(t - s) ds, It 1< 1 , 
- I rr(t - s) 

(2.12) 

via prolate spheroidal wave functions. This topic will be 
touched upon briefly in Sec. III. 

III. SUMMARY OF KNOWN RESULTS ON BAND-LIMITED 
FUNCTIONS AND PROLATE SPHEROIDAL FUNCTIONS 

The following theorem summarizes the known results 
regarding the eigenvalues and eigenfunctions of the integral 
equation (2.12). 

Theorem: For f E L2 ( - 1,1) the integral operator 

Kf = II sin c(t - s) f(s)ds, 
- I rr(t - s) 

with a continuous and symmetric kernel for all - 1 < t, 
s < 1, is a positive self-adjoint compact operator in 
L2 ( - 1,1) so that the integral equation 

Kf=Af, Itl<l, (3.1) 

has a denumerable set of eigenvalues 

1 > Ao > AI > ... > ° , 
to which each Aj is an associated real-valued eigenfunction 
/; ( t), which forms a complete set in L2 ( - 1, 1) and which 
satisfies the orthogonality condition 

(i) { I/; (t)./j (t)dt = A j 8ij (3.2a) 

and the eigenvalue problem 

(ii) Aj/;(t)=II /;(s) sinc(t-s) ds, Itl<l. 
- I rr(t - s) 

(3.2b) 

The eigenfunctions /; (t) are also bounded continuous solu­
tions of the differential operator 

L(') = {.!!... (t2 -1) .!!...+c2t} (.) (3.3) 
dt dt 

satisfying the eigenvalue problem 

L/;=Xj/;' -oo<t<oo, 

with eigenvalues ° <Xo <XI < .... 
The eigenfunctions/; (t) are band limited and express­

ible in terms of prolate spheroidal wave functions of zeroth 
order, SOn (c,t), nEl+. The prolate spheroidal wave func­
tions form a complete set in L2 ( - 1,1) and are odd or even 
functions of t according to whether n is odd or even. 

For fixed nEl+ and small c, we have 

An (c) = ~ [ 2
2n

(n!)3 ]2 c2n + I 
rr (2n)!(2n + 1)! 

xexp {- (2n ~ 1)c
2 

3 [1 + O(C4 )]} , 
(2n - 1) (2n + 3) 

(3.4a) 

s. P 2[ n(n-1) 
On (c,t) = n (t) + c 2 Pn - 2 (t) 

2(2n - 1) (2n + 1) 

_ (n+1)(n+2) P (t)]+O(C4 ) 

2(2n + 3)3(2n + 1) n+2 , 

(3.4b) 
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where the Pn's are the Legendre polynomials so that, in the 
limit as c ..... O, 

Xn (0) = n(n + 1), nEl+, 

SOn (C,t) ""'Pn (t) . 

( 3.5a) 

(3.5b) 
o 

The theory of prolate spheroidal wave functions appears 
in several sources. The Theorem summarizes only selected 
results pertinent to this paper. A list of references can be 
found in Ref. 1. 

IV. SOLUTION OF THE BETHE-GOLDSTONE 
EQUATION 

After the change of variables 

r = ct, r' = cs, A -Iw(r) = I(t), H(r,c) = g(t) , 
(4.1 ) 

Eq. (2.10) becomes 

I(t) - II I(s) sin c(t - s) ds = g(t), It 1< 1 . 
-I 11"(t-s) 

(4.2) 

Since K is symmetric and compact, by the Hilbert-Schmidt 
theorem the solution of Eq. (4.2) can be expanded in terms 
of the prolate spheroidal wave functions in an absolutely and 
uniformly convergent series 

l(t) =g(t) + n~1 C ~nAJ (g(t').!n(t'»I,,(t) , 

(4.3) 

where the eigenfunctions are normalized as follows: 

I" (t) = [An (c)/Un (c)] 1/2Son (c,t) , 

U~(c) = J~I [Son(c,t)]2dt. 
(4.4) 

The expansion coefficients can be calculated as 

(g(t).!n (t» = J~ I g(t) In (t)dt = I - Vo II , ( 4.5a) 

where 

1= {(2/C)An (c) In (1), 

0, n even, 

n odd, 
(4.5b) 

and 

{

PC II 
I

I !!.-. e - pet 1m {EI [( ,u - i)c(1 - t)]} In (t)dt, 
II = l(ct,c) In (t)dt = 11" - I 

-I 0, n even. 

n odd, 
(4.5c) 

In arriving at I and II, we have used the parity In ( - t) 

= ( - 1) nl" (t) and the fact that g( t) is an odd function of t. 
The quantity I, representing the contribution of the hard 
core, was calculated in Ref. 1. Again, it is clear that the 
quantity II is due to the contribution from the attractive part 
of the potential. A derivation ofII can be found in Appendix 
A. 

Therefore, the complete solution of the integral equa­
tion (4.2) is 

l(t) =g(t) + L [ U! 1,,(1) - Vo e
Pc 

n odd c(1 - An) 11" 

XIm {f. e- PC1 'EI [(,u-i)c(1-t')] 

Xln(t')dt'}]I,,(t), Itl<1. (4.6) 

In terms ofthe functions SOn (c,t), we have 

[ 

2A 3 

l(t)=g(t) + L · So. (c,!) 
n odd c( 1 - An )Un 

----- voe Pc Im{J*(c)} SOn (c,t), A ~ ] 
11"(1 - An )Un 

Itl<l, (4.7) 

where 
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l*(c)= {J~. e- PC1 'E.[(,u-i)C(1-t')]I,,(t')dt'}' 

(4.8) 

This is the complete closed form solution of the integral 
equation for the extra contribution w(r). In principle, an 
approximation can be obtained from Eq. (4.7) for any de­
sired order of c. Unfortunately, the integralI*(c) cannot be 
integrated analytically in closed form. We shall present an 
approximation for small c in Appendix B. 

The two-nucleon wave function vanishes inside the hard 
core so that the integrodifferential equation (2.1) becomes 

(~+K2)u(r) =A [t5(r-c) -x(r,c) _voe-p(r-c)] 
dr2 

-f x(r,r')w(r')dr' 

-Avo i'" x(r,r')e-p(r'-C) dr', 

=F(r) - F*(r), r> c, (4.9) 

where 

and 

F(r) =A [t5(r - c) - x(r,c)] - f x(r,r')w(r')dr' 

(4.1Oa) 
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F*(r)=Avoe-l-'(r-c) -Avo f'o x(r,r')e-I-'(r'-C) dr'. 

(4. lOb) 

With the requirement that u (0) = 0, Eq. (4.9) has the solu­
tion 

u(r) =- [F(s) -F*(s)] sinK(r-s)ds, r>c. I ir 

K 0 

(4.11 ) 
The closed form solution of the (dimensionless) s-wave 

Bethe-Goldstone equation for the standard hard core poten­
tial is now complete apart from the normalization constant 
A. 

Thus far, no approximation schemes have been invoked 
and the solution of the problem is exact. It may be math­
ematically aesthetic at this point, but all the subtleties of the 
physics invoked remain to be seen. In Sec. V we shall seek for 
an approximate solution for the small core radius; some in­
teresting observations will also be presented in Secs. VI and 
VII. 

V. APPROXIMATION FOR SMALL CORE RADIUS 

Since the typical model of the nucleus exhibits only a 
short-range hard-core potential, it is necessary to analyze the 
problem only for the case of small core radius c. In terms of 
the original interval 0 < r < c, Eq. (4.7) becomes 

A -Iw(r) =x(r,c) + L [B~ -B; Im{I*(c)}] 
n odd 

(5.la) 

where 

B ~ = [U ~/c(1 - An )un (c) ] Son (c,l) (5.lb) 

and 

(5.lc) 

The integral in Eq. (4. lOb) is simply I( r,c) given in Eq. 
(2.7); thus 

(5.2) 

For small c, we can crudely approximate I( r,c) as follows: 

I(r,c) = f'o x(r,r')e-I-'(r'-C) dr' 

1461 

=el-'c ("" e-I-'r' sin(r-,r') dr' 
Jc r- r 

_el-'C ("" e-I-'r' sin(r+r') dr' 
Jc r+r' 

I-'(C- r) 1"" -f'$ sin s d =e e -- s 
c- r S 

I-'(C+ r) 1"" -1-'5 sin s d -e e -- s 
c+ r S 

for small c, r < c, 

= - 2el-'C sinh ( Itr)tan -I (1/ It) , 

for small c, r < c . 
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(5.3 ) 

Hence, Eq. (5.2) approximately becomes 

A -IF*(r) -voel-'C[e -I" - 2 sinh( Itr) tan-I (lIlt)] , 

for small c, r< c . (5.4) 

Upon substituting w(r) from Eq. (5.la) and using the iden­
tity 

f X(s,s')Son (c, ~) ds' = AnSOn (c,~), (5.5) 

the quantity F( r) in Eq. (4.lOa) becomes 

F(r) = A [8(r - c) - x(r,c)] - f X(s,s')X(s',c)ds' 

- L [Bn-B!lm{I*(C)}]Son(c,~), (5.6) 
n odd C 

where 

Bn=AnB~, B,!=AnB;. 

The above expression is identical to the one obtained in Ref. 
1, but with an additional term B '! . 

With the above expressions, the two-nucleon wave func­
tion from Eq. (4.11) becomes 

1 ir 

u(r) = - [F(s) - F*(s)] sin K(r - s)ds 
K 0 

= (A IK) (1- II + III + 111* - III"), (5.7) 

with 

1= f [8(s - c) - X(s,c)] sin K(r - s)ds, (5.8a) 

II = f [ f X(S,S')X(S',C)dS'] sin K(r - s)ds 

4c
4 (r sin Kr) 

-27-rr' k-~ , (5.8b) 

III = L r SOn (c, ~) sin K(r - s)ds-O(c lO
). (5.8c) 

n odd Jo C 

The analysis for the above quantities has been done in Ref. 1. 
The contributions of the attractive part of the potential 

to the wave function are 

111* = L B!lmU*(c)} 
n odd 

x f SOn (c,~) sin K(r - s)ds, (5.8d) 

III" = A -I f F*(s) sin K(r- s)ds. (5.8e) 

The integral in 111* can be integrated approximately for 
small c by using the limiting value of SOn in Eq. (3.4b). After 
some work and using the results of the Theorem, it can be 
shown that 

III*_O(c9 ) • 

For small c, the integral III", upon using Eq. (5.3), be­
comes 
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111* - [voeI'C/( 1t2 + K 2)] ([ It sin(Kr) - K sinh ( w)] 

- 2 tan- l (lIlt) 

x [It sin(Kr) - K cos (Kr) - Ke- w ]}. (S.8f) 

Equations (S.8c) and (S.8f) show that the contribu­
tions ofIlI and III* are negligible and that the major contri­
butions to the wave function come from I and II, which 
represents the hard core, and from III**, which represents 
the attractive well. The contribution III** represents the 
corrective term to the two-nucleon wave function in the 
presence of the attractive well. Without the attractive part of 
the potential, i.e., vo=O, the major contributions come from 
I and II and the result is identical to the pure hard-core 
problem solved in closed form in Ref. 1. 

VI. FAR-FIELD SCATTERING 

In this section, we analyze the asymptotic behavior of 
the two-nucleon wave function for large separation distance 
r. The two-nucleon wave function (4.11) can be rewritten as 

u(r) = - [F(s) - F*(s)] sin K(r - s)ds 1 i' K 0 

= -- [F(s) - F*(s)] cos Ks ds sinKr l' 
K 0 

cosKr i' . --- [F(s) -F*(s)] smKsds, 
K 0 

r>c. 

(6.1 ) 

The far-field scattering condition (2.4) requires that 

lim r [F(s) - F*(s)] sin Ks ds-O (6.2a) 
r- + 00 Jo 

and 

lim r [F(s) - F* (s)] cos Ks ds .... l . 
r- + 00 Jo (6.2b) 

The condition (2.4) follows from the requirement that 
the two-nucleon wave function u (r) asymptotically ap­
proaches the unperturbed free-particle wave function for 
large separation distance r. However, it will be shown in the 
following that this is not entirely true unless the attractive 
exponential well is rather weak so that it does not apprecia­
bly perturb the two-nucleon wave function for large separa­
tion distance r. We have also pointed out earlier that in the 
presence of the attractive well, healing of the wave function 
need not be complete. The following analysis demonstrates 
it. 

In Ref. 1, we have shown that for small c, 

lim r F(s) sin Ks ds-+O. 
r- + 00 Jo 

(6.3 ) 

Let us now consider the limiting value for F * (s). Upon using 
Eq. (4.lOb), we have 
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lim r F* (s) sin Ks ds 
r- + 00 Jo 

= lim Avoel'c r [e-I's + roo e-W'X(S,r')dr'] 
T_ + 00 Jo Jc 
X sin Ksds 

=AvoeI'C( 2 K 2)+AvoeI'C lim roo e-w' 
It + K ,- + 00 1 

x [1' X(s,r') sin Ks dS] dr' , 

Avel'c 
= 2 0 2 [K(l +COSItC) +ltsinKc] , 

It +K 
O<K < 1, (6.4) 

where the interchange in the order of integration on the sec­
ond line is justified since the integrals involved are uniformly 
convergent.9 The integral between the square brackets is cal­
culated in Appendix C. 

Combining Eqs. (6.3) and (6.4), we arrive at the inter­
esting result 

lim r [F(s) -F*(s)] sin Ksds 
r- + 00 Jo 

Av el'C 
--+ 2 0 2 [K(l +COSItC) +ltsinKc] , 

It +K 
O<,X < 1, (6.5 ) 

which shows that the plane wave limit is not reached and the 
far-field scattered wave is therefore perturbed. This is an 
important observation because it is assumed customarily in 
most nuclear matter calculations that the nucleons return to 
their independent particle states before the next collision oc­
curs. This should therefore be taken only as a rough approxi­
mation for a potential with a very weak attractive part. For 
an attractive well with appreciable strength, the calculations 
must therefore be handled with care. With the parameters 
chosen for the Moszkowski and Scote potential in Eq. (2.2) 
and the fact that K < 1, the rhs ofEq. (6.5) has an order of 
magnitude less than unity times Avo. Since A #0, clearly the 
rhs ofEq (6.5) is negligibly small only ifvo~ 1. When trans­
lated in terms of conventional units, since Vo = 2m~ed vol 
Ifk~ [cf. Eq. (2.2)], we have 

vo~1i2k ~/2m~ed , 

with m~d the effective nucleon mass in the Fermi sea. This 
implies that the far-field scattered wave is not appreciably 
perturbed only when the depth of the attractive potential is 
much less than the effective kinetic energy of the nucleon 
pair in the Fermi sea. Observe further that in the absence of 
the attractive well, the rhs ofEq. (6.5) vanishes and we have 
the same result obtained in Ref. 1. This is in agreement with 
the original work of Bethe and Goldstone2 for the pure hard­
core problem. 

Although the above analysis was performed for a small 
core radius, observe that Eq. (6.5) remains finite for c--+O so 
that, in effect, the conclusion reached is still true regardless 
of the size of the radius (but it must be within reasonable 
bounds of the phenomenological potential used in the calcu­
lation). This implies that the conclusion regarding the mod-
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ulation of the far-field scattered wave also holds for other 
very repulsive phenomenological potentials, e.g., the Reid 
soft-core potential. A "soft-core" potential has, by defini­
tion, a very repulsive core that goes to infinity only for r-+O, 
instead of extending over the region 0 < r < c. The important 
aspect in this section is the strength of the attractive part of 
the interaction potential. Theoretically, the attractive part 
should not cause any appreciable modulation of the wave 
function since any modulation would contain mostly Four­
ier components with wave numbers inside the Fermi sphere; 
these components are not admitted in the Bethe-Goldstone 
equation because they are occupied by other nucleons.4 

VII. NORMALIZATION CONSTANT A 

Under the assumption that the attractive part ofthe in­
teraction potential is rather weak, we can find an approxima­
tion of the normalization constant A for a small core radius. 

Now, considering Eq. (6.4) with cos Ks instead of 
sin Ks, we have 

lim r F* (s)cos Ks ds 
r_ + 00 Jo 

=Avoe!-'C( 2 Ji 2) + Avoe!-'c lim ("" e- w' 
Ji + K r_ + "" L 

X [ f x(s,r') cos Ks ds ]dr' . (7.1) 

After some manipulations and a change of variables, and in 
the limit as r -+ + 00, the integral inside the square brackets 
becomes 

Hence, for small c, Eq. (7.1) is 

lim r F*(s) cos Ks dS-Avoe!-'c[ Ji + VI] . 
r_ + "" Jo Ji2 + K 2 

(7.6) 

Also, the first integral in Eq. (6.2b), representing the pure 
hard core, has already been calculated in Ref. 1: 

lim r F(s) cos Ks ds 
r_ + 00 Jo 

=A lim r{[t5(S-C)-X(S,C)] 
r_ + 00 Jo 

- r X(s,s')X(s',c)ds' - L BnSon (c, !..)} Jo n odd C 

X cos Ksds. (7.7) 
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(lhr)(IY'cosKr' + Y'sinKr') , 

where 

IY=2 (" sin t cos Kt dt 
Jo t 

(7.2) 

= 4 si(r') - si[r'(l - K)] - si[r'(l + K)] + 17' 

(7.3a) 

and 

Y = In II -K I + 2 (" sin t cos Kt dt 
I +K Jo t 

= lnll - K I + 2 ci(r') 

- ci [r' (l - K» - ci [ r' (l + K)] . (7.3b) 

In doing so, we have used the formula in Ref. 10 [Eq. 
(2.641)] and the sine and cosine integrals defined by 

and 

1"" sin t d si(x) = - -- t, 
x t 

ci(x) = _ ("" cos t dt . 
1x t 

Consequently, the integral in Eq. (7.1). viz. 

YI= L"" e-W'(IY'cosKr' + Y'sinKr')dr', (7.4) 

can now be integrated approximately. After repeated appli­
cations of the formulas in Ref. 10 [Eqs. (6.261) and 
(6.262) ] and some rather lengthy calculations, we obtain, in 
the limit as c -+ 0, 

(7.5) 

Finally, using Eqs. (7.6) and (7.7), the normalization 
constant A can now be determined easily from Eq. (6.2b), 
viz. 

A -1_ [pure hard core terms Eq. (7.7) 

(7.8) 

With this, knowledge of the two-nucleon wave function 
is now complete. Equations (5.7), (5.8), and (7.8) consti­
tute the complete closed form solution of the problem for the 
small core radius c. Although we have performed a detailed 
analysis only for small c, in principle a similar analysis can 
also be carried out for other values of c; however, this is a 
somewhat academic exercise of seemingly no known impor­
tance since the currently accepted nuclear model has a small 
core radius of c::::;0.4 fm. Similar important quantities such 
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as the reaction matrix and the binding energy can also be 
determined, but the calculations involved are quite difficult 
and cumbersome. Finally, observe that in the absence of the 
attractive part of the interaction potential, i.e., vo=O, Eq. 
(7.8) reduces to the same result obtained in Ref. 1. 

In conclusion, it might be added that with the success of 
the present method, perhaps the Bethe-Goldstone equation, 
using more realistic (and currently popularly used) nu­
cleon-nucleon potentials, e.g., the Hamada-Johnston and 
Reid soft-core potentials, may now also be amenable to a 
closed form solution. 

APPENDIX A: DERIVATION OF EQ. (4.5c) 

Consider Eq. (4.5c), 

II= r I f(r,e) In (r)dr, 

where 

(Al) 

f(r,e) = i"" x(r,r')e-I'(r - c) dr' . (A2) 

Upon the substitution for x(r,r') from Eq. (2.lb) into (A2), 
using the formula in Ref. 10 [Eq. (3.944)], and after a 
change of variables, we obtain 

i"" . sms 1Tf(r,e) = el'(c-r) e-Its--ds 
c- r S 

I'(c - r) i"" -I'S sin s d -e e -- s 
c+ r S 

= (ie l'(c-r)/2) {r[O,(It+i)(e-r)] 

- r[0,( It - i) (e - r)]} - (iel'(c+ r) /2) 

X {r[0,( It + i)(e + r)] 
- r[0,( It - i) (e + r)]), (A3) 

where r ( . , . ) is the incomplete gamma function. Expressing 
r(O,z) in terms of the exponential integral 

EI (z) = i"" e - I dt, larg(z) I < 1T , 
z t 

viz. r(O,z) = EI (z), and using the fact that, for ZEC, 

Im/(z) = (i/2)[/·(z) - I(z)] , 

(A3) becomes 

f(r,e) = (el'c/1T ) Im{e - wEI [(e - r) (It - i)] 

(A4) 

-eWEI[(e+r)(It-i)]}, It>l. (AS) 

Thus from (Al) we have 

fl 211 II= f(et,e) In (t)dt = - f(et,e) In (t)dt, 
-I 'iT 0 

n odd, 

(A6) 

where we have used the parity of In (t) and the fact that 
f(et,e) is odd in t. Now insert (AS) into (A6) and again use 
the parity conditions to obtain 
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II = el'C II e- ItC1 Im{EI [( It - i)e(l - t)]} 
'iT -I 

X In (t)dt, n odd. (A7) 

In Appendix B, an approximation of the integral in Eq. 
(A 7) for small e will be presented. 

APPENDIX B: APPROXIMATION OF EQ. (A7) FOR 
SMALLc 

Unfortunately, the integral in (A 7) cannot be integrat­
ed analytically in closed form. Although in principle one 
could use the expansion for the exponential integral, II 

"" (_ l)nzn 
EI(z) = -y-lnz- I ' larg(z)I<1T, 

n= Inn! 
(Bl) 

and obtain an approximation of (A 7) for small e, the calcu­
lations are too cumbersome to warrant any merit. Also, the 
contribution ofEq. (S.8d) is quite small. Specifically, using 
the results of the Theorem one can show that 

B!-O(e9
) , 

which implies that as far as the quantity III· in Eq. (S.8d) is 
concerned, the integral in (A7) is not very significant. 

Nevertheless, one could use the crude approximation in 
Eq. (5.3) to calculate the integral II in (A7). Instead of 
(A7), consider (AI) with (A2) approximated by Eq. (5.3). 
This gives 

II= f I f(et,e) In (t)dt 

- -2(An (e)/u;(e»)1/2 el'ctan- 1 (lilt) 

X f I sinh( Itt)Pn (t)dt . 

The integral in Eq. (B2) becomes 

f I sinh( Itt)Pn (t)dt 

=J.. [( -l)n-l] II e-ItIPn(t) 
2 -I 

(B2) 

={f~le-I'IPn(t)dt, nodd, (B3) 

0, n even. 

Using the integrals (see Refs. 12 and 10 [Eq. (3.387)], re­
spectively) 

f
l 1(t)Pn(t)dt= (-:,I,>n fl (t2 -l)ycn)(t)dt 
-I 2 n. -1 

(B4) 

and 

r 1 (l - t 2)ne- 1t1 dt 

= (1T)1/2 (2!It)n+ 112 r(n + l)fn+ 112 (It), 

n> -1, (BS) 
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where In + 112 ( f.l) is the modified Bessel function of the first 
kind, Eq. (B2), together with (B3) becomes 

11-( -l)n+12(An(C)/U~(c»)112eIlC 

xtan- I (1/f.l)(217'/f.l)112I n+ 112 (f.l), n odd only. 

(B6) 

This completes the calculation ofEq. (4.Sc). In spite of 
the crudeness in using the approximation Eq. (S.8d), the 
above result is a very reasonable estimate. 

APPENDIX C: EVALUATION OF EQ. (6.4) 

We want to show that 

lim (' x(s,r') sin Ks ds = sin Kr', O<X < 1. (Cl) 
r_ + 00 Jo 
The integral in (Cl), after a suitable change of variables, is 

f x(s,r') sin Ks ds 

1 fur [Sines - r') sines + r')] . K d =- - sm s s 
17' a s-r' s+r' 

1 fr
-

I 
sin t . 

=- --smK(t+r')dt. 
17' -r-I t 

(C2) 

In the limit as r -+ + 00, (C2) becomes 
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2 sin Kr' ("" sin t cos Kt dt 
17' Jo t 

{

17'/2' O<X < 1 , 
_ 2 sin Kr' /4 K - 1 ----- 17', -, 

17' 
0, K> 1, 

(C3) 

where the integral can be found in Ref. 10. Thus, for relative 
momentum inside the Fermi sphere, i.e., K=.klkF < 1, the 
integral is sin Kr'. This proves (Cl). 
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Corrections and clarifications are made of some past treatments of the variational nature of the 
eigenfrequency caiculation for dispersion equations and new results are presented. The main 
conclusions are the following: (1) Any relation between a normal mode and its dual must be 
consistent ~it.h the fact that the boundary conditions satisfied by the normal mode may differ 
from the adJomt boundary conditions satisfied by the dual. This will affect whether or not a 
give~ b~linear form will yield a variational result for the eigenfrequency. (2) Ifa dispersion 
matnx is constructed from the dispersion operator by using left and right basis functions that 
satisfy ~omogeneous boundary conditions on the dual eigenfunction and the eigenfunction, 
respectIvely, then generally a second-order accurate eigenfrequency is obtained by solving the 
matrix form of the dispersion equation. (3) When solving for the normal modes in terms of 
perturbation potentials, the adjoint boundary conditions are gauge dependent. For cases where 
the adjoint boundary conditions anow only the trivial solution for the dual eigenfunction, it 
may be possible to obtain variational results for the eigenfrequency by requiring that the trial 
functions for the normal mode and its dual satisfy variational boundary conditions. 

I. INTRODUCTION 

The variational nature of the eigenvalue problem for the 
linearized Vlasov-Maxwell (VM) equations and related 
systems has been studied by many authors (for example, see 
Refs. 1-8). The equation for a normal mode can be ex­
pressed as the requirement that the dispersion operator act­
ing on the eigenfunction equal zero. Similarly, the dual ei­
genfunction is an eigenfunction of the adjoint dispersion 
operator corresponding to zero eigenvalue. By the variation­
al nature of the eigenvalue problem we mean that, if an eigen­
function and its dual are known to first order, then the eigen­
frequency generally will be accurate to second order. Such a 
property obviously is desirable. The variational result in its 
most general form appears to have been proved first in Ref. 
4. The main purposes of the current paper are to clarify 
mathematical aspects of this problem that do not seem to 
have been appreciated by some plasma physicists who do 
variational calculations, and to prove a theorem extending 
the validity of the variational result to the solution of a finite­
dimensional matrix problem which approximates the disper­
sion equation. Much of our discussion will be valid for the 
variational nature of dispersion equations in general, not just 
those that arise in plasma physics. However, some of our 
results may not apply when dealing with singuiar eigenfunc­
tions, such as continuum modes in magnetohydrodynamics 
(MHD). 

A dispersion functional, which is a bilinear form, can be 
defined as the inner product of a function that we call the 
"left function" with the dispersion operator acting on a func­
tion that we call the "right function." The right function 
must lie in the same Hilbert space as the eigenfunction, 
which is specified by requiring that the eigenfunction satisfy 
certain boundary conditions and have certain differentiabil­
ity and integrability properties. A variational result for an 

a) Current address: Cray Research Inc., 1090 Industrial Boulevard, Chippe­
wa Falls, Wisconsin 54729. 

eigenfrequency calculated as a root of the dispersion func­
tional will hold if the left function lies in the Hilbert space of 
the dual eigenfunction. That is, if the dispersion functional is 
calculated with a right function that is a first-order accurate 
approximation to the eigenfunction and with a left function 
that is a first-order accurate approximation to the dual ei­
genfunction, then a second-order accurate eigenfrequency 
will be a root of the dispersion functional. This is the result of 
Theorem r of Ref. 4. The variational result generally will not 
hold if the eigenfrequency is calculated as a root of a disper­
sion functional in which the left function is in the space of the 
eigenfunction itself. This is because the dispersion operator 
generally is not Hermitian. Even for real omega the disper­
sion operator generally is not Hermitian unless there are no 
particle resonances. To use a dispersion functional in which 
the left function is in the space of the dual eigenfucntion 
requires finding approximations to the eigenfunction and its 
dual. For a certain class of equilibria, Berk et al. 6.7 were able 
to circumvent this difficulty by defining a nonstandard inner 
product and adjoint operator in such a way that the dual 
eigenfunction is simply proportional to the eigenfunction. In 
a separate publication,9 it is shown that the same simple rela­
tion between the normal mode and its dual can be derived 
using standard definitions of the inner product and adjoint 
operator, even though the dispersion operator is not Hermi­
tian. 

For proving stability theorems it can be useful to define 
a dispersion functional for which both the left and right func­
tions are the eigenfunction itself (see, for example, Refs. 10 
and 11). Furthermore, although such a dispersion func­
tional may not give variational results for eigenfrequencies, 
nevertheless approximate eigenfrequencies can be computed 
by using the dispersion functional. 

An element of a dispersion matrix is the inner product of 
a "left basis function" with the dispersion operator acting on 
a "right basis function." We assume that the dispersion 
problem has been formulated such that the eigenfunction 
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satisfies homogeneous boundary conditions, and we assume 
that each right basis function satisfies those boundary condi­
tions. For problems in which the adjoint boundary condi­
tions are the same as the boundary conditions on the eigen­
function, we can choose the left and right bases to be the 
same. In this case Theorem II of Ref. 4 shows that eigenfre­
quencies calculated from this dispersion matrix generally 
will be variational. The significance of this theorem derives 
from the fact that it is not necessary to have an approxima­
tion to the eigenfunction or its dual in order to construct a 
dispersion matrix. We merely need that the expansion func­
tions used in constructing the dispersion matrix be a suitable 
basis for constructing first-order accurate expansions of 
both the eigenfunction and its dual, Later in this paper we 
prove a theorem stating that the variational result holds for a 
matrix calculation even if the adjoint boundary conditions 
force the left and right bases to be different. 

The main conclusions of this work are the following: 
( 1) Apparent relations between a normal mode and its 

dual, such as those suggested in Refs. 4-8, may not be valid 
because the normal mode and its dual may satisfy different 
boundary conditions. This is because integrodifferential op­
erators, like plasma dispersion operators, generally are un­
bounded. The adjoint operator will always exist, but the ad­
joint boundary conditions may restrict the domain of the 
adjoint operator to be different than the domain of the origi­
nal operator. If an approximation to the dual eigenfunction 
does not satisfy appropriate adjoint boundary conditions, 
then the eigenfrequency calculation will not be variational. 

(2) When solving a matrix problem that approximates 
the dispersion equation, a variational result for the eigenfre­
quency will hold even when the adjoint boundary conditions 
are different than the boundary conditions on the normal 
mode as long as the left basis functions used in constructing 
the dispersion matrix form a suitable basis for the dual. 

(3) When solving the dispersion equation in terms of 
perturbation potentials, the adjoint boundary conditions are 
gauge dependent. We illustrate this with the Vlasov-Max­
well (VM) system. We show that the VM system is a formal­
ly self-adjoint function of @, but that the adjoint boundary 
conditions depend on the gauge choice. If the adjoint bound­
ary conditions allow only the trivial solution for the dual 
eigenfunction, it may stilI be possible to obtain a variational 
result if the left and right functions are made to satisfy vari­
ational adjoint boundary conditions and variational bound­
ary conditions, respectively. 

In another publ.ication9 the following is shown: 
( 1) The kinetic part of the general multidimensional 

dispersion operatorl2 is a "Hermitian function of@,"';where 
@ is the complex Laplace transform frequency. The result is 
obtained without using Liouville eigenfunctions,8 which are 
not well-defined mathematically for multidimensional equi­
libria. [2 Loosely speaking a Hermitian function of w means 
that the dispersion operator would be Hermitian in the usual 
sense if (1) were treated as though it were real when complex 
conjugating. If the dispersion operator is a "self-adjoint 
function of w," then relation ( 19) between the eigenfunction 
and its dual is valid. 

(2) If the equilibrium admits "conjugate orbits ,,6,7 and 
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if the "conjugate-orbit parity condition" 9 is satisfied, then 
the kinetic part of the dispersion matrix will be symmetric. 

(3) If the dispersion matrix is symmetric and if the ad­
joint boundary conditions are the same as the boundary con~ 
ditions on the normal mode, then the dual eigenfunction is 
simply proportional to the complex conjugate of the eigen~ 
function. 

( 4) The kinetic part of the dispersion functional for 
multidimensional VM equilibria can be analytically contin­
ued into the lower half of the (i) plane. The analytic continu­
ation of the dispersion operator onto the real (1) axis shows 
that relation (19} is valid even for real (1). 

The outline for this paper is a.s foHows. Mathematical 
aspects of adjoint operators are considered in Sec. H. These 
ideas are Hlustrated with a simple mathematical example. 
Section III reviews the theorems of Ref. 4 with emphasis on 
the generality of the results. An additional theorem is pre­
sented that discusses the variational nature of the dispersion 
matrix problem for the case where the left and right bases are 
different from one another. This theorem covers the case not 
treated by Theorem II of Ref. 4. In Sec. IV we discuss formal 
se!f-adjointness of the VM system and the gauge dependence 
of the adjoint boundary conditions. We summarize in Sec. V 
by presenting a flow chart showing how variational results 
can arise for dispersion operators with a multitude of differ~ 
ent properties. Theorem III is provied in the Appendix. 

II. MATHEMATICAL CONSIDERATIONS 
A, Adjoints 

Let us review the relevant aspects of operator theory 
that pertain to adjoints. Reference 13 is suggested as a source 
of information on linear operator theory. 

The essential mathematical features of adjoint operators 
that we wish to discuss here can be revealed by considering 
the case of scalar equations in one spatial variable. Let x be 
the independent spatial variable, chosen to be in the range 
[0,1] , and Ctl be the Laplace transform variable for functions 
that are Laplace transformed in time. We assume that we are 
dealing with linear operators defined on some Hilbert space 
K, and the domain of an operator A will be denoted <(iJ (A). 
The domainfj} (A) is either the entire Hilbert space or a 
subset thereof. It is the space of functions on which A oper­
ates; in a boundary value problem, <tiJ (A) is determined at 
least in part by the boundary conditions. For example, we 
might choose the Hilbert space such that any element u in K 
satisfies 

u(x,@) absolutely continuous; u, u', and 1.4" in .;?y> (0, 1) . 
(1) 

Here .;?' Y) (0,1 ) denotes the space of complex functions that 
are square integrable on the domain [0, 1}. Restrictions that 
determine fj) (A) would be in the nature of boundary condi­
tions, which vary from problem to problem. 

In this paper we are particularly concerned with quanti­
ties that depend on a complex parameter. For example, in 
the case of the VM equations, the dispersion operator 
D(x,{))) depends on the Laplace-transform variable (1) as well 
as on the spatial coordinate x. It will be necessary to distin­
guish between two kinds of complex conjugates and between 
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two kinds of adjoints along the lines introduced in Appendix 
E of Ref. 8. Suppose tht a quantity A(w) depends on a com­
plex parameter w. Here A (w) may be a scalar, vector, opera­
tor, or matrix. We wish to allow for functions A(lV) that 
have a branch cut along the real w axis and appropriate defi­
nitions in the upper and lower half w planes. LetA (+) (w ) and 
A (-) (lV) denote the branches of A (lV ) in the upper and lower 
haIf w planes, respectively. Then by the symbol A(w) we 
mean 

{
A (+)(w), 

A ({i)) = A H(w), 
Imw>O, 

Imw<O. 
(2) 

Note that A(w) does not denote the function obtained by 
analytically continuing A (+/(w) into the lower half of the (i) 

plane. In this paper we do not make explicit use of functions 
having branch cuts along the real (u axis, but in another pub­
lication!) we have. We define A '" ({i)), the "conjugate func­
tion" of (u associated wi.th A ((i) ), by 

A *«(J}) = [A «(J}*) ]* , (3) 

where the quantity on the right is the complex conjugate of 
A (w*). Similarly, we define A t «(J) ), the "adjoint function" 
of w associated with A (w), by 

A t(w) = [A(w*)]t , (4) 

where the quantity on the right is the adjoint of A (w"'). If 
A (0) is an analytic function of (£) in some domain (for exam­
ple, 1m (u> 0) and is analytically continued outside that do­
main, then the resulting A '" (w) andA T«(lj) are analyticfunc­
tions of w everywhere. Because of the necessity of 
introducing the notion of conjugate and adjoint functions of 
a parameter, there is a possibility of confusion when indicat­
ing the operations of complex conjugating or taking the ad­
joint. In order to avoid that confusion, we shall generally 
indicate complex conjugates with brackets and an asterisk 
and indicate adjoints with brackets and a dagger, as on the 
right-hand sides of (3) and (4). For example, to indicate the 
complex conjugate of A «(J) ), we shaH write [A (w )] '" or 
(A] *; and for the adjoint of A CUl), we shall write [A (OJ) r or 
(A F. It is important to remember that, in general, the con­
jugate function A '" (w) is not equal to the complex conjugate 
[A «(u ) 1 * and that the adjoint function A t ((u) is not equal to 
the adjoint [A«(,,) ]t. 

Mathematicians distinguish between three related con­
cepts. An operator A is caned formally self-adjoint 14 if the 
operators A and [A P are identical, fA ]1 = A. An operator 
A is caned Hermitian 15 iffor aU v and u in <q; (A), we have 
(v,Au) = (Av,u). An operator A is called self-adjoin t 15 ifitis 
Hermitian and iLG(! (A) = 9 ([.4 ]'). Adispersionoperatof 
D(x,w) may be formally self-adjoint, Hermitian, or self-ad­
joint except for its dependence on the complex parameter (u. 
That is, it might have one of these properties if w were treated 
as a real parameter. In these cases we would refer to D(x,w) 
as a formally self-adjoint, Hermitian, or self-adjoint function 
of (u.s It is useful to make this distinction, because certain 
properties of the solution of the dispersion equation follow if 
the dispersion operator is a formally self-adjoint function of 
ii). 

An operator A is bounded if for an u in its domain there 
exists a real positive constant c such that 

1488 J. Math. Phys., Vol. 29, No.6, June 1988 

IIAull<cllul!, 
where lIuli is an appropriately defined norm of an element u. 
Ifwe are considering a bounded linear operator A, its domain 
and the domain of its adjoint can be chosen to be the entire 
Hilbert space 71'. This is because when A is bounded we are 
guaranteed that for all v and u in ,:0/' there exists a bounded 
linear operator [A ] t, called the adjoint of A, such that 

(v,Au) = ([A ]tv,u) , (5) 

where the inner product of v and u is defined by 

(v,u) = J dx[v]*u. (6) 

The definition of an integral operator A acting on u in 
iJ.? (A) is 

Au = f dx' a(x,x')u(x') . (7) 

The operator A in (7) will be bounded ifthe kernel a(x,x') 
satisfies 

f dx f dx'!a2 (x,x')i < 00, (8) 

although condition (8) is not necessary for boundedness. If 
A is a bounded integral operator, then the kernel of its ad­
joint, a(x,x'), is defined by 

a(x,x') = [a(x',x)]* . (9) 

If the kernel of the adjoint equals the kernel of A, then A is 
self-adjoint. 

If A is an unbounded operator, like the derivative opera­
tor, the situation is different. Unbounded linear operators 
can be defined only with domains that are subsets of the 
Hilbert space. The subset of demen ts v in ,ff" for which (5) is 
valid for any u in !i) (A) is called the domain of the adjoint, 
g; ([A 1 t). In general,!iJ (A) =I- g ([A p). For example, if 
A is a differential operator, in the process of converting the 
left-hand side of (5) into the right-hand side of (5), integra­
tions by parts are performed that lead to boundary terms. 
The form (5) will result only if the boundary terms are made 
to vanish. The conditions on v that make the boundary terms 
vanish, for given boundary conditions on u, are the so-called 
adjoint boundary conditions. Thus, for given boundary con­
ditions on the elements u in iJ.? (A), the elements v in 
g; ( [A J t) are the subset of elements in J¥' that satisfy the 
adjoint boundary conditions. For unbounded operators, like 
differential and integrodifferential operators, the adjoint op­
erator exists only if we restrict the domain of the adjoint 
operator to satisfy the adjoint boundary conditions. 

B. An example 

The example in this subsection illustrates several points. 
First, it shows with a realistic problem how the adjoint 
boundary conditions can be different than the original 
boundary conditions even though the operator is formaliy 
self-adjoint. Second, the example shows that even though an 
operat~r may be formally self-adjoint (or a formally self­
adjoint function of (iJ), when boundary conditions are taken 
into account the operator may not be Hermitian or self-ad­
joint (or a Hermitian or self-adjoint function of (£)). Thus, 
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when determining Hermiticity or self-adjointness of an oper­
ator one must consider the boundary conditions as well. 
Third, the example shows how apparently general relations 
between an eigenfunction and its dual may not be valid after 
boundary conditions are applied. This illustrates why it is 
important to determine if an eigenfunction and its dual lie in 
the same space. 

Consider the simple boundary value problem 

D(x,w )<p(x,m) = 0, B(<p} -= (tI;' (o,m») = 0 , 
<pO,m) 

where the operator D is 

D(x,w) = d: + 2iv~ + K2(W) , 
dx dx 

( 10) 

(11) 

where v is a real constant and w is a complex number to be 
determined from the dispersion relation. In (10) we have 
symbolically written the set of boundary conditions on ¢' as 
B(¢') = O. If the function K(U)) is real except for its depen­
dence on U) (Lewis and Symon term this a "real function of 
U)" g), then 

[K(m) 1 *' = K(w*) . (12) 

The adjoint operator [D(x,w) P is that operator for 
which 

((D rrv,u) = (v,Du) (13 ) 

for aU v in ,q; ([D ]t) and u in g; (D). If we substitute (11) 
for D in (13) and do some integrations by parts we find 

(v,Du) = ([D pv,u) +J(v,u) , 

where 

(14) 

d 2 d 
[D(x,w) P = -2 + 2iv- + [K2(w) lilt (15) 

dx dx 

and 

J(v,U) = [v(1,U)) ]*u'(l,w) - [v(O,w) ]*u'(O,w) 

- [v' (l,w)] *u(1,w) + (v' (O,w) J "'u(O,U) 

+ 2iY{[v(1,w) ]*'u(l,m) 

- [v(O,m) J *u(O,w)]} = 0 . 

The adjoint dispersion equation is 

(D(x,(tJ)Jt~(x,w) = 0, B(~) + 0, 

(16) 

(17) 

where the adjoint boundary conditions jj(~) = 0 have not 
yet been specified. 

Comparing (11) and (15) we see that if K ((I) were a 
real constant, independent of m, then the operator (11) 
would be formally self-adjoint. If we were to allow K (U)) to 
be a real function of w, as in (12), then D(x,U)) would be a 
formally self-adjoint function of (u. That is, (11), (12), and 
( 15) would imply that the adjoint operator at the point w 
were the operator itself with w replaced by w*: 

[D(x,w) J t = D t (x,w*) = D(x,w*) . (18) 

Equations (17) and (18) imply 

D(x,w* )¢(x,(u) = 0 . 

If we substitute w* for w in the last equation we obtain 

D(x,W)~(X,lU*) = 0 . 
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Comparing this equation to (10) we see that the dual eigen­
function would be related to the eigenfunction by 

¢(x,w) = ifJ(x,(Ji") (19) 

ifthe adjoint boundary conditions satisfied by the dual eigen­
function were the same as the boundary conditions satisfied 
by the eigenfunction. This is a result quoted in Refs. 4 and 8, 
and a related but even sharper result is derived in Refs. 6 and 
7. However, as we shall see, both of these results are in valid if 
the adjoint boundary conditions are different than the 
boundary conditions on the eigenfunction. 

The general solutions of ( 10) and (17) for the normal 
mode and its dual can be found easily: 

¢l(X,ill) = a l exp(i{ - y + [v + K 2(W)] l/2}x) 

+a2 exp(-i{v+ [v + K2(W)J1I2}X) (20) 

and 

¢(x,U) = 01 exp[i( - v + {-V + [K 2 (w) ]*}I12)x) 

+ O2 exp[ - iI'll + {v + [K 2(@)J*,}1/2)XJ. (21) 

When the property (12) is used we see that the general solu­
tions of the equations for ~(x,w) and ¢;(x,w) can indeed be 
related according to (19) by taking ill = a 1 and az = a z. 
When the boundary conditions in (10) are appHed to the 
general solution (20) we obtain 

r 
¢>(x,m) = a1lexp(i{ - v +- [v + K 2 (w}] 1!2}xl 

( 
-11+ lV+K2(U)]1i2) 

+ '11+ [V+K2(w}11/2 

xexp{ - i{v + [v + K2(W) JII2}x)] , (22) 

with the accompanying dispersion relation 

dew) = {v + [-V + K 2 (w)] 1/2} exp {i[ V + K z(w)] lI2} 

+{-y+ [-V + K2(W)JI/2} 

(23) 

To determi.ne the adjoint boundary conditions we re­
turn to (14) and (16) and require that J(v,u) vanish, Be­
cause of the boundary conditions on <p, we see that the ad­
joint boundary conditions are 

[~(l,w) J* = [¢'(O,w)J* - 2iv[¢(O,w)]* = 0, 

or 

- - ( ~(l,w) ) B(¢;)-= - - =0. 
<p' (O,w) + 2iv¢> (O,w) 

(24) 

Notice that if v¥O the adjoint boundary conditions are dif­
ferent than those in (10), while if '11= 0 they are the same. 
Also it is evident from (14) that if the boundary conditions 
on ¢' were that cp (O,w) = cp ( 1 ,w) = 0, then the ¢ would satis­
fy the same boundary conditions, independent of Y. Thus, 
whether or not the adjoint boundary conditions are different 
from the boundary conditions on the normal mode depends 
in detail on the latter boundary conditions and the differen­
tialoperator. For v¥O, since!dJ ([D ]t) ¥f.iJ (D), theprob­
lem is not self-adjoint Moreover, the problem is not even 
Hermitian, since (14) is not satisfied for all u and v in 
.@(D). 
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For v;;t:O, the solution (21) that satisfies the adjoint 
boundary conditions is 

¢(x,w) = G![ exp(i{ - 'V + [v + K 2 ({u*) J I/Z}x} 

, ( V+ [v+K 2(w*)J1!2 ) 
-r -v+ [v+KZ(W*)j1/2 

Xexp(-i{v+ [V+K 2 (w*n i/2}xl] , (25) 

where we have used (12). The adjoint dispersion relation is 

dew) = (- v+ {v + (K 2 (w)J*}1/21 

xexp{i{v + [K 2 (w)]*}I/ 2
) 

+ (v + {v + [K 2(w}]*}1/2} 

xexp( - i{v + (K 2(w) ]*}1I2) = o. (26) 

Notice that (26) is the complex conjugate of (22). Compar­
ing (25) and (22) we see that relation (19) is no longer 
satisfied! The reason for this is that relation ( 19) is valid only 
when the solution of the dispersion equation and the solution 
of the adjoint equation are in the same function space. When 
boundary conditions are imposed, relation (21) is not neces­
sarily true. It depends on whether or not the adjoint bound­
ary conditions are different from the boundary conditions on 
the normal mode itself. 

The discussion of this section relates to earlier works on 
the variational nature of dispersion equations in the follow­
ing way. Some dispersion operators, like the integroditferen­
tial dispersion operator of the linearized VM system, are 
unbounded. This is because derivative operators are general­
ly unbounded. Berk et al.6

•
7 express the differential terms as 

an "integral operator" by multiplying the derivatives by del­
ta functions and integrating over space. However, the kernel 
of such an "integral operator" will not satisfy condition (8), 
so boundedness of such an integral representation of the dif­
ferential terms is not assured. (In fact, we know that we are 
really dealing with differential operator terms, and therefore 
adjoint boundary conditions must be considered.) Further­
more, self-adjointness of an integral operator can be estab­
lished by examining whether or not (9) is true only if the 
integral operator is in fact bounded. 16 Therefore, by not 
mentioning boundary conditions and merely examining 
whether (9) is satisfied, Berk et al.6

•
7 were not justified in 

claiming self-adjointness of the dispersion operator. [Merely 
examining (9) is equivalent to testing for formal self-ad­
jointness of the dispersion operator, not self-adjointness of 
the dispersion operator.] The impact of the adjoint bound­
ary conditions on the dual eigenfunction has often not been 
considered. We have seen that, unless the boundary condi­
tions are such that {}J (A) = .9) «(A ]t), apparently general 
relations between an eigenfunction and its dual, such as rela­
tion ( 19), may not be valid. Use of relation ( 19) to construct 
a dispersion functional may not lead to a variational calcula­
tion of eigenfrequencies. 

m. VARIATIONAL NATURE OF DISPERSION 
EQUATIONS 

In this section we state and discuss three theorems that 
deal with the variational nature of eigenvalue calculations 
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that involve a complex parameter w. The first two theorems 
are Theorems I and n of Ref. 4. Suppose we are solvin~ an 
eigenvalue problem in which the operator, eigenfunctions, 
and eigenvalues aU depend on a complex parameter (i). In 
Ref. 4 it is shown that the eigenvalues of an operator are 
equal to the value of a dispersion functional constructed as 
the inner product ofthe normalized dual eigenfunction with 
the operator acting on the normalized eigenfunction. The 
specific question is, how accurately can the w be calculated 
for which the eigenvalue (which depends on w) equals a 
given complex number? This question can be asked about 
any operator, and no assumption must be made about the 
operator's being self-adjoint according to any definition. 
This is a more general problem than the problem of finding 
normal modes in plasma physics. The connection that the 
work of Ref. 4 has with solving the dispersion equation in 
plasma physics is that, in the latter problem, we seek to vary 
the complex parameter (i) until the dispersion operator has a 
zero eigenvalue (normal mode). (Thus we refer to w only as 
an eigenfrequency, not an eigenvalue.) 

Let the operator be D(x,w), where x stands for the set of 
independent spatial variables. Then we have the following 
theorem from Ref. 4 as applied to a dispersion operator. 

Theorem I: Let ¢ and if; approximate to order € an eigen­
function and its dual, respectively, of the operator D(x,w) 
corresponding to the eigenfrequency (Uo' Let w' be an ap­
proximate eigenfrequency obtained as a root of a dispersion 
functional constructed with ¢ and :;P as trial functions. If 
D(x,w) is an analytic function of (jJ in the neighborhood of 
(jJo, then (jJ' will approximate (jJo to order c, except in special 
circumstances. (These special circumstances are exhibited 
in Ref. 4.) 

Theorem I is useful when the eigenfrequency is calculat­
ed as a root of a dispersion functional that is constructed 
with known forms for the eigenfunction and its dual. How­
ever, the variational result can also hold when one solves a 
finite-dimensional matrix problem that approximates the 
dispersion equation. In this case we do not need a priori ap­
proximations for the eigenfunction or the dual. We only 
need to choose appropriately the right and left basis func­
tions that are used for constructing the dispersion matrix. 
The right basis functions must be such that some linear com­
bination of them would be a first-order approximation to the 
eigenfunction. The left basis functions must be such that 
some linear combination of them would be a first-order ap­
proximation to the dua1. Theorem II of Ref. 4 deals with the 
matrix case in which the adjoint boundary conditions are the 
same as the boundary conditions on the eigenfunction, so 
that the eigenfunction and its dual are in the same function 
space. Theorem III, which we shall prove in Appendix B, 
deals with the matrix case in which the adjoint boundary 
conditions are different than the boundary conditions on the 
eigenfunction. In the remainder of this section we suppress 
the dependence of operators and functions on x. 

Theorem II: Let Wo yield a zero eigenvalue of the opera­
tor D( w), and let ifJ be the corresponding eigenvector nor­
malized to unity: 

D(wo)ifJ = 0, 111fo11 = 1 . (27) 
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Let S be a subspace within which cp can be approximated to 
order £: 

(28) 

where P is a projection operator from the Hilbert space JY~ 
onto S, and S is a vector normalized to unity. Assume like­
wise that the dual ¢ can be approximated to order E in S. Let 
-!?(m) be the operator D(m) restricted to the subspace S: 

!!(UJ) = PD(m)P. (29) 

Let m' yield a zero eigenvalue of .f?( (v) : 

12(W')1!. = 0, (30) 

where 1!. is a vector in S normalized to unity, 

PeE = p,. (31) 

Then the eigenvector if!. approximates r/> to order E and, if WI) is 
a simple root of the dispersion relation associated with (27), 
(u' approximates liJo to order c. 

The proof of this theorem is given in Ref. 4, but the proof 
is not valid ifthe adjoint boundary conditions on the dual are 
different than the boundary conditions on the eigenfunction. 
For example, suppose that a boundary condition were that 
the slope of the eigenfunction vanish at x = 0, while an ad­
joint boundary condition required that a linear combination 
of the dual and its derivative vanish at x = 0 (as in the exam­
pte of Sec. II B) . We would expand the eigenfunction in a 
basis whose elements had zero slope at x = O. However, tak­
ing a linear combination of these basis functions could only 
satisfy the boundary conditions of the dual in the special case 
that the dual also happened to vanish at the origin. Hence the 
dual could not generally be approximated to first order in 
that basis. We can extend Theorem II by showing that the 
variational result again holds if we assume that the left basis 
functions used to form the dispersion matrix are a basis with 
which the dual can be approximated to first order. We state 
the theorem here and prove it in Appendix B. (In our treat­
ment of Theorem HI we assume explicitly that the approxi­
mate eigenfrequency OJ' is in the neighborhood of the exact 
eigenfrequency 0)0 [see Eq. (38) ]. This assumption also was 
made for Theorems I and II of Ref. 4 [see Eqs. (15), (38), 
and ( 44 ) of Ref. 4], although in Ref. 4 we did not include the 
assumption as part of the statement of the theorems. The 
statement and proof given here of Theorem III are preferable 
to the treatment of Theorem n in Ref. 4.) 

Theorem HI: Let Wo be a simple zero of one, and only 
one, eigenvalue of the operator D(w), and let cp be the corre­
sponding eigenvector normalized to unity: 

(32) 

Let S be a subspace within which r/> can be approximated to 
order 6: 

!fJ = Pcp + €S, (33) 

where P is a projection operator from the Hilbert space JiV 
onto S, and S is a vector normalized to unity. Assume that 
the dual ;p can be approximated to order E in a subspace S: 

¢ = Pep + E~, (34) 

where P is the projection operator from !iJ ([D It) onto S, 
and ¢ and 't are vectors normalized to unity. Both; and tare 
assumed to have bounded derivatives as required. Let 12(w) 
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b~ the operator D( (0) restricted to the subspaces Sand S: 
-!l({v) = PD(w)P. (35) 

Let w' yield a zero eigenvalue of .p((:)): 

.f?(w')¢!. = 0, (36) 

where ¢!, is a vector in S normalized to unity, 

pp=¢!,. (37) 

Assume that w' is near liJo in the sense that 

Iw' - wol < E", for some a satisfying 0 < a<l. (38) 

Then the eigenvector p. approximates cp to order ~. where 
a<fi< 1. Also, since Wo is a simple root of the dispersion 
relation associated with (32), the dispersion relation asso­
ciated with (36) will have a root cu' that approximates Wo to 
order cf3. This theorem is proved in Appendix A. 

IVo VLASOV-MAXWELL SYSTEM 

In this section we discuss the formal self-adjointness of 
the VM system, and the gauge dependence of the adjoint 
boundary conditions. This will an be done in the context of 
conducting boundary conditions for the normal modes, and 
for cases where the plasma density vanishes at the conduct­
ing wall. Under these circumstances we win conclude the 
following: (a) the VM dispersion operator is a formally self­
adjoint function of w; (b) for the gauge choice CP1 =0, the 
VM dispersion operator is a self-adjoint function of w; and 
(c) for the gauge choice A Ir = 0, the VM dispersion operator 
is not even a Hermitian function of (J). For this case, the 
adjoint boundary conditions are different than the boundary 
conditions on the eigenfunction, and the adjoint boundary 
conditions anow only the trivial solution of the adjoint dis­
persion equation. However, we are able to construct vori­
ationalboundary conditions to be satisfied by the eigenfunc­
tion and its dual such that a variational result still follows. 
The variational boundary conditions are consistent with the 
physical conducting boundary conditions. 

Our emphasis has been on boundary conditions that are 
imposed at physical interfaces in a plasma system. There also 
may be regularity conditions imposed in the interior of the 
plasma. Regularity conditions are imposed to eliminate sin­
gular solutions that might otherwise arise due to a change in 
the coordinate system used to solve the problem. Just as 
there are regularity conditions on normal modes, there are 
adjoint regularity conditions on duals. (The example in Sec. 
n B contains boundary conditions at the origin, which could 
be interpreted as regularity conditions.) For dispersion op­
erators that include a kinetic contribution, the determina­
tion of regularity conditions inside the plasma may require 
knowing how the kinetic species contributes asymptotically 
to the dispersion operator in the vicinity of the singular 
point. For the VM system this would involve solving the 
Vlasov equation asymptotically near the singular point. By 
computing appropriate moments of the perturbation distri­
bution function, we could determine how the charge density 
and current density in Maxwell's equations affect the disper­
sion equation at the singular point. 

The linearized VM system can be written in the form 
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A'~=+f dp/'sh\, 

where the array of perturbation potentials is 

and the charge-current kernel is 

. (1 \ 
/s = qs _ vic) . 

(39) 

(40) 

(41) 

Here m sand q s are the mass and charge of particles of species 
s, respectively, andfsJ denotes the corresponding perturba­
tion distribution function. The canonical momentum vector 
p is defined byl! 

p = msv + qsAolc, (42) 

where Ao is the equilibrium vector potential. The field opera­
tor of the VM system is defined by 

A(x,(U) . tt> 

= 4~ (iW V~-Vx ~v ::)' ~~,; AA _ L w~' A)' 
c C s c2 

(43) 

The plasma frequency for species s is defined by 

2 41TQs 2 f 
&ps = -- dpf;(J' 

ms 

whereho is the equilibrium distribution function for species 
s. 

By choosing to write the VM equations with the kernel 
/s defined by (41), we have guaranteed that the VM sys­
tem will be "completely HamiItonian."s For completely 
Hamiltonian systems the kinetic part of the dispersion oper­
ator is a formally self-adjoint function of (r),8 SO it only re­
mains to show that A(x,UJ) is a formally self-adjoint function 
of (j) for the VM system. Also, for cases where the plasma 
density vanishes at the conducting wall, the adjoint bound­
ary conditions are determined by the field part of the disper­
sion operator alone. 

Define the vectors u and v by 

It) (~) 
u: = \a' \' = 81' (44) 

By straightforward use of vector identities we can cast 
(v,A(x,(U) '0) into the form 

(v,A(x,ft) 'n) = (A(x,&*) 'v,u) + J( v,u)/41T , (45) 

where J is given by 

JCv,u) = f dO"[(SV~* -~*V;) + Uw/c)(t*a+ta*) 

+ (a*xVXa - 8XVXa.*)] (46) 

and the integral in (46) is taken over the surface of the con­
ductor. The adjoint boundary conditions are chosen to make 
J(v,u) vanish. Thus, from (5), we see that indeed A(x,ft)) is 
a formally self-adjoint function of (u: 

(47) 
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In what follows, we assume that the potential functions 
u and v defined in ( 44 ) satisfy the same gauge condition, Our 
formalism does not require us to make this choice. However, 
we have not investigated possible advantages of choosing 
different gauges for u and v. 

For the gauge choice ¢l =0, both 5 and 't are identically 
zero, so that (47) reduces to 

J(v,u) = f daHnxa*)·CVxa) - (fixaHVxa*)] , 

(48) 

where da = da ft and fi is the outward unit normal from the 
conducting surface. For the present gauge choice, the condi­
tion that the tangential components of the electric field van­
ish on the conductor yields the following boundary condi­
tion on the normal mode: 

B(u.) =nXa = o. (49) 

Equation (49) makes the second term in (48) vanish. The 
only way that the first term in (48) can vanish for all vectors 
a that satisfy (49) is for a to satisfy 

B(v) ==DXi = O. (50) 

Thus the adjoint boundary conditions (50) are the same as 
the boundary conditions on the normal mode (49) 
[i.e., 9(A) = 9«A]r)]. Since (45) holds withJ= 0 for 
all v and u that satisfy (49), we have established that A is a 
Hermitian function of &. Since ,riJ (A) = ,q,; ([A]t), we also 
have established that A is a self-adjoint function of (r). 

For examining the gauge choiceA tr = 0, we specialize to 
a conducting cylinder of radius o. In this case we can Fourier 
analyze all perturbation quantitites in () and z and consider 
each made separately. Accordingly, we assume that the () 
and z dependence of the perturbations is exp [1'( me + kz) ]. 
Then the integral over dfJ in (46) gives a factor (21l')2Ik, 
where the period in the z direction is 21l'1k. Since AIr = 0, 
both air and air are identically zero and we have from (47) 

J(v,u) <X - ~*(a)arS(a) + s(a)ar~*(a) 

+ Gz *(a)ara, (a) - a z (aja"lz *(a) , (51) 

where ar = alar and, for any IV)' ar/(a) means (af I 
or) I r~ a' Now impose that u satisfy the conducting bound­
ary conditions: 

( 
- mt(a)/a -I- &ae(a)IC) 

B(u} == = o. 
- k(;(a) + waz(a)/c 

(52) 

rfweuse (52) toeliminateae(a) andaz(a) from (51), (51) 
becomes 

J(v.u) ex: tea) [aJ * (a) - (mc/aw)orao * (a) 

- (kcl&)a)lz *(a)] - 't *(a)ars(a) 

+ao*(a)aA,(a) +az*(a)orGz(a). (53) 

If t and a merely satisfy the conducting boundary conditions 
(52), then sea), a,tea), aA3(a), and araz{a) are arbi­
trary, independent quantitites on the boundary. Therefore, 
(53) can vanish only if the adjoint boundary conditions are 
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Since the boundary conditions on the normal mode are dif­
ferent than the adjoin t boundary condi tions (B ¥ Jj), the do­
main of the dispersion operator is different than the domain 
of the adjoint dispersion operator. Therefore, the dispersion 
operator for the gauge choice Air = 0 is not a self-adjoint 
function of w. Furthermore, J (v ,ll) will not be zero for v and 
u both in iiJ(A). Thus the dispersion operator for the gauge 
choice Air = 0 is also not a Hermitian function of (v. 

Equation (54) specifies four independent conditions to 
be satisfied by the dual eigenfunction at the conducting wall. 
Comparing this to the two boundary conditions of (52) im­
posed on the normal mode at the conductor, we see that the 
adjoint boundary conditions (54) will allow only the trivial 
solution for the dual eigenfunction. Obviously we cannot 
calculate eigenfrequencies by using a left function or a left 
basis which is identically zero. However, we show now that 
we can still obtain variational results by restricting the class 
of functions u and v to satisfy what we term variational 
boundary conditions. 

Theorems II and III both invoke Theorem I of Ref. 4, so 
let us recall in the proof of Theorem J the key step where the 
question of boundary conditions enters. In Theorem I we 
assumed we had first-order approximations to an eigenfunc­
tion and its dual: 

¢ = Vo + E"V l , 

¢=vo+€v j , 

(55) 

(56) 

where Vo is the exact normal mode and Vo is a solution of the 
adjoint dispersion equation: 

D(wo)vo = 0, B(vo) = 0, (57) 

[D«(uo) Iti'o = o. (58) 

We require that 1'0 satisfy the physical boundary conditions, 
but we have not yet specified the boundary conditions onvo. 
Here VI and i\ are suitably normalized vectors that satisfy 
the same boundary conditions as Vo and vo, respectively. 

The question of boundary conditions enters in Theorem 
I in going from Eq. (11) to Eq. (12) of Ref. 4. There we 
assumed that the boundary conditions were such that 

(59) 

By the definition of the adjoint operator, the left-hand side of 
( S9) has the form 

(vo,D((uo}vd = ([D(wo) ]tvo,vd + J(VO'vl ) . (60) 

Therefore, because of (58), (59) will hold if the boundary 
conditions on Vo and v[ are such that 

J(i'o,v) = O. (61) 

The variational boundary conditions alluded to earlier are 
~hose boundary conditions on Vo and VI' denoted by 
B'(vo) = 0 and B'(v1 ) = 0, respectively, that make (61) 
valid for nontrivial ilo that are solutions of (58) and for non-
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(54) 

I 
t:ivial 1'\ that already satisfy the physical boundary condi­
Hons, 

(62) 

Note that, for our purpose here of making (59) valid, Vo does 
not represent any member of a general class off unctions, but 
rather Vo is simply a solution of the adjoint dispersion equa­
tion. To avoid that Vo be trivial, we require that the number 
of variational boundary conditions on Vo be the same as the 
number of physical boundary conditions on vo. On the other 
hand, VI in (61) does represent any element of a class of 
functions that satisfy the physical boundary conditions 
( 62). We will want to require that v 1 satisfy additional 
boundary conditions that are consistent with any solution of 
the dispersion equation. 

Now let us leave this general discussion of variational 
boundary conditions and, as an example, derive specific vari­
ational boundary conditions for the VM system in cylindri­
cal geometry with conducting boundary conditions on the 
normal mode and with the gauge choice A If" == o. We consider 
the form of J(v,u) given by (53), where now v represents a 
solution of the adjoint dispersion equation and where u satis­
fies the conducting boundary conditions (52). Since v is a 
solution of the adjoint dispersion equation, and since the 
dispersion operator is a formally self-adjoint function of w at 
the conducting wall (where the plasma source terms vanish 
in the VM system), v must satisfy the r component of the 
adjoint Ampere equation, 

(w*/c)ar~(a) - (m/a) (1/a + ar)ao (a) 

- k a,az (a) = 0 . (63) 

Using (63) in (53) we obtain 

J(v,u) C~ (cm/wa2 )s(a)a,/'(a) - g*(a)JrS(a) 

+ ae*(a)JrGe(a) + Qz *(a)JyGz (a) . (64) 

As one of our variational boundary conditions on u, let us 
require that u satisfy the r component of Ampere's equation 
at the waH, 

(w/c)arS(a) - (m/a)( 1/a + ar )ae (a) - k araz (a) = o. 
(65) 

If we use (63) and (65) in (64) we obtain 

J(V,D) a:ars(a) [ - (m/a)~(a) + (w*/c)oe(a)]* 

+ araz (a) [(m/a)a z (a) - kGe (a)] 9{< • (66) 

Since arS(G) and arGe (0) are arbitrary quantities on the 
boundary,}he only way that (66) can be made to vanish is by 
requiring ~ and a to satisfy the conditions 

- (mla)g(a) + (w*/c)oe(a) = 0 (67) 

and 

(68) 
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Equations (67) and (68) imply 

- k~(a) + (w*lc)az (a) = o. (69) 

Thus we will obtain a variational result for the eigenfre­
quency if we choose left and right functions that satisfy the 
foHowing variational boundary conditions: 

(

WIc)ar5(a) - (m/a) (1/a + a r )oe (0) - k 8r az (0») 
B' (u) == - (m/a)5(o) + (w/c)o(} (0) = 0 

- kgCa) + (wlc)a z (a) 

(70) 

and 

_ (CW:I</c) Jrt(a) - (m/:zHUo + 8r)ao(a) - k Jriiz(o») 
B'(v)== - (m/a)t(a) + (w*/c)ae(a) =0. 

- kt(a) + (w*/c)az(a) 

(71) 

Notice from (70) and (71) the interesting result that the 
variational adjoint boundary conditions are the same as the 
variational boundary conditions with w replaced by w*! No­
tice also that this implies that the dual of an eigenfunction 
~(w) equals (1)«(0*), a result already obtained in Refs. 4, 8, 
and 9. Since (71 ) is meant to be used only with left functions 
v that are solutions of the adjoint dispersion equation, the 
first eiement of (71) will be satisfied automatically, since it is 
just one of the adjoint dispersion equations at the wall. [At 
the wall the plasma terms in the VM system vanish and the 
full VM dispersion operator just becomes the field operator 
A of (43) with wps = 0.] Thus we really impose only two 
new conditions on v, which is the correct number of bound­
ary conditions to guarantee that a nontrivial v exist. Also, 
there is no difficulty in requiring the right functions u to 
satisfy conducting boundary conditions as well as the r com­
ponent of Ampere's equation at the wall. 

We reiterate that it may be possible to obtain variational 
results for eigenfrequencies even though the adjoint bound­
ary conditions anow only the trivial solution for the dual 
eigenfunction, When obtaining eigenfrequencies as roots of a 
dispersion functional, a variational result will follow if the 
left and right functions satisfy appropriate variational 
boundary conditions. Similarly, when obtaining eigenfre­
quencies by solving a dispersion matrix problem, a variation­
al result will follow ifthe left and right bases satisfy appropri­
ate variational boundary conditions. 

".SUMMARY 

We have seen that, for unbounded operators, such as 
integrodifferential dispersion operators, the dual eigenfunc­
tions satisfy adjoint boundary conditions that mayor may 
not be the same as the boundary conditions imposed on the 
eigenfunction itself. If the two sets of boundary conditions 
are different, then a dispersion functional constructed as­
suming that the dual and the eigenfunction lie in the same 
function space generally cannot be used as the basis for a 
variational calculation of the eigenfrequency. A variational 
result follows for eigenfrequencies calculated from solving 
the finite-dimensional matrix problem that approximates 
the dispersion equation if the dispersion matrix is construct­
ed from left and right bases that satisfy the adjoint boundary 
conditions and boundary conditions on the normal mode, 
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i 
respectively. If the adjoint boundary conditions and bound-
ary conditions on the normal mode are the same, then the left 
and right bases should be the same. When solving for the 
normal modes using potentials, the adjoint boundary condi­
tions are gauge dependent, even fOT conducting boundaries. 
If the adjoint boundary conditions only allow for the trivial 
solution of the adjoint dispersion equation, it still may be 
possible to obtain variational results ifthe left and right func­
tions satisfy appropriate variationai boundary conditions. 

We close with a flow chart in Fig. 1 that summarizes the 
courses of action that must be taken to obtain variational 
results for a dispersion operator which may have any of a 
wide spectrum of symmetry properties. For the purpose of 
this chart we use the notation of Eqs. (55)-(62), When 
computing eigenfrequencies with a dispersion functionai, we 
seek solutions of 

(ip,D({u')1/J) = 0, (72) 

where the eigenfrequency (tJ' is only approximate, since the 
right and left functions are only first-order approximations 
to the eigenfunction and its dual [see (55) and (56) J . When 
computing eigenfrequencies from a dispersion matrix, we 
seek solutions of 

detDnn• (w') = 0, (73) 

where the dispersion matrix is defined by 

DII", «(u) = (7J",D(w )'YJn') . (74) 

Equation (74) is obtained by expanding ¢ and ip in appropri­
ate right and left bases, respectively: 

N 

¢(x;w') = L an (w')rl" (x) (75) 
n= I 

and 
N 

Ip(x;w') = .2, an' (w') 7]", (x) . (76) 
11'-=-=-1 

The boundary conditions on ¢ (or the right basis) will be 
denoted by B I = 0, where B I is either B, which represents the 
physical boundary conditions on the normal mode, or B', 
which represents the variational boundary conditions on the 
normal mode. The boundary conditions on if; (or the left 
basis) will be denoted by B2 , where Bz is either B (if the 
boundary conditions on the eigenfunction and its dual are 
the same), 1i, which represents the adjoint boundary condi-
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tions, or B I, which represents the variational adjoint bound~ 
ary conditions. If Wo is the exact eigenfrequency, the calcula­
tion of the approximate eigenfrequency w' is said to be 
variational if 

0/ = 00 + O(~), (77) 

where € is the small number appearing in (55) and (56). 
There is one possibility which aids in obtaining variational 
results that was not discussed in detail in this paper, but 
which is included in the flow chart for completeness. This 
possibility is discussed in detail in Ref. 9 but was discovered 
first by Berk et aL in Ref. 6. The basic idea is this: If the 
dispersion operator and the equilibrium possess certain 
properties, it is possible to conclude that the dispersion func­
tional or dispersion matrix is a real function of (j) [see Eq. 
(12)), Then it follows that the complex conjugate of the 
exact dual eigenfunction Vo is merely proportional to the 
exact eigenfunction Va. In this case, if I/J is a first-order accu~ 
rate approximation to vo. then l/J, a first-order accurate ap­
proximation to vo, foHows immediately. 

To use the flow chart, begin with the first box. The rules 
are that one can exit a box only along a path that goes away 
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MAT!CNAI. B!j$lllI 
·"Mt40(t1) 

from the box, and one can exit an intersection of paths only 
along a path that goes away from the intersection. 

The flow chart illustrates that it is possible to obtain 
variational results for a wide range of operators and that, 
contrary to the common belief, having Hermitian or self­
adjoint operators is not necessary. 
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APPENDIX: PROOF Of THEOREM III 

In this Appendix we state and prove Theorem HI of Sec. 
HI. Again we suppress the x dependence of the operators 
and eigenfunctions. 
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Theorem III: Assume all eigenvectors in this proof satis­
fy appropriate boundary conditions. Let ()o be a simple zero 
of one, and only one, eigenvalue of the operator D( w), and 
let <p be the corresponding eigenvector normalized to unity: 

D(wo)¢; = 0, 1I¢;11 = 1. (AI) 

Let S be a subspace within which ifJ can be approximated to 
order €: 

(A2) 

where P is a projection operator from the Hilbert space c7(? 

onto S, and S is a vector normalized to unity. Assume that 
the dual ;p can be approximated to order € in a subspace S: 

;p = p;p + ES, (A3) 

where P is the projection operator from .@ ( [D ] t) onto S, 
and ;p and t are vectors normalized to unity. Both sand;t are 
assumed to have bounded derivatives, as required. Let D( w ) 
be the operator D( w) restricted to the subspaces Sand S: 

ll(w) = PD(w)P. (A4) 

Let Wi yield a zero eigenvalue of Q( w), 

l!(w')t}, = 0, (AS) 

where re is the corresponding eigenvector in S normalized to 
unity, 

Pre = p" (A6) 

Assume that w' is near Wo in the sense that 

!(U'-wo!<€', forsomeasatisfyingO<a<l. (A7) 

Then, the eigenvector p. approximates if; to order ~, where 
a<f3< 1. Also, since £))0 is a simple root of the dispersion 
relation associated with (AI), the dispersion relation asso~ 
dated with (AS) win have a root w' that approximates Wo to 
order £lfJ, 

Proof; By the assumed analyticity of D(w) as in 
Theorem I, expand D(w') in a Taylor series, 

D(w') =D«(;)o) + (til -UJo)D'(OJo) + "', (AS) 

where we assume that 

D'(wo)¢;= a~<:) L=wo¢#O' 

Operate on (AI) withPand use (A2), (A3), and (AS): 

o =PD(wo)¢ 

= P [D(w') - (a/ - wo)D '(wo) + .. ,] (P¢ + €s), 
or, to first order by using (A4), 

- Q(w')ifJ 

= EPD(wo)s - (w' - wo)PD'(wo)Pq; + ... , (A9) 

where dots represent higher-order terms in (w' - £))0)' Add 
(A9) to (AS): 

l!(w')(re - ¢) 

= EPD(wo)S - (a/ - wo)PD' (w'o)Pq; + .... (AlO) 

In view of definition (A3 ) and since P 2 = P, we can replace ¢ 
by P¢; on the left in (AlO), 

Q(w')(p' - P¢;) 

= £PD(wo)S - (w' - wo)PD '(wo}P¢; + "', (All) 
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In analogy with definition (A4), let [D(w)p be the 
operator [D(w) ] t restricted to the subspace; Sand S (pro­
jection operators are always Hermitian): 

(Q(w)]t = P [D(U))]tp. (AI2) 

The right-hand side of (A12) is indeed the adjoint of (A4). 
Let N be the projection operator onto the null space of 
-!!(OJ'), so that for any fin Swe have 

l!(w')Nf= O. 

The vector f has the unique decomposition 

f = N! + (1 - N)j. 

(AB) 

(A14) 

Since p. - P¢ is a vector in S, using (AI2) and (A13) we see 
that 

12(w')(p' - P¢;) = f>(w')( 1 - N)(1!, - P¢). (AlS) 

If N is the projection operator onto the null space of 
[Q(@')}t, define 

Q}IT(w') = (l - N)l!(w') (l - N) . (A16) 

Within the subspace orthogonal to the null space of D(d), 
DN has an inverse, D Ii I. Operate with (1 - N) on (All), 
use (AIS), and solve for 1:. - P¢l. In view of (A2) we can 
write the solution in the form 

1:. = if; - €s + D Ii 1(1- N) 
X [£PD(wo)S - (Wi - wo)PD' (wo)PifJ + ... ] . 

(A17) 

By virtue of (A7) we have 

p.=¢+ O(~), 
where 

a<{3<1. 

(A18) 

(A19) 

This is the first conclusion of the theorem. A similar argu­
ment shows that ~ approximates ;p to order ~. In concluding 
the result (A 18) we are assuming that E is small enough that 
there are no other roots of the dispersion relation in the 
neighborhood of Wo that is specified by (A7). A simple ex­
tensi~}fl of Theorem I shows that if p. and ~ approximate if; 
and <p, respectively, to order f!3, then the eigenfrequency cal­
culated as a root of the dispersion functional will approxi­
mate Wo to order r!f3. Thus the second conclusion of 
Theorem III is proved. Furthermore, it is easy to show that 
the eigenfrequency w' calculated from the finite-dimensional 
approximation to the dispersion equation is exactly the same 
value of £)) that would be calculated using the approxima­
tions ~ and p. as trial functi~ns in a ,Eispersion functional. 
That is, since if!. lies in Sand 1:. lies in S, 

(~,Q(U)/)p') = (P~,D(w')Pp.1 = (~,D(w')t},). (AlO) 

The root of the leftmost member of (A20) is the eigenfre­
quency calculated from the finite-dimensional matrix prob­
lem, and the root of the rightmost member of (A20) is the 
eigenfrequency calculated as a root of a dispersion func­
tional. 
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An optical polaron, which is exposed to a homogeneous magnetic field, is considered. Making 
use offunctional analytical methods of Frohlich [Fortschr. Phys. 22, 159 (1974)], it is proved 
that the ground-state energy, the magnetic polaron mass, and the number of virtual phonons in 
the ground state are analytical functions of the electron-phonon coupling parameter and the 
magnetic field strength. Consequently, a discontinuous stripping transition, which was claimed 
recently by several authors, does not exist. In fact, some authors have stated that the 
discontinuities they encounter might indeed be artifacts due to the approximation. The 
spectrum of the momentum-decomposed Frohlich Hamiltonian is analyzed; bounds and 
smoothness properties of the ground state and the discrete excited states are derived. All 
results hold also for lower spatial dimensions. 

I. INTRODUCTION AND STATEMENT OF THE PROBLEM 

In the present paper we discuss spectral properties of the 
momentum-decomposed Frohlich Hamiltonian of an opti­
cal polaron in a constant uniform magnetic field. 

The standard (three-dimensional) polaron model is de­
fined by the well-known Hamiltonian H F , proposed by 
Frohlich, Pelzer, and Zienau, I 

HF = _1_ (p + leIA(x»)2 + f d 3k w(k)ak+ ak 
2m 

+ f d 3k a l
/
2(g(k)ak e'kx + H.c.) 

with 

w(k) = Wo> 0 

and 
g(k) = wo(Ii/2mwo) 1/4( 41T) 1/2(21T) -3/2Ik I-I 

EL4 

(1) 

(2) 

(3) 
Here, m, x, p are the mass, the position, and momentum 
operator of the (spinless) electron; k, w(k) are the wave 
vector and frequency of the phonons (i.e., spinless bosons); 
g(k) is the electron-phonon coupling, a being the dimen­
sionless electron-phonon coupling parameter, and lei the 
elementary charge. As usual, we set henceforth Ii = Wo = m 
= lei = 1 and keep a and B as the only parameters. Let the 

magnetic field B = (O,O,B), B>O, be along the X3 axis. 
Then, in the Landau gauge, the vector potential A may be 
written as A(x) = (O,Bxl,O). 

In the case of free optical polarons (B = 0), the analyti­
cal properties of the ground-state energy were unclear for a 
long time, until Spohn2 applied the beautiful functional ana­
lytical work of Frohlich3 directly to prove the analyticity of 
the ground-state energy and the polaron mass as a function 
of the coupling parameter. In this paper, we want to genera­
lize this result to arbitrary magnetic fields. Making use of 
operator methods developed by Frohlich,3 we do show that 
the ground-state energy, the ground-state wave function, 
and expectation values of the ground state as well as the 
magnetic polaron mass are analytical functions in the cou­
pling parameter a and the magnetic field strength B (B > 0) . 

The same holds true for the energies and wave functions of 
the momentum-decomposed discrete excited states, i.e., the 
Landau levels below the one-phonon continuum. 

This paper represents the first rigorous study of analyti­
cal properties in optical polaron systems for arbitrary cou­
pling and arbitrary magnetic field strength at zero tempera­
ture. Only for very small a, Alvarez-Estrada4 has 
established analytical properties by using several perturba­
tion approaches. We note that Gerlach and the author have 
proved in a previous workS under rather general conditions 
that the (formal) free energy of an acoustical or optical po­
laron system, exposed to a homogeneous magnetic field, is 
analytic in the temperature T (0 < T < 00 ), coupling param­
eter a, and magnetic field strength B (0 < B). But the limit 
T -+ 0 was not studied there. 

The most important consequence of our results con­
cerns a so-called stripping transition, which was first studied 
by Peeters and Devreese. 6,7 In a series of papers, Peeters and 
Devreese have calculated the ground-state energy,6.7 the po­
laron mass/'s the polaron radius9 as well as the number of 
virtual phonons in the ground state9 and the magnetoabsorp­
tion spectrum 10 within the anisotropic Feynman approxima­
tion. They do find nonanalytical behavior of these quantities 
at certain critical values of a and B. They indicate that this 
might be an artifact of their approximation. We note that 
Gorshkov, Zabrodin, Rodriguez, and Fedyanin II have al­
ready questioned these discontinuous transitions. A similar 
nonanalytical behavior is found for a two-dimensional po­
laron (see the recent work ofWu Xiaoguang, Peeters, and 
DevreeseI2 ). Within the Fock approximation, Lepine and 
Matz13 and Lepine l4 get discontinuous transitions, too. In 
fact, there may be large changes in the polaron quantities as a 
function of a or B, but these changes are continuous. All 
discontinuities reported in the references quoted above are 
artifacts of the the approximations rather than intrinsic 
properties of the Frohlich Hamiltonian. In fact, in Refs. 6--9, 
Peeters and Devreese carefully stated that the discontinui­
ties they encounter could be artifacts of their approximation. 

The basic steps of the proof are as follows: In Sec. II, we 
introduce the corresponding momentum decomposed Ham­
iltonian H(Q) whose spectral properties are under study. 
Two different cutoffs are successively introduced which 
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clearly have to be removed later: a UV cutoff in the coupling 
and a lattice cutoff which leads to a discrete phonon momen­
tum space. Then, it is proved that the ground state energy of 
the momentum decomposed cutoff Hamiltonian belongs to 
the discrete part of the spectrum, if the momentum Q fulfills 
a simple inequality. After that, we show that the same result 
is also valid if the lattice cutoff is removed. In Sec. III, it is 
proved that this result even holds, if the UV cutoff is re­
moved, using a dressing transformation. After having shown 
that the ground state of H(Q) is nondegenerate (see Sec. 
IV), we derive bounds on the ground state energy of H(Q) 
(see Sec. V) that guarantee that the inequality mentioned 
above is fulfilled. Since this finally implies that the ground 
state of H(Q) is discrete and nondegenerate, we are able to 
apply analytic perturbation theory in Sec. VI which estab­
lishes smoothness properties of the ground state and the dis­
crete excited states. Finally, in Sec. VII we give other exam­
ples, to which our methods are applicable. 

II. SPECTRAL PROPERTIES OF THE HAMILTONIAN 
WITH UV CUTOFF 

First, we perform a Lee-Low-Pines transformation. 
Defining 

U=exp(-i(P2X 2+P3X 3»), (4) 

where 

P = f d 3 k kak+ ak 

is the phonon momentum, we obtain 
- -I 2 HF:=U HFU=G/2+Hoph+HI 

with 

HOPh = f d 3kak+ak , 

HI = a l/2 f d 3k(g(k)ak exp(iklxl ) + H.c.) 

and 

G = (PI,Bx I + P2 - P2,P3 - P3)· 

Furthermore, 

U-IPi U = Pi - Pi> i = 2,3. 

(5) 

(6a) 

(6b) 

(6c) 

(6d) 

(7) 

Clearly, H F does not depend on X2 and X3, i.e., P2 and P3' now 
playing the role of the total momentum [see (7)], are con­
served quantities which may be replaced_by c numbers Q2 
and Q3' Mathematically, this means that H F admits a direct 
integral decomposition as follows: 

HF = f.. dQ2 dQ3 H(Q), Q= (0,Q2,Q3)' (8) 

Here, H(Q), being the Hamiltonian corresponding to fixed 
total momentum Q2 and Q3' is given by 

H(Q) = Ho(Q) + HI' 

Ho(Q) = HOPh + G(Q)2/2, 

G(Q) = (PHBx I + Q2 - P2,Q3 - P3)· 

(9a) 

(9b) 

(9c) 

It is well-known that, for B>O, the spectrum of H(Q) is 
independent of Q2 (see, e.g., Devreesels ). Nevertheless we 
retain the trivial Q2 dependence. 
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For the underlying Hilbert space K, it is convenient to 
take 

K=F®L 2 (R), (10) 

where 

(11) 
m=O 

is the usual Fock space of the phonons, ® denoting the 
symmetrical tensor product. We define UV cutoff Hamilto­
nians H,(Q), HI, by replacing g(k) in (9a) and (6c) by 
g, (k) ==g(k) ·O(r - k), 0 < r< 00. Then, according to a re­
sult of Nelson,16 we may state: For all E> 0 there exists a 
number h(r,E) < 00 such that 

IIHI,tPlI<EIIHophtPll + h IItPlI<EIIHo(Q)tPll + h IItPlI, 

for allltP)ED(Ho(Q»). (12) 

Clearly, Ho(Q) is self-adjoint and bounded from below. 
Consequently, the Kato-Rellich theorem17 ensures us that 
H,(Q) is self-adjoint and bounded from below. 

Now we introduce a second cutoff: We replace the 
phonon momentum space R3 by a momentum lattice r d (see 
Refs. 3 and 18 for a detailed discussion), 

r d = {keR3lkj = n/ Ad' njeZ, 

Ad = 2dAo,AoeR+, j= 1,2,3}. 

To each keR3 we associate a klder d' namely, 

kid = (n l,n2,n3)/Ad, nj = (kjAd)' 

where 

(a) == {largest i~teger<a, 
smallest mteger> a, 

(13) 

(14) 

The continuum limit is obtained by taking the limit d -+ 00 • 

We now define a subspace Sd r:;;.L 2(R3) of step functions, 

(15) 

For geL 2(R3) let gld denote the orthogonal projection of g 
onto Sd' We need some further definitions, 

Fd== ; Sd@m, (16) 
m=O 

F~==C~ IS~~)@Fd' (17) 

Then we have 

F= Fd (JJF~. (18) 

We introduce the d cutoff in the Hamiltonian in the follow-
ingway: 

Hd,(Q) = HOd + Hid,' (19) 

HOd = f d 3kak+ak +P; 

(Bx I + Q2 - P21d)2 (Q3 - P31d)2 
+ 2 + 2 (20) 

HId, = a l/2 f d 3k«g,(k) Id exp(ikd d 'xl)ak + H.c.), 

(21) 

where now 
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Pld = J d 3kkl dak+ak • 

One easily verifies that (12) remains true for the new d cut­
off Hamiltonian Hdr(Q). Consequently, Hdr(Q) is self-ad­
joint and bounded from below, too. LetE(r,Q),E(d,r,Q) be 
the ground-state energy of the Hamiltonians 
Hr(Q), Hdr(Q)· 

Lemma 2.1: Suppose that the momentum Q is such that 

inf(E(r,dQ - (0,k2,k3 ») + 1- E(r,d,Q»)=a(r,d,Q) >0. 
k 

(22) 

Then the interval [E(r,d,Q),E(r,d,Q) + a(r,d,Q) [ be­
longs to the discrete part of spec(Hdr(Q) ~ Fd ®L 2(R»), 
where ~ denotes (as usual) the restriction. 

Proof' First, we define a new subspace Jr;,Sd by 

fEJ<;::}f(k) =0, forlkl d>r+3/ad. (23) 

Moreover, let rd = {kEr d IIkl<r + 31 Ad} and 

W= ; J®m, Wi =( ; Ji®m), 
m=O m=l 

W i = Wi®W, (24) 

Clearly, Fd = WGl WiandHdr (Q), H Idr leave Winvariant. 
We consider (tJ - Hdr ) -I ~ W®L 2(R). SinceHIdr isa 

Kato potential with respect to HOd the following von Neu­
mann resolvent expansion converges in norm: 

(tJ-Hdr)-1 = (tJ-HOd)-tt}HIdr(tJ-Hod)-lr). 

(25) 

For Re tJ sufficiently small, the second factor of (25) defines 
a bounded operator. According to Glimm and laffe l8 there 
exists an isomorphism between J and the square summable 
complex functions of the momentum lattice r d consisting of 
a finite number oflattice vectors. Hence the eigenvalue prob­
lem of HOd ~ W ® L 2 (R) is completely solvable and the 
eigenvalues En can be numbered by natural numbes n, where 
En ..... 00 as n ..... 00 • Therefore (see, e.g. Ref. 19), 
(tJ-HOd)-1 is compact and, because of (25), 
(tJ - Hdr ) -I ~ W ® L 2(R) is compact for all tJf!spec(Hdr 
~ W®L 2(R»). 

In a second step, we estimate inf spec(H dr (Q) 

~ Wi ® L 2(R»). Let us consider a vector IX)EWi ® L 2(R), 
which has the form Ix) = 10) ® IlP), where IlP )EW 
®L 2(R), 10)EWl' 10)=10(k N », k N = (kl, ... ,kN ). Let 
10) be an eigenstate of the phonon number operator with 
eigenvalue N~ 1 and let 10) fulfill 

N 

Pldl O) = L WldI O), where WldErd\rd· 
j= 1 

Then, IIxll = 11011'lIlP II and 

(XIHIdr Ix) = (lp IHIdr IlP ) (010) 

and therefore 

(XIHdr(Q) Ix) = jtl (xix) + (lp IHdr( (Q - j~1 (O,k~ Id,k~ Id»)llP) (010) 

~(l + E( d,r,Q - j~1 (O,k~ Id,k~ Id») )(Xlx)~( 1 + i~f E(d,r,Q - (0,k2,k3 »))(xlx). 

The same inequalities are valid for vectors which are finite 
linear combinations of pairwise orthogonal vectors of the 
form 10(k N) )®llP), NEN. Since these vectors are dense in 
W i ®L 2 (R) we conclude 

infspec(Hdr(Q) ~ W i ®L 2(R») 

(26) 

Third, let f be a positive C 00 function on R such that 
f(O) = 1,f(x) = ° if x~a(r,d,Q) > 0. Then we know from 
(26), 

f(Hdr(Q) -E(d,r,Q») ~ W i ®L 2(R)=0. 

On the other hand, the compactness of (tJ - H dr )-\ 
~ W®L 2(R) implies that f(Hdr(Q) - E(d,r,Q») 
~ W ® L 2(R) is compact. 

Since Fd ®L2(R) = (W®L 2(R»)Gl(Wi ®L 2(R»), it 
follows that f(Hdr (Q) -E(d,r,Q») ~ Fd ®L 2(R) is com­
pact. This immediately implies Lemma 2.1. 0 

Now we can proceed along similar lines as Frohlich does 
(see Theorem 2.3 in Ref. 3). The only difference is that our 
Hilbert space is Fd ® L 2 (R) (instead of Fd ) and that in our 
case a priori f(Hdr (Q) - E(d,r,Q») ~ Fd ® L 2(R) is com­
pact, whereas in Ref. 3 the total spectrum is discrete. Never­
theless, Frohlich's proof can directly be mimicked. As a con-
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I 
sequence, we arrive at the following theorem, where the d 
cutoff is removed and a phonon gap in the spectrum is estab­
lished. 

Therorem 2.2: Suppose that the momentum Q is such 
that 

infE(r,Q- (0,k2,k3 ») + l-E(r,Q)=a(r,Q»O. 
k 

(27) 

Then the interval [E(r,Q),E(r,Q) + a(r,Q) [ belongs 
to the discrete part of spec (Hr(Q) ~ F®L 2(R»). 

III. REMOVING THE UV CUTOFF 

To remove the UV cutoff, we use a canonical transfor­
mation, which was proposed by Gross20 and mathematically 
studied by Nelson. 16 We define 

HrT(Q) =eTHr(Q)e- T, (28) 

where 

T=TrA = J d 3k(f3rA (k)ak exp(ik1xl ) - H.c.) (29) 

and 

PrA (k) =P(k) = - a l/22gr (k)O(k - A)/(2 + k 2), 

1 <A <r. (30) 
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A lengthy but straightforward calculation, similar to those 
in Refs. 16 and 20, yields 

Hr T(Q) = Ho(Q) + a l/2 f d 3k (gA (k)e;k,x'ak + H.c.) 

+ (ell + ell*)2/2 - G-ell- ell*·G +~, (31) 

where we have used the abbreviation 

ell = f d 3kk/3rA (k)exp(iklxl)ak • 

Here ~ is a finite self-energy, given by 

~= f d 3k [1/3(k)1 2 +al12g*(k)/3(k) 

+ a l/2g(k)/3 * (k)]. 

(32) 

(33) 

We have to estimate each term in (31). As an example, we 
discuss the term involving the magnetic field. For all 
1t/J)ElJ(H b/2 ) we have 

I (t/JI (G·ell + ell+·GIt/J) I 
3 

<2 L IIG;t/JII'II<I>;t/J1l 
;=1 

<IIHb/2t/JII'C(A) 'IIH b~~t/JII<C(A)IIHb/2t/J112, 

where C(A) -+0 as A-+ 00. 

Hence 

(34) 

Estimating the remaining terms in analogy to Ref. 3 (see Sec. 
2.2 in Ref. 3), it follows that for all E> 0 there exists a A < 00 

such that 

(35) 

where b(A) is uniform in r< 00 and Q. Mimicking Froh­
lich's proof (see Theorem 2.4 in Ref. 3) we get the following 
theorem. 

Theorem 3.1: Let A be fixed and r-+ 00. 

norm-lim W - Hr T(Q»)-I = W - HT(Q»)-I 
r-oo 

exists, where W - H T (Q») is the resolvent of a unique s.a. 
operator H T (Q) bounded from below. Here H T (Q) can be 
related to the Hermitian forms induced by (35) by a variant 
of Friedrich's extension theorem (see Nelson I6 ). 

s-lim exp( TrA ) ==exp( T ooA) 

exists. Therefore 

H(Q)==exp( - TooA)HT(Q)exp(TooA) 

is self-adjoint and bounded below. 0 
Again, we follow Frohlich (Theorem 2.7 in Ref. 3) and 

obtain that Theorem 2.2 is even valid in the limit r -+ 00, i.e., 
the, following lemma. 

Lemma 3.2: Let E(Q) denote the ground-state energy 
of H(Q). Suppose that the momentum Q is such that 

inf(E(Q- (0,k2,k3 ») + l-E(Q»=.:l(Q»O. (36) 
k 

Then the interval [E(Q),E(Q) + .:l(Q) [ belongs to the 
discrete part of spec H ( Q ) . 

1501 J. Math. Phys., Vol. 29, No.6, June 1988 

IV. NONDEGENERACY OF THE MOMENTUM 
DECOMPOSED GROUND STATE 

Keeping in mind that we intend to apply a generalized 
version of the Perron-Frobenius theorem, it is useful to con­
sider a slightly different cutoff Hamiltonian H ~ (Q). (Of 
course, the cutoff is removed later.) In doing so, we now 
replace in (6c) and (9a) the coupling g(k) by 

gn(k)== -g(k),un(k 1) 

== -g(k)(O(n - kl) 

+ O(kl- n)exp( - (kl_ n»), (37) 

where 

k12=k~ +k~. (38) 

Note that 

gn (k)eL 2(R3
), for n < 00. (39) 

Additionally, for the first component of the phonon Fock 
space we now choose the q representation (Schrodinger rep­
resentation) instead of the momentum representation. In 
this new representation the Hamiltonians read 

H~(Q) =Ho +H;N' Ho = f d 31btbl +G,2/2, 

(40) 

H;N = (2; yl2n f d 31,un (kl) 

X Ko(k l(XI - q) )(b, + b ,+ ), (41) 

where now 

G' = (PI,Bx I + Q2 - Pi,Q3 - Pi), 

b, = (21T)-1/2 f dklak exp(iklq), (42) 

and 

P;=fd 31k;b,+b" i=2,3, 1= (q,k2,k3 ), (43) 

and where Ko(x) denotes a strictly positive Bessel function 
of imaginary argument. By a canonical transformation, 
analogous to that in Sec. III, one proves for all 
lIP ),I<I»ElJ(H 0) and for {f < inf spec H(Q), 

lim (IP I(H~ (Q) - {f)-II<I» = (IP I(H'(Q) - 5)-11<1», 
n-oo 

(44) 

whereH'(Q) is s.a., bounded below, and has the same spec­
trum as H(Q). Because of (39) the following expansion 
converges in norm: 

(H~ (Q) _ {f)-I 

00 

= (Ho _{f)-I L [( -1)H;n(Ho _{f)-I]m. 
m=O 

(45) 

Computing the kernel 

(Yl ® (Olbl;" ·b,~.I(H~ (Q) - {f)-llb,7" 'b,: 10) ® Ix), 

u,u'ElNo, (46) 

we see by inspection of ( 45) that (46) is strictly positive for 
a > 0: With respect to the electron coordinate in the Schro-
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dinger representation (i.e., with fixed positive phonon wave 
function), (H b - {}) -I is positivity improving as resolvent 
of a harmonic oscillator. With respect to the phonon coordi­
nate, (H b - {}) -I is positivity preserving and it preserves 
the support. Furthermore, H ~n is positivity preserving with 
respect to the electron coordinate because of the positivity of 
Ko. Moreover, for a suitable choice of m in (45) it can be 
achieved that 

(Yl ® (Olbl ;' "bl)( - H~n(Hb - {})-I)"'lb l; "'bl~ 10) 

®lx»O. (47) 

Consequently, (H ~ (Q) - {} ) - 1 is positivity improving in 
the chosen representation. Since (46) is monotonically in­
creasing with n, we get with (44) that (H' - {}) -I is posi­
tivity improving. From Sec. III we know that under condi­
tion (36) infspec H'(Q) = E(Q) is an eigenvalue of 
H'(Q). Therefore (see, e.g., Ref. 19) E(Q) is a simple eigen­
value, or, equivalently, the ground state is nondegenerate. 

V. BOUNDS ON THE GROUND-STATE ENERGY 

Lemma 5.1: For the ground-state energy E( Q) we have 
the bounds 

(i) E(Q)<E(O) + QV2, 

(ii) E(Q»E(O). 

(48) 

(49) 

Proof (i) follows from the fact that E(Q) - QV2 is a 
concave symmetrical function of Q3' since the Hamiltonian 
H(Q) - QV2 couples linear to Q3' (ii) We use the same 
procedure as in (37) and (40)-(43) transforming now the 
third component of the phonon coordinate into the Schro­
dinger representation, i.e., 

k12 = ki + kL 1= (k l ,k2,q). 

Ihereby ~e obtain new Hamiltonians Bn (Q),flOPh' 
G(Q)2/2, H In , and the phonon momentum operator P. Be­
cause of Theorem 3.1, it suffices to show (49) for n < 00. One 
easily sees (e.g., by a Dyson expansion) that 

"" "" "" 2 "" 2 exp( -tL)=exp(-t(Hoph +HIn +G I/2+G 2/2») 
(50) 

is positivity preserving for t> 0. Now, we follow an idea of 
Gross21 and write 

exp( _ t(Q3 ~ P3)2) 

= (211't)-1/2 f dyexp( -~)exp(iY(Q3-P3»)' (51) 

Hence, we have, since exp( - iyP3 ) preserves positivity, 

lexp( - tG3(Q)2/2)exp( - fL)IIP)1 

< (211't)-1/2 f dyexp( -~;) 
xexp(iyP3)exp( - fL)IIIP I) 

<exp( - tG3 (Of/2)exp( - tL)IIIP I), 

for lIP )ED(Bn ). 

One proceeds by induction to obtain 
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(52) 

I (exp( - tG3(Q)2/(2k»)exp( - tL Ik»k lIP) I 

< (exp( - tG3(0)21(2k))exp( - tLlk»klllP I), (53) 

which-because of the Trotter product formula-implies 
finally 

lIexp( - tBn (Q»)IIP ) II <llexp( - fBn (O»)II'IIIP II· (54) 

Hence (49) is established. 
From Lemma 5.1 it follows immediately that (36) is 

fulfilled, if 

Q~ <2. (55) 

We note that we can prove, using a new functional inte­
gral method developed by Gerlach et 01.,22 that the contin­
uum edge of H(Q) begins exactly at the point E(O) + 1 
involving scattering states with one real phonon (see Dev­
reese23 for a review). This yields the bound 

E(Q)<E(O) + 1. (56) 

VI. ANALYTICAL PERTURBATION THEORY 

To establish analytical properties in Q, a, and B, we 
start from the canonically transformed Hamiltonian 

Hr T(Q) =Hr T(Q,J(i,B) , see (28). Let now Q,a,Bbe fixed, 
where Q3 < 2, a>O, B> 0. We consider small deviations 
around these fixed parameters. The Q2 dependence is trivial. 
Concerning the Q3 dependence we have 

Hr T(0,Q2,Q3 + K),J(i,B) 

= Hr T(Q,J(i,B) + K(Q3 - P3 - ct>3 - ct>3*) + ,(2/2. 

(57) 

It is easily seen that P3 is form bounded: 

IP31<aHr T(Q,J(i,B) + b, for r<oo. (58) 

Therefore, the associated operators H T( (0,Q2,Q3 

+ K),J(i,B) are a holomorphic family of s.a. operators of 
type (B) in K in the sense of Kato. 17 The a dependence can be 
treated in a similar way: 

Hr T(Q,J(i + y,B) = Hr T(QJ(i,B) + yH" r' (59) 

The estimations in Ref. 3 used in Sec. III show that H " r is 
form bounded with constants independent of r (r< 00 ). 

Hence H T(Q,J(i + y,B) forms a holomorphic family of 
type (B) in the sense of Kato in y, too. 

The dependence on the magnetic field strength B is 
more difficult. We use a scaling transformation 

x=B 1/2XI' p=B -1/2pl , 

ak =B3/4aB"'k' ak+ =B 3/4ajjll'k' 

(60) 

(61) 

Written in these new operators the resulting Hamiltonian 
it T (Q) has theform 

-2 

HrT(Q) =B~ + f d 3kak+ak +B I/2a l
/2 

x J d 3kg;d k )(exp(ik)x)ak + H.c.) 

+ B 3/2 (q, + q,+)2/2 

-B 5/4(G·q,+q,+,ch+l:, (62) 
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where G and Ci are given as in (8), (32) replacing the old 
operators with the new ones and the old quantitiesp(k), A, 
r, Qwith 

P(k) = -2a1l2g,(k)8(k-A)/(2+Bk 2
), (63) 

A=B- I / 2A, r=B- I / 2r, Q=B- I / 2Q. (64) 

Note that the operators X, p, Ok' 0k+ fulfill the same commu­
tator relations as XI,PI' ak , a:. Therefore, ii,T(Q) has the 
same spectrum as H, T (Q). More properly, the Hamiltonian 
ii, T(Q) is obtained from H, T(Q) by a canonical transfor­
mation, what is easily seen using Wigner's theorem (see 
Bargmann24

). Now, theB dependence manifests itself main­
ly as simple prefactors before the single parts of the Hamilto­
nian iI, T( Q). It is easily seen by developing (63) in its pow­
er series that 

ii, T(Q,ra,B + E) 

- T r:: ~ (n) r:: = H, (Q,,,a,B) + ~ ~G, (Q,,,a,B), 
n=1 

where in the sense of forms 

jEj<B, 

(65) 

jG~n)(Q,ra,B)j..;;;c'n(a'ii;(Q,ra,B) +b'), for r..;;;oo. 

(66) 

Therefore we can repeat our statement that we are dealing 
with a holomorphic family oftype (B) in E. It now follows 
from standard perturbation theory (see Kato17

) and from 
the fact that E(Q) is an isolated simple eigenvalue that the 
ground-state energy E( Q) is jointly real analytic in a,25 B, 
and Q for a>O, B> 0, Q ~ < 2. The same holds true for the 
energies of the discrete excited states lying in the spectral 
interval [E(O),E(O) + 1 [, where we have to exclude possi­
ble degenerate points.26 Furthermore, the associated wave 
functions are analytic in a, B, and Q. This, in tum, has im­
mediate consequences on expectation values of operators 
which are independent of a, B, Q like the number of virtual 
phonons or the polaron radius, etc. (see Peeters and Dev­
reese9

). Again, all these quantities are analytic in a, B, and 
Q. From Lemma 5.1 we know that the ground-state energy 
EF(a,B) of the original Hamiltonian HF is obtained by tak­
ing E(O). Especially, EF(a,B) is analytic in a and B. 

Another quantity, which is of interest, is the magnetic 
polaron mass. Peeters and Devreese7 have defined parallel 
and perpendicular magnetic polaron masses in the aniso­
tropic Feynman approximation. One way to define a parallel 
magnetic polaron mass m" a priori without using any ap­
proximation is 

m" 
a2

E(Q) I . 
aQ~ Q"'O 

(67) 

Another possibility to define a cyclotron mass m* (depend­
ing on a and B) at weak or intermediate magnetic fields is 

EI(O) -E(O) =BI(2m*), (68) 

where E I ( Q) is the energy of the first excited state, i.e., the 
second Landau level. It follows immediately that both 
masses m" and m* are analytic in a and B. 
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VII. EXTENSION TO OTHER PROBLEMS 

First, the dispersions and the coupling can be general­
ized to 

aI(k) = aI(k) >alo > 0, (69) 

g(k) =g(k), f d 3k ~~ij: < 00, c>O. (70) 

Additionally, performing the scaling transformation (60), 
(61 ), we have to assume that g( k) is representable as a finite 
or infinite linear combination of powers kP(peR) in a do­
main of R3. Then, the same proof goes through with two 
exceptions: The uniqueness proof of the ground state and 
Lemma 5.1 (ii) have to be modified. The condition alo > 0 
cannot be weakened with our methods, since the gap in the 
spectrum, which makes perturbation theory possible, does 
not remain. For more singular couplings g(k) one has to 
renormalize in a well-known way (see NelsonI6

). 

Furthermore, the space dimension d is not relevant for 
our proof, if we take 

jg(k) j2_k I-d. (71) 

Several branches of optical phonons can easily be included in 
the proof. Whether or not we consider a discrete k summa­
tion or a k integration has no influence on the phase transi­
tion problem. The methods worked out in Secs. II and III are 
applicable, if the unperturbed Hamiltonian with discrete, 
cutoff k sums has a compact resolvent, where conserved 
components of the total momentum are replaced by C 
numbers. For example, the problem of a polaron in an exter­
nal potential V(x), where V(x) --+ 00 as jxj--+ 00 is tractable. 
Another example concerns the polaron in an external uni­
form electric field. Since the resulting Hamiltonian is un­
bounded, it has to be renormalized. We cut off the potential 
as follows: 

V(x) = {jejEX I, forxl>L, 
for XI <L. 

(72) 
00, 

Then, all results concerning the ground-state energy, etc., 
hold. Especially, the ground-state energy is analytic in the 
coupling parameter a and the electric field strength 
E(E>O). 
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Spectral properties of a three-dimensional optical polaron, bound in an external potential, are 
studied. If the associated one-particle Hamiltonian has a bound state, it is proved that the 
ground-state energy of the polaron and expectation values of the ground state are analytical 
functions of the coupling parameter a and the potential strength {3. Especially in the case of a 
Coulomb potential, all changes in the polaron state are continuous, disproving claims of 
several variational calculations. If, on the other hand, the one-particle Hamiltonian has no 
bound state, the existence of a pinning transition is shown for the polaron. As physically 
relevant potentials for the pinning transition, a spherical square well and a screened Coulomb 
potential are considered. Their phase diagrams are given in the effective-mass approximation. 

I. INTRODUCTION 

An electron, bound to a defect in polar semiconductors 
(such as an impurity or a vacancy) and interacting with the 
longitudinal optical phonons, is called a bound polaron. 
Since the earlier papers of Buimistrov and Pekar 1 and Platz­
man2 and Larsen,3 this important problem has received con­
siderable attention, as recent publications show (see, e.g., 
Adamowski4 and the references therein, as well as Mason 
and Das Sarma5 and Degani and Hipolit06

). The present 
paper is concerned with analytical and spectral properties of 
a polaron in a generalized external potential V(r). 

The bound (three-dimensional) polaron is described by 
the well-known Frohlich Hamiltonian,7 which reads as fol­
lows: 

H F (a,{3) = HOph +p2/2-{3V(r) +al
/
2
HIF' (1) 

where 

(2) 

and 

HIF = J d 3k [g(k)a(k)exp(i kr) + H.c.]. (3) 

Here, rand p are the position and momentum operator of the 
electron, respectively, and k, w(k), a+ (k), and a(k) are the 
wave vector, frequency, creation, and annihilation operators 
of the phonons, respectively (i.e., a scalar Bose field); g(k) 
denotes the electron-phonon coupling, a being the coupling 
parameter. Setting m = Ii = 1, we keep a and (3 as the only 
parameters (a,{3>O). 

Henceforth, the following conditions (4)-(6) on w(k) 
and g(k) are assumed: 

inf w(k) =Wo > 0, 
k 

(4) 

w(k) being a continuous function ofk. Thus (4) implies that 
we are dealing with optical phonons. Furthermore we as­
sume 

(5) 

and reflection symmetry 

w( - k) = w(k), g( - k) = g(k). (6) 

For more UV-singular couplings g(k) one has to renormal­
ize by the scheme proposed by Nelson.8 For the potential 
V(r) we treat the case 

VER + L ': (R3
), (7) 

where R is the Rollnik class 

(8) 

Statement (7) means that for any positive E, Vis represent­
able as V = 1: + gE' where1:ER and IgE I is bounded by E. 

Additionally, we assume that the associated one-particle 
Hamiltonian 

(9) 

is essentially self-adjoint and bounded from below and has at 
least one bound state with strictly negative energy Eo({3). 
The last assumption is abandoned in Sec. IV. 

Physically most relevant cases are w(k) =Wo > 0 (i.e., 
dispersionless optical phonons) and g(k) -11k for polar 
scattering or g( k) - 9 (ko - k), ko > 0, for deformation po­
tential scattering. Possible choices for the external potential 
V(r) are a Coulomb potential [V(r) = 1Ir], a screened 
Coulomb potential [V(r) =exp( -kor)/r, ko>O], or a 
spherical square well [V(r) = 9(a - r), a> 0]. The case 
of anisotropic bound polarons is included in our general as­
sumptions (4 )-( 6), too. 

The analytical properties of the ground-state energy of 
an optical polaron, subject to an external potential V( r), are 
known only for a small class of potentials: In the case offree 
optical polarons (V=O) Spohn9 recently proved the analy­
ticity of the ground-state energy using the functional analyti­
cal work of Frohlich 10 whereas Gerlach and the author 1 1.12 

showed that the (formal) free energy is analytic in a and in 
the temperature T for 0 < T < 00. In Ref. 13, the methods of 
Frohlich are generalized to an optical polaron, exposed to a 
homogeneous magnetic field or to an external potential V( r) 
with lim r _ 00 V( r) = 00, implying the analyticity of the 
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ground-state energy in a and {3. Apparently, this is another 
class of potentials as the class of impurity potentials, defined 
by (7). We remark that a third interesting class of potentials, 
which is not treated in this paper, concerns periodic poten­
tials. They are, however, well studied in connection with 
quantum Brownian motion (see, e.g., Fisher and Zwerger,14 
and references therein). 

The aim of the present paper is twofold. 
First, we prove that the ground-state energy as well as 

the mean number of virtual phonons and the polaron radius 
of a bound polaron are analytical functions of the coupling 
parameter and the potential strength. A crucial assumption 
for this result is that the associated one-particle Hamiltonian 
(9) has a bound state. For long-range potentials (e.g., for a 
Coulomb potential) such a bound ground state exists for any 
potential strength. 

Consequently, for long-range potentials a discontinuous 
"phase transition" (i.e., a nonanalyticity of the ground-state 
energy) does not exist. From the beginning of the polaron 
story up to now, the question of whether or not an optical 
polaron, bound in a Coulomb potential, shows up a "phase 
transition," was controversially discussed in the literature. It 
was mainly studied with the help of variational calculations 
yielding an upper bound on the exact ground-state energy. 
The physical background of such a "phase transition" be­
comes clear in the work of Toyozawa.15 He gets a transition 
from a shallow state, formed by the external potential, to a 
deep self-trapped state, caused by a lattice distortion. This 
process is called shallow-deep instability. 

On the one hand, Larsen,3,16 Tokuda, Shoji, and Yon­
eya,17 and Tokuda 18 obtain a variational bound on the 
ground-state energy of a bound polaron that exhibits a non­
analyticity, whereas Matsuura 19 and Mason and Das 
Sarma,5 on the other hand, emphasize that their results are 
smooth quantities. In view of our proof, we remark that the 
nonanalyticities quoted above are nothing more than arti­
facts of the approximations made, but not intrinsic proper­
ties of the Frohlich Hamiltonian. Takegahara and Kasuya20 

describe different states of the bound polaron by different 
sections in the a-{3 plane. However, note that, in view of our 
result, the properties of a bound polaron cannot bl;: described 
within a phase transition concept. 

The situation becomes quite different for an attractive 
three-dimensional short-range potential. This is the second 
concern of the present paper. In this case, the potential 
strength must exceed a critical value, to generate a bound 
ground state of the one-particle Hamiltonian (9). This phe­
nomenon is well understood in atomic physics; we refer, for 
instance, to Glaser et al.,21 Reed and Simon,22 and Simon.23 

As the potential strengh {3 increases, a bound ground state 
arises from the continuum edge; the ground state undergoes 
a localization transition, the associated ground state energy 
being nonanalytic in {3. 

It is an interesting task to study the influence of the 
phonon interaction on this transition. In the framework of a 
discrete model for an exciton, this was examined by Shino­
zuka and Toyozawa.24 In the adiabatic approximation, they 
found a localization transition of the ground state, which 
they called impurity assisted self-trapping. It is connected 
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with a nonanalyticity of the ground-state energy. Shinozuka 
and Toyozawa also give the phase diagram in the a-{3 plane 
[see Fig. 2 (b) in Ref. 24) Note, however, that they get even 
a discontinuous transition for {3 = 0, which was shown25 to 
be an artifact of their approximation. 

It was Spohn26 who described the polaron approxima­
tively as a single particle with phonon-induced altered mass. 
In this so-called effective-mass approximation, it turns out 
that the localization transition persists for phonon coupling 
a> O. Its critical line in the a-{3 plane, however, does not 
intersect the a axis. Spohn called this transition pinning 
transition; we shall use this term, too. In this paper, we prove 
that the exact ground state undergoes a pinning transition 
for any a>O. Consequently, the effective mass approxima­
tion reflects the right qualitative behavior of the analyticity 
of the ground-state energy. Furthermore, we discuss the re­
lationship ofthe exact critical line to the one obtained in the 
effective mass approximation. 

The organization of the present paper is as follows: In 
Sec. II, we show that H(a,{3) is a well-defined self-adjoint 
operator. If the one-particle Hamiltonian has a bound state, 
we prove that the ground-state energy belongs to the discrete 
part of the spectrum of H(a,{3) and is nondegenerate. In 
doing so, we make use of functional analytical methods of 
Frohlich, 10 which clarified spectral properties of the free op­
tical polaron. Moreover, we determine the continuum edge 
of H(a,{3) and show the stability of bound states under the 
influence of the phonon interaction. The consequences (like 
analyticity properties of the ground state), following from 
Sec. n, and extensions of our theory are pointed out in Sec. 
III. Section IV is devoted to a discussion on the pinning 
transition. Applying our methods of Sec. II, we prove the 
existence of a pinning transition and discuss further proper­
ties of the pinning transition and the effective-mass approxi­
mation. In particular, a spherical square well and a screened 
Coulomb potential are considered. In Sec. V, we conclude 
our results. 

II. SPECTRAL PROPERTIES OF A BOUND POLARON 

It will be profitable to transform the Frohlich Hamilto­
nian (1) by a Lee-Low-Pines transformation. Defining the 
unitary operator 

U = exp ( - i Pr), 

where 

(10) 

(11) 

is the phonon momentum, we shall discuss hereafter the uni­
tarily equivalent Hamiltonian 

H(a,{3) == U -IHF (a,{3) U = H Oph + !(p - p)2 - {3 V(r) 

+ a 1/2H I · (12) 

In (12), HI is given by 

HI = Jd 3k[g(k)a(k) +g*(k)a+(k»). (13) 

To begin with, we pose the Frohlich Hamiltonian on a 
mathematically rigorous level. We first specify the underly­
ing Hilbert space. It is taken to be K = F ® L 2 (R3), where 
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F= ; (L 2(R3 )j0m (14) 
m=O 

is the usual Fock space for the phonons, ® denoting the 
symmetrical tensor product. 

In (13), we replace the coupling g(k) by 
g(k)e(p - k), where p < 00 is a UV cutoff, which makes 
g(k) square integrable and which is to be removed later. 
Thereby we obtain the Hamiltonian H(a,/3,p) [resp. 
HI (p) ]. Following Nelson,8 it is easily proved that HI (p) is 
a Kato potential with respect to HOph with relative bound 
zero. Since HOph + (p - P)2/2 - {3V(r) is essentially self­
adjoint, the Kato-Rellich theorem assures us that H(a, {3, 
p) is bounded from below and essentially self-adjoint, too. 

We now construct a discrete momentum lattice r d for 
the phonon momentum space R3 in analogy to Frohlich 10 

and Glimm and laffe27: 

rd = {kEJR3lkj = nj/Ad, njEZ, Ad = 2dAo, 

AoEJR+, j = 1,2,3}. (IS) 

To each kEJR3 we associate a kldEr d' namely 

kid = (n l ,n2,n3 )/ Ad' nj = [kjAd ], (16) 

where 

[ ] == {largest integer ';;;a, if a < 0, 
a smallest integer> a, if a;>O. 

Furthermore, we define a subspaceSd r;,L 2(JR3) ofstepfunc­
tions: 

(17) 

For gEL 2(R3) let gld denote the orthogonal projection of g 
onto S d' This notation is readily generalized for locally inte­
grable g. Then, let 

(18) 

and 

F~==C!}s~0m»)®Fd' (19) 

Clearly, 

F= Fd ®F~. (20) 

Now we are able to define a new d cutoff Hamiltonian 

Hd (a,p,p) = HOPhd + (p - Pld )2/2 - {3V(r) 

+ a l
/
2H Id (P), (21) 

with 

HOphd = Jd3k{t)(k)lda+(k)a(k), (22) 

Pld = Jd3kklda+(k)a(k), (23) 

and 

HId(P) = Jd 3k [g(k)lda(k) +g*(k)lda+(k» 

Xe(p - k). (24) 

Using the same methods as for H(a,/3,p), one easily verifies 
that Ho(a,/3,p) is self-adjoint and bounded from below, too. 

Moreover, we define a new subspace Jr;,Sd by 
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(25) 

Let 

(26) 

and 

W== ; J@n, 
m=O (27) 

W 1 = Wl@W, 

Clearly, Fd = WEll W 1 and H d(a,{3,p) as well as HId(P) 
leave W invariant. 

We remark that there exists a canonical isomorphism 
between the Hamiltonian Hd (a,{3,p) I W ® L 2(R3) ( I de­
notes, as usual, the restriction) and the Hamiltonian 
H( a,{3,N) of the interaction of an electron with N == I r d I 
phonon modes, confined to the Hilbert space 
F(N) ®L 2(JR3), where 

F(N) = ; (f'f{iJm, (28) 
m=O 

which was pointed out by Glimm and Jaffe. 27 Clearly, N 
depends on d andp. Therefore, for the sake of simplicity, we 
consider henceforth the latter Hamiltonian 

H(a,/3,N) = Ho(N) + a l
/
2HI (N), 

with 
N 

Ho(N) = L {t)(kj )a+ (kj )a(kj ) 
j=1 

N 

P(N) = L k;a+ (kj )a(kj ), 
j=1 

N 

HI (N) = L [g(kj )a(kj ) + g* (kj )a+ (kj )]. 

j= I 

(29) 

(30) 

(31) 

(32) 

The N dependence of H (a,{3,N) should not be confused with 
thepdependenceofH(a,/3,p). ThequantitiesH(a,{3,N) and 
H(a,/3,p) are different Hamiltonians. In (30)-(32), 
{kj I jEN N} = rd' At the end of this section, we remove the 
discrete momentum lattice. Then we come back to our origi­
nal Hamiltonians H d (a,{3,p) and H (a,{3,p). 

In the case {3==0, the spectral properties are well under­
stood. It has been shown 10 that H(a,O,N) is representable as 
a direct integral: 

(33) 

Q being the "e-number" of the conserved total momentum 
(see also Ref. 28). In Ref. 28, it is proved that 

inf{infspec HQ (a,O,N») = infspec HQ=o (a,O,N), (34) 
Q -

and Frohlich 10 has shown that the normalized ground state 
1<1>0) of HQ=o (a,O,N), lying inF(N), is nondegenerate up to 
an arbitrary phase factor. We are now prepared to prove the 
following proposition. 

Proposition 1: 

(35) 

Proof: By Wigner's theorem, there exists a unitary oper-
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ator U such that 

Ua(kj)U-'=a( -kj ), 

Ua+(kj)U- ' =a+( -k
j
), 

for all kjEr d' Then, we find 

UHQ=o (a,O,N) U- 1 = HQ=o (a,O,N) 

and 

UP(N)U- ' = - peN). 

Because of the nondegeneracy of 1<1>0), (38) implies 

(36) 

(37) 

(38) 

(39) 

UI<I>o) = exp (u)I<I>o), AER. (40) 

Therefore, by (39) and (40), (<I>oIP(N) 1<1>0) 
- (<I>oIP(N) 1<1>0)' which implies (35). D 
We now determine the essential spectrum of H( a,{3,N). 
Lemma 2: 

O'ess(H(a,{3,N») = O'ess(H(a,O,N»). (41) 

Proof By Weyl's theorem (see, e.g., Ref. 22), we have to 
prove that V is a relative form compact perturbation, i.e., 
that for ~EI: spec H(a,{3,N) U spec H(a,O,N), 

(H(a,{3,N) - ;)-1 _ (Ho(N) + a l12HI (N) _ ~)-I 

= {3 (H(a,{3,N) - ~ )-1 V(Ho(N) 

+ a l/2HI (N) _ ~)-I (42) 

is compact. We use the norm-convergent resolvent expan­
sions 

(H(a,{3,N) _ ~)-I 

= f [(Ho(N) -{3V-~)-'(-a'/2HdN»)r 
n=O 

X(Ho(N) -{3V_~)-I, (43) 

(Ho(N) + a l/2HI (N) _ ~)-I 

= (Ho(N) _ ~)-I 

xCto [ -a l12HI (N)(Ho(N) - ~)-Ir). (44) 

For Re ~ sufficiently small and negative, the second factor of 
( 44) as well as the first factor of ( 43) define bounded opera­
tors. Therefore, to establish the compactness of ( 42) it is suffi­
cient to show that 

(45) 

is compact. Now, we observe that the operators a+ (kj ) and 
a (kj ), commute with (45). Hence we can classify the 
spectrum of ( 45) by a set of natural numbers 
L-=(nl, ... ,nN ), njEN°, where the spectrum of (45) tends 
to zero as I L I -+ 00. Therefore, all that remains to prove is that 
( 45), restricted to a subspace with L fixed, is compact. Choos­
ing new momentum and position operators 

N 

Pn = P - L kjnj, 
j=1 

(46) 

(47) 

this problem is clearly the same as studying the one-particle 
problem 
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(48) 

The compactness of (48) was shown by Reed and Simon (see 
pp. 117-118 in Ref. 22). This implies that (42) is compact, 
too, and our proof of Lemma 2 is finished. D 

We are now able to prove the existence and stability of 
bound states and state the following theorem. 

Theorem 3: Let N(H) denote the number of bound states 
of the Hamiltonian H, i.e., the number of states lying below 
the continuum edge. Then, 

N (H(a,/3,N»)>N (He ({3»). (49) 

Proof The idea of the proof is to apply a generalization of 
the Rayleigh-Ritz principle. Let l'Pn) be the normalized ei­
genfunctions of the one-particle Hamiltonian (9): 

He ({3) l'Pn) = En l'Pn), 

with En <0, nEN°, n <N(He({3»). (50) 

Consider the "trial functions" l'Pn) ® I <1>0) ED (H(a,{3,N»). 
Because of Proposition 1, we obtain 

('Pn I ® (<I>oIH(a,{3,N) 1<1>0) ® l'Pm) 

= onm (<I>oIHQ=o (a,O,N) 1<1>0) 

+ ('Pn IHe ({3) l'Pm) - ('Pn Ipl'Pm)( <l>oIP(N) 1<1>0) 

= 0nm(infspecH(a,O,N) +En). (51) 

Hence the Rayleigh-Ritz technique tells us that we have 
found upper bounds on the exact bound states, which-be­
cause of Lemma 2-belong to the discrete part of spec 
H(a,/3,N). Consequently, (49) is established. D 

Returning to our original Hamiltonian H(a,/3,p), we 
state the following lemma. 

Lemma 4: Let E(a,{3,p) = infspecH(a,{3,p) and letf.s 
be a positive C 00 function on R withf6 (0) = 1 andf.s (x) = ° 
for x>o. Thenf6(H(a,/3,p) - E(a,/3,p») is compact, if 

0< a(p) -=min(wo,E(a,O,p) - E(a,/3,p») > 0. (52) 

Proof First, via the isomorphism mentioned above all 
our spectral results for H(a,{3,N) are directly transferable to 
theHamiltonianHd (a,{3,p) ~ W®L2(R3). 

Let 

Ed (a,{3,p) = inf SpecHd (a,{3,p) ~ Fd ® L 2(R3
). 

The same calculations as in Ref. 13 (the second step of the 
proof of lemma 2.1 in Ref. 13) yield 

infspec(Hd(a,/3,p) ~ Wl®L2(R3»)>wo+Ed(a,{3,p). 
(53) 

Since Fd = W ffi Wi, it follows from Lemma 2 that 

f6(Hd(a,/3,p) -Ed(a,{3,p») ~ Fd ®L 2(R3) 

is compact, if 

0< ad == min (wO,Ed (a,O,p) - Ed (a,{3,p»). 

From Theorem 3 we know that ad > 0. 
We apply this argumentation once more: The same calcu­

lations as in Ref. 10 (Corollary 2.2.iii) can be used to show 
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infspecHd(a,/3,p) ~ F~ ®L 2 (R3) 

>Wo + infspec Hd(a,/3,p) ~ F®L 2 (R3). 

Since F = Fd Ef') F~, it follows that 

infspecHd(a,/3,p) ~ F®L2(R3) = Ed (a,/3,p) 

and that 

fo(Hd(a,/3,p) -Ed (a,/3,p») ~ F®L 2(R3
) 

(54) 

is compact, if 0 < fl. d • The methods used by Frohlich (Lemma 
2.1 in Ref. 10) show that Hd(a,/3,p)-.H(a,/3,p) in norm 
resolvent convergence as d -. 00. Consequently, 
Ed (a,/3,p) -.E(a,/3,p) as d-. 00 and fo(H(a,/3,p) 
- E( a,/3,p») remains compact if 0 < fl. (p). The same proof 

as in Theorem 3 results in fl. (p) > 0, which completes the 
proof of Lemma 4. 0 

All what remains to do is to remove the UV cutoff p. 
Theorem 5: Let E(a,/3) = infspec H(a,/3) andfo as in 

Lemma 4. Then, j8(H(a,/3) - E(a,{3)) is compact, if 0 < fl. 
where 

(55) 

Proof Transforming the Hamiltonian H(a,/3,p) with the 
canonical transformation eT

, where 

(56) 

with 

CpA (k):=: C(k) 

- a Il2g(k)8(g - k)8(k - A)/(w(k) 

+ k 2/2), ° < A <p, (57) 

we obtain 

eTH(a,/3,p)e- T 

:=:H T(a,/3,p) = Ho(/3) + a l/2HI (p) + (Z + Z+)2 /2 

- (p - P)·Z - Z+ (p - P) + l:., 
, (58) 

where 

and 

H o(/3) = H Oph + (p - P)2/2 - /3V(r), 

Z = f d 3k kCpA (k)a(k), 

l:. = f d 3k [w(k) lC(k) 12 + a I/2g*(k)C(k) 

+ a I/2g(k)C*(k)] < 00. 

(59) 

(60) 

(61) 

Again we can use Frohlich's methods (see Sec. 2.2 in Ref. 10) 
to prove the following facts: For all € > ° there exists a A < 00 

such that 

IH T(a,/3,p) -Ho(/3) 1 <€Ho(/3) +b(A), (62) 

where b(A) is uniform inp< 00. Furthermore 

exists, where H T (a,/3) is a unique self-adjoint operator 
bounded from below. Also 

s-lim exp( TPA ) =exp (T aoA) 
p-ao 
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exists as a unitary operator. Therefore 

H(a,/3):=:exp( - TooA)HT(a,/3)exp(TaoA) 

is self-adjoint and bounded from below, too. Finally, the 
norm-resolvent convergence (63) together with Lemma 4 im­
plies thatfo(H(a,/3) - E(a,{3)) remains compact foro < fl.. 0 

We now determine the continuum edge of H(a,/3). 
Theorem 6: Let E(a,/3) = infspec H(a,{3). The contin­

uum edge begins exactly at the point 

n:=:min(E(a,/3) + Wo, E(a,O»). (64) 

Proof This n is a lower bound for the continuum edge 
because Theorem 5 implies that all eigenvalues smaller than n 
are discrete. Furthermore, without loss of generality we may 
assume that the number of eigenvalues being smaller than n is 
finite. Otherwise these infinite eigenvalues have to accumu­
late at nand (64) is trivially proved. 

Suppose first 

E(a,O) <E(a,/3) + WO' (65) 

Since the absolute continuous spectrum of He (/3) begins at 
zero, we can always find functions ItPn)EL 2(R3

) (nEN) with 
(tPn ItPm) = onm and with (tPn IHE (/3) ItPm) = onmEn, where 
En > ° and En -. ° as n -. 00. Choosing the trial functions 
1<1>0) ® ItPn), where 1<1>0) denotes the ground state of the free 
polaron Hamiltonian subjected to total momentum Q:=: 0, we 
calculate, as in the proof of Theorem 3, 

(tPn 1 ® (<1>01<1>0) ® ItPm) = onm 
and 

(tPn 1 ® (<I>oIH(a,/3,) 1<1>0) ® ~m) = 0nm(E(a,O) + En)· 
(66) 

Since En -.0 as n -. 00, a modification of the mini-max princi­
ple (see, e.g., Reed and Simon,22 Theorem XIII. 1 ) ensures us 
that E(a,O) is the bottom of the essential spectrum of 
H(a,/3). 

In the second case 

(67) 

we again use a trial function argument, but now with different 
fuctions involving one-phonon states. By (4) we know that 
there exists a qER3 with w(k) -'Wo as k-.q. Without loss of 
generality we assume q < 00, the case q = 00 can be treated 
quite similarly. We choose €> ° fixed. 

First, we need some definitions. Let U(o,q) denote a ball 
around q with radius O. We construct "disks" D(n) as fol­
lows: 

(68) 

Let H ( q) be the Hamiltonian that results if one replaces p in 
H(a,/3,) by p - q, q being a C-number. Obviously, H(q) is 
unitarily equivalent to H(a,fJ). The ground state of H(q) is 
denoted by tP( q)EJY. Furthermore, we define a projection 
operator PA (A~R3) that annihilates all phonon parts with 
momentum kEA by 

PA = n~lf d3kl··Jd3knXA(kl)··"XA(kn) 

xa(kl )" 'a(kn ), (69) 

where XA (k) is the characteristic function equal to 1 if kEA 

and ° otherwise. 
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We are now able to give the explicit form of our trial 
functions <l>nE' nEN, 

<I> nE = [(P U(E,q) t/I( q») ® <PnE ] III (P U(E,q) t/I( q») ® t/I"E II, 
(70) 

where <PnE is a one-phonon state, <PnE;;'O, whose momentum 
distribution is explicitly given by 

l<PnE(kW d 3k =XD(n) (k)d 3k. (71) 

For E sufficiently small, <I>"E6iY and <I>"E'¢=O. Since 
U(E,q) ;;JD(n) and since the D(n) are pairwise disjunct, one 
calculates 

(<I>"EI<I>mE> =~nm' (<I>"EIH(a,p)I<I>mE> =E,,(E)~nm' 
(72) 

Further inspection of En shows that En (E) ---Wo + E(a,/3,E) 
as n--- 00, where Wo(E) ---Wo and E(a,/3,E) ---E(a,p) as E---O. 
Since E> 0 can be chosen arbitrarily small, again the mini­
max principle tells us that the continuum edge has the upper 
bound Wo + E(a,p>. 

Putting all facts together, we finally finish the proof of 
Theorem 6. D 

The physical interpretation of the two possibilities (64) 
for the continuum edge is easily understood. In the case (67) 
the continuum involves scattering states with one real phonon 
of energy Wo present. On the other hand, if (65) holds, the 
continuum at E(a,O) consists of delocalized electron states. 

Obviously, the Rayleigh-Ritz argument of Theorem 3 
can be done for H(a,/3) , too, If (65) holds, this implies the 
existence and stability of the bound states and gives further­
more simple upper bounds on the associated energies. 

Corollary 7.' Let E(a,O) < E(a,/3) + Wo and let N(H) be 
the number of states of the Hamiltonian H below the contin­
uum edge. Then, 

N(H(a,P»);;.N(He (P», for all a;;.O. (73) 
D 

We know from Theorem 5 that E(a,/3) is an eigenvalue. Now 
we prove the next lemma. 

Lemma 8: The ground state of H (a,/3) is nondegenerate. 
Proof: We represent the underlying Hilbert space now as 

(74) 

where L 2 (Q,dJ-t) is the phonon Q space, which is isomorphic 
. to the Fock space F (see Simon29 for a detailed discussion). If 
one takes the SchrOdinger representation (r representation) 
for the electron coordinate, the operator 

(75) 

acts as a multiplication operator. The operator L can be ap­
proximated by bounded multiplication operators L n , such 
that Ho + Ln ---H(a,p) and H(a,p> - Ln ---Ho in the 
strong resolvent sense as n --- 00 • This holds for arbitrary cutoff 
p'< 00. We know from the proof of Theorem 5 that the opera­
torsHo + Ln andH(a,/3) - Ln are uniformly bounded from 
below. Therefore, Theorem XIII.45 of Reed and Simon22 is 
applicable (see also Ref. 28). This implies that, in order to 
prove Lemma 8, we have to show that exp( - HOph 

- (p - P)2/2) is positivity improving in the chosen repre­
sentation. Wewriteexp( - (p - P)2/2) as Fourier transform 
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exp( - (p - P)2/2) 

= (21T)-3/2fd3A exp( _~A2)eiApe-iAP. (76) 

Now, exp( - HOph) is positivity improving and exp( -up) 
is positivity preserving with respect to the phonon Q space; 
exp( up) acts as translational operator in the r representation 
of the electron coordinate. Since exp( - ti 2) is strictly posi­
tive, we get that exp( - HOpb - !(p - P)2) is positivity im­
proving in the chosen representation. This implies that 
exp( - H(a,/3») is positivity improving and consequently 
E(a,/3) is a simple eigenvalue. D 

Summarizing, we have proved in this section that the 
Hamiltonian H(a,/3) for a bound optical polaron is a well­
defined self-adjoint operator, bounded from below. If the one­
particle Hamiltonian (9) has a bound ground state, then also 
H (a,p) has a discrete bound ground state that is nondegener­
ate. This ground state is separated from the continuous spec­
trum by a gap whose magnitude was exactly determined: It is 
the minimum of the phonon dispersion Wo or the difference 
E(a,O) - E(a,/3);;.IEo(P> I, where Eo(P> is the ground-state 
energy of the one-particle Hamiltonian (9). 

III. CONSEQUENCES AND GENERALIZATIONS 

To begin with, we state that the associated forms of the 
resolvent ofEq. (63) (; - H T (a,/3») - I are an analyticfamily 
of type (B) in the sense of Kat030 in both parameters a (see 
Frohlich lO

) andp (see Simon31
) for a,/3;;'O. Since Lemma 8 

implies that E( a,/3) is an isolated, simple eigenvalue for a;;'O 
[P being such that He (P> has a negative eigenvalue], the 
standard analytical perturbation theory (see Kat030

) is appli­
cable. It follows from Hartog's theorem that E( a,/3) is jointly 
real analytic in a and p in the specified domain. The same is 
true for the discrete excited states, if they are not degenerate. 
Moreover, the associated wave functions are analytic in a and 
p, too. 

Let I t/lo (a,/3) > be the wave function of the ground state of 
H(a,/3). Then the mean number of virtual phonons in the 
ground state is defined by 

N(a,/3) = (t/lo(a,/3) If d 3k a+(k)a(k)lt/lo(a,/3». (77) 

Furthermore, several possibilities were proposed to define a 
polaron radius and a self-induced potential as quantities de­
rived from the ground-state expectation values of HI (see, 
e.g., Peeters and Devreese32

). Clearly, N(a,/3) as well as the 
polaron radius and the self-induced potential are analytic in a 
and p for a;;'O, P as above. 

We conclude that all changes in the bound polaron state 
are not accompanied by a nonanalytical behavior, but are 
smooth transitions. 

We now add some remarks on possible extensions of our 
theory. First, one may consider an optical polaron in arbitrary 
spatial dimension (see Peeters, Wu Xiaoguang, and Dev­
reese33

). The conditions (4 )-( 8) are readily generalized to 
arbitrary dimensions (see Simon31 for an extension of the 
Rollnik condition). Then, the same proof is possible. 

We mention two physical interesting examples. First, 
Sak34 (see also Degani and Hipolit06

) considers an electron 
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that couples to the optical surface phonon modes and is bound 
in the perpendicular direction to a Coulomb potential result­
ing from its image charge. The associated Hamiltonian Hs can 
be cast into the form 

Hs = (QJ - PJ )2/2 + (Q2 - ~)2/2 + P3/2 - flV(r3) 

+liJsJ d 2ka+(k)a(k) +aJ/2J d 2kk- J/2 

xexp( -k3r3)[a(k) +a+(k»). (78) 

The Hilbert space Jf's belonging to Hs is 

Jf's = F ® L 2 ( [ 0, 00 [ ) • (79) 

The parameters QJ and Q2 correspond to the conserved com­
ponents ofthe momentum. To get infspec H s ' one may set 
QJ = Q2 = 0 (see Ref. 28). For V(r3) we do not take 1/r3, as 
Sak does, but for mathematical and physical reasons (see 
Cole35

) we have to take a cutoff potential: 

V { 
1/z, for z>b, 

(z) = 
1/b, forz<b, 

(80) 

where the cutoff b is a strictly positive constant. Without go­
ing into the mathematical details, we remark that our meth­
ods are applicable to Hs' In particular, the ground-state ener­
gy is analytic in a and fl. This is in a marked contrast to the 
work of Tokuda. 18 The above model can be extended to in­
clude bulk phonon effects, which was discussed recently by 
Gu and Zheng.36 

A second example concerns a quasi-two-dimensional po­
laron in polar quantum wells, bound to a two-dimensional 
Coulomb potential, which was studied by Mason and Das 
Sarma.s 

IV. THE PINNING TRANSITION 

Up to now, for all potentials considered, the associated 
ground-state energies are analytic in a or fl. One may ask the 
question the other way around: Which potentials lead to a 
ground-state energy that is nonanalytic in a or fl? This brings 
us back directly to our condition that the one-particle Hamil­
tonian (9) has at least one bound state. In one or two dimen­
sions, it is well known that an attractive potential always leads 
to a bound state. No so in three dimensions; the question of 
whether or not the one-particle Hamiltonian has a bound 
state depends sensitively on the mass of the particle for short­
range potentials. The idea of Spohn26 is to describe the po­
laron problem approximately as a one-particle problem with 
an effective mass m (a) and to study then the occurrence of 
bound states with increasing a. For a suitable static binding 
potential, at a critical coupling a c a pinning transition is ob­
tained, i.e., by the phonon-induced mass enhancement of the 
electron, a new bound state suddenly arises from the contin­
uum. 

To get a connection with our results, we consider a slight­
ly different situation: Let a be fixed and vary fl CBER). For 
the sake of definiteness, let V be an element of the Rollnik 
class R [see (8») and let Vbe negative (V<O). The occur­
rence of bound states of He (fl) is well understood (see Refs 
21-23). The Birman-Schwinger bound shows that for all 
(3eR the number of bound states N(He(fl») is finite and that 
N (He (fl») = 0 for fl < flc' where flc > O. Therefore, 
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inf spec He (fl) is nonanalytic for fl = flc, corresponding to a 
localization transition (pinning transition) of the ground 
state. 

We prove that such a transition is obtained even if the 
electron-phonon coupling is nonzero and state the following. 

Theorem 4.9: Let the potential Vbe in the Rollnik class R 
for spatial dimension d = 3 and let V <0. Let the ground-state 
energy of the one-particle Hamiltonian He (fl) be nonanalytic 
for fl = flc > O. Then the ground-state energy E( a,/3) of the 
bound polaron is nonanalytic for fl = flc (a), where fl c (a) is 
a unique number with 

O<fJc(a)<!3c, (81) 

and flc (a) is continuous in a for O<a < 00. 

Proof: Clearly, E (a,/3) is monotone decreasing (and con­
cave) in fl. From Theorem 6, it then follows that 
E(a,/3) = E(a,O), for fl<O. On the other hand, we know 
from Corollary 7 that E(a,/3) <E(a,O) for fl> flc and that 
E(a,/3) is analytic in fl for fl> flc. Thus E(a,/3) cannot be 
analytic in fl in the total interval [0,/3 c ] because the identity 
theorem for holomorphic functions requires that then 
E(a,/3) =E(a,O). Therefore, there exists a nonanalyticity 
flc (a), with O<fJc (a)<!3c' Atfl = flo(a), E(a,/3) abandons 
the continuum edge. Because of the monotonicity of E( a,/3) 
in fl, E(a,/3) is separated by a gap from the continuum for all 
fl> flc(a). Analytical perturbation theory ensures us that 
E(a,/3) is analyticinfl for all fl> flc (a). Therefore the non­
analyticity flc (a) is a unique number with 0<fJ c (a) <fl c' The 
continuity of flc (a) in a follows directly from analytical per­
turbation theory and from the monotonicity of E(a,/3) in fl. 

o 
We remark that the same proof can be done to show that 

the energy of the nth discrete excited state is nonanalytic at 
the point where it is pushed out of the continuum edge. 

Clearly, flc(O)=fl c and we conjecture that flc(a) is 
monotone decreasing in a and that flc (a) - 0 as a -- 00. An 
estimation onflc (a), which is better than (81), however, re­
quires a nontrivial extension of our result. We leave this as an 
open problem. 

We summarize our results in two figures. In Fig. 1 we 
sketch E( a,(3) for three different fixed values of a and vary fl. 

In Fig. 2, we give a qualitative picture of the phase dia­
gram of the pinning transition in the a-fl plane describing the 

RELATIVE BINDING ENERGY 

@1~ 

a=O 

E(O,I'I) 

FIG. 1. Qualitative picture of the pinning transition: relative binding energy 
versus potential strength {3 for different values of the coupling a. 
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FIG. 2. Phase diagram of the pinning transition (qualitative picture). The 
solid line represents the exact solution, the dashed line the effective-mass ap­
proximation. 

pinning transition from a delocalized to a localized state. 
Let us now discuss the effective-mass approximation 

[i.e., the approximation of the polaron as a single-particle 
with mass m (a) ] in some more detail. For a Coulomb poten­
tial, Mason and Das Sarma5 compare the ground-state energy 
shifts for fixed small a and varied P between the "exact" 
(variational) solution and the effective-mass approximation. 
It turns out that the effective-mass approximation yields an 
overestimation of the energy shift, being asymptotically cor­
rect for small P but becoming worse for intermediate and 
large p. Transferring this result to a short-range potential the 
situation is quite the same. One may conjecture that the one­
particle approximation leads to a value of Pe(a) that is too 
small. This belief is based on the intuitive argument that a 
bound electron cannot use all phonons in such a way to raise 
its effective mass as a free electron. The one-particle approxi­
mation should only work for small a, P being small, too. 

By a simple scaling argument, one finds the critical cou­
pling strength in the effective-mass approximation by 

Pe (a)eff' 

(82) 

if m (0) = m = 1. Therefore, critical lines for different poten­
tials, but for the same dispersion and coupling function, are 
proportional in the effective-mass approximation, the poten­
tial merely determines the prefactor 8e • We have also indicat­
ed the qualitative behavior of the critical line for the effective­
mass approximation in Fig. 2 (dashed line). 

A finite temperature T> ° destroys the pinning transi­
tion. This can be seen considering the (formal) free energy 
(instead of the ground-state energy) in the path integral rep­
resentation. The free energy is analytic in all parameters a>O, 
8>0, and T> 0, if the potential V(r) is short range or if V(r) 
is a long-range Coulomb potential. As for details, we refer to 
Ref. 25. 

Finally, we give the phase diagram in the effective mass 
approximation for an optical Frohlich polaron for two con­
crete examples: First a spherical square well 

V(r) = 8(1- r), 

and, second, a screened Coulomb potential 

V(r) = exp( - r)/r. 
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(83) 

(84) 

In the case of a spherical square well the eigenvalues and 
eigenfunctions are well-known (see, e.g., Messiah37

). In par­
ticular, the critical potential strength turns out to be 

Pc =Pc(O) = r/8 = 1.233 7005.... (85) 

For a screened Coulomb potential, Pc is not known ana­
lytically. Kesarwani and Varshnes determine Pc numerically 
as 

0.839 9032</3c<0.839 9039. 

For the usual Frohlich model 

w(k) = 1, g(k) = (8r) J/4/k, 

(86) 

(87) 

the polaron mass m(a) was calculated in Ref. 39. Conse­
quently, all variables of (82) are known. The limiting cases 
(see, again, Ref. 39) are 

Pc (a)eff =pc·(1-a/6) + O(a2
), as a-+O, (88) 

(89) 

The effective-mass approximation of the phase diagrams for 
the Frohlich polaron and a spherical square well (resp. a 
screened Coulomb potential) are shown in Fig. 3. 

A variational calculation of Pc (a) is in progress and will 
be published elsewhere. 

Concerning experimental consequences, we finally state 
that first experimental evidences of the pinning transition 
were observed by Dmochowski et al.40 They found bound 
polaron states very close in energy and differing strongly in 
localization. Such a situation just occurs in the neighborhood 
of the pinning transition. 

V. CONCLUSIONS 

Summarizing, we have proved the analyticity of polaron 
quantities in the coupling parameter and the potential 
strength, if the potential is long range (e.g., for a Coulomb 
potential) or if the one-particle Hamiltonian has a bound 

II 
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FIG. 3. Critical lines of the pinning transition in the a-,Bplane in the effective­
mass approximation for a spherical square well and a screened Coulomb po­
tential for a Frohlich polaron. 
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state. Consequently, no "phase transitions" occur and the 
shallow-deep instability is continuous in this case. 

For a short-range attractive potential we have shown the 
existence of a pinning transition, which depends on the elec­
tron-phonon coupling. This pinning transition is connected 
with a nonanalyticity of the ground-state energy and with a 
potential assisted localization transition of the ground state 
from a delocalized to a localized state as the potential strength 
increases. We have discussed this pinning transition for a 
spherical square well and a screened Coulomb potential, giv­
ing the phase diagram in the effective-mass approximation. 
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The Vaidya-Patel solution of a rotating homogeneous fluid in the presence of a Maxwellian 
source-free electromagnetic field is interpretated as an inflationary scenario with a gauge field 
with local U( 1) symmetry, a vacuum energy, and a rotating perfect fluid. An explicit solution 
is found to be expressible in terms of known solutions representing the radiation filled 
Robertson-Walker universe with a cosmological term. In the case that the rotating fluid is 
radiation, the discussion of the model is considerably simplified. How the time scale of 
transition into a pseudo-de Sitter stage, as observed by an observer following the rotating fluid, 
is affected by vorticity is also studied. 

I. INTRODUCTION 

The spacelike part of the Robertson-Walker metric was 
discussed by Bianchi I in 1898. This metric represents the 
most general isotropic and homogeneous space-time geome­
try. The three different Robertson-Walker metrics are spe­
cial cases of universes of Bianchi types I, V, and IX in which 
the three-space is flat, hyperbolic, or closed, respectively. 
These isotropic special cases of the Bianchi models have 
since been extensively explored, and a large number of gen­
eral relativistic cosmological models with this form of the 
metric has been constructed. Vaidya and Patee have recent­
ly shown that the closed Robertson-Walker metric can also 
be a solution of Einstein's field equations with a rotating 
homogeneous fluid in the presence of a Maxwellian source­
free electromagnetic field. This solution has lately been gen­
eralized to the axisymmetric case by Patel and Pandya. 3 

In this paper we will rederive the Vaidya-Patel solution 
using a more conventional definition of the scale factor than 
that of Vaidya and Patel. In the case that the fluid satisfies 
the equation of state P = j p, the Lorentz transformation 
between the fluid-comoving system and the coordinate-co­
moving system involves a constant Lorentz factor, which 
simplifies the study of this particular case considerably. In 
this case we will further find that exact expressions for the 
evolution of the scale factor can be stated in terms of well­
known solutions of the field equations of the Friedmann­
Robertson-Walker equation with a closed space-time filled 
with radiation and a cosmological term. 

The solution, which is discussed here, is a model of a 
rotating inflationary scenerio in which the energy-momen­
tum density is described as an ultrarelativistic fluid, a vacu­
um energy, and a source-free gauge field with a local U( 1) 
gauge symmetry. We shall study how vorticity affects the 
time scale of transition into an inflationary era in this model. 

In the case of a rotating universe with inflation, a rotat-

.) Present address. 

ing generalization of the de Sitter solution would be useful. 
Both Vaidya4 and Grans have presented solutions that were 
interpretated as rotating generalizations of the de Sitter uni­
verse. In Vaidya's model, the geodesic condition, which is 
natural in a true vaccum solution, restricts the parameter m 
to the value zero, which corresponds to zero vorticity. The 
model of Gran has, among other models, been criticized by 
Jantzen.6 His model should not be interpreted as a rotating 
universe model, but rather as a universe with shear.7

•
s 

In the case of true vacuum solutions there cannot be 
vorticity in a physical sense. The angular momentum of the 
vacuum fluid will always be zero. Thus there does not exist a 
rotating generalization of the de Sitter vacuum solutions 
without a non vacuum fluid content. 

II. THE DYNAMICAL EQUATIONS 

The closed Robertson-Walker metric may be written2 

as 

ds2 = dt 2 _ R 2 [cos2 0 d,p + dO 2 + sin2 0 d(j' 2] (2.1 ) 

in spheroidal polar coordinates. Following Vaidya and Patel 
we introduce the coordinate transformation 

d{3 = d(j' + dt/J, 

du = (l/R)dt - dt/J, 

a = 20. 
Then one achieves 

dr = 2R (du + sin2(a/2)d{3 )dt 

- R 2[(du + sin2(a/2)d{3)2 

+ !(da2 + sin2 a d{32)]. 

A non-Lorentz tetrad basis is introduced through 

(2.2a) 

(2.2b) 

(2.2c) 

(2.3 ) 

0(1) = dt + R sin2(a/2)d{3 - R dt/J, (2.4a) 

0(2) = (R /2)da, (2.4b) 

0(3) = (R /2)sin a d{3, (2.4c) 

0(4) = ! dt - (R /2)sin2 (a/2)d{3 + (R /2)dt/J. (2.4d) 
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The metric in the a basis takes the form 

[~ 
o 
-1 

o 
o 

o 
o 
-1 

o 
which we call non-Lorentz because of its nondiagonal form. 
In the a basis the Ricci tensor has the following components: 

(2.5a) 

(2.5b) 

R (R)2 2 R(22) =R(33) =-+2 - +-2' 
R R R 

(2.5c) 

(2.5d) 

The parentheses mean that the basis is the a basis. The field 
equations of Einstein are 

Ra{J - !Rgap = 81TTap + Agap, (2.6) 

where the energy-momentum tensor is the sum of a perfect 
fluid term (p + p) Va Vp - pgaP' the energy-momentum ten­
sor of the U( 1) gauge field Eap, and a flowing null radiation 
UWa wp , where 0' is the density of the flowing null radiation. 
The energy-momentum tensor of the gauge field is given by 

Eap = - ~YFa{jFpy + !lJapF{jyFt;y, (2.7a) 

Fap = Aa,p - Ap,a' (2.7b) 

FaP;p = O. (2.7c) 

The four-velocity of the fluid is denoted by va, and the flow 
vector of the following null radiation is denoted by wa

• The 
vectors va and wa satisfy 

~Va = I, ~wa =0, ~wa = 1. (2.8) 

In the a basis the four-velocity is taken to be veal 
= (lIU,O,O,A), whereas the flowing null radiation has the 

four-velocity weal = (11 A,O,O,O). 
From the field equations we then find 

F(12) = F(l3) = F(24) = F(34) = 0, (2.9) 

leaving only the terms F( 14) and Fm ) nonzero. The energy­
momentum tensor must therefore have the non vanishing 
components 

(2.10) 

Since the energy density of radiation should decay as R -4 we 
may write 

E(33) =b 2/(2R 4), (2.11) 

where b is a constant. Then using the Maxwell equations, we 
find 

• 2 
F(l4) = A /R and F(23) = - 2A /R 

leading to the equation of the vector potential, 

A '=A/R, 
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(2.12a) 

whereas the rest of the contravariant components are zero in 
the coordinated basis. This A satisfies 

A2+4A2/R2=b 2/R2. (2.12b) 

The gravitational field equations in the tetrad basis may be 
written as 

R(aP) = 81T[ (p + p)v(a) v(P) - !(p - p)g(a{J) ] 

- Ag(ap> + 81TE(aP) + 81TUW(a) w(P)' (2.13) 

From these equations one gets the following relations de­
duced in the paper ofVaidya and Patel (due to the difference 
in the definitions of R and a conformal difference in time 
coordinates the equations look slightly different): 

41Tb 2 (R ( R )2 1) 81TP=A---- 2-+ - +-
R4 R R R2 ' 

(2.14a) 

(2.14b) 

2 _ ( 81Tb 2/ R 2 ) - 1 
A-l- '2" , 

1 +R -RR 
(2.14c) 

81T0' = 81Tb 2 [ 1 + ~ 2 - R~ - 41Tb 2/ R 2 ] 

R 2 1 + R 2 _ RR _ 81Tb 2/ R 2 ' 
(2.14d) 

, 
whereas the vorticity scalar of the perfect fluid is 

It.I = (A 2 - 1)/RA. (2.14e) 

The motion of the fluid is geodesic only if the vorticity is 
vanishing. If there is vorticity, observers comoving with the 
fluid will experience a pressure gradient in the U( 1) gauge 
field pressure 41Tb 2/ R 4, causing a nongeodesic motion. 

III. KINEMATICAL PROPERTIES OF THE MODEL 

From the field equations one may readily derive the 
Friedmann equations: 

R2-~R2 81TpR
2 

41Tb
2 
-1 (3.1) 

- 3 + 3 + R2 ' 

.. A 41T 41Tb 2 
R =3 R -3 (p+ 3P)R -Ji3' (3.2) 

In the rest of the paper, we shall discuss a model in 
which the rotating fluid is radiation with equation of state 
P = ! p. The results obtained will depend on this assump­
tion. The energy density of radiation will be proportional to 
R -4. Using that P = 1 p one finds that the b 2 term acts as an 
additional radiation term in Eqs. (3.1) and (3.2). The first­
order equation (3.1) may be integrated to give solutions of 
the classes M I , M 2, A I' A2, SI' and °1, which were classified 
and studied by Stabell and Refsdal9 and by Harrison. 10 

These solutions have been discussed in the literature, and we 
shall not repeat this discussion here. 

The four-velocity of the fluid in the O-tetrad basis is 

v= (lIU)0(1)+AO(4). (3.3) 

We may introduce a comoving tetrad basis O'a, where 
v = 0'0, through the transformation 
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0'0 = (1/2/1.)0(1) + A.. 0(4), 

0'1 = 0(2), 

0'2 = 0(3), 

0'3 = (1/2A..)O(l) - A.. 0(4). 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

Expansion, vorticity, and shear may be expressed in 
terms of the structure coefficients of the comoving tetrad 
basis O'a. The structure coefficients are defined through the 
relation 

dO'a = ~C a I'v O'" /\ O'v. 

To calculate the structure coefficients we will have to 
know the time evolution of A... In the case of the equation of 
state P = j P we find that A.. is constant. This may be conclud­
ed by substituting the expressions Eqs. (3.1) and (3.2) for 
R 2,R into the expression (2.14c) for A... Then using that 
p~R -4, we find that A.. has the constant value 

A.. = (1 + 3b 2f2po) 1/2, Po = pR 4. (3.5) 

We define the expansion tensor 0I'V as the symmetric part of 
the covariant derivative of the four-velocity of the cosmic 
fluid II: 

(3.6) 

where parentheses indicate the symmetric combination. 
Using that the 0' basis is comoving with the fluid and 

orthonormal, we find 

0l'v = v(I',V) - r O(I'V) V
O 

= - r O(I'V) = ~(CI'OV + CvOl')' (3.7) 

where r O(l'v) are the symmetricized connection coefficients 
of the comoving 0' basis field, 

Since the structure constants in an orthonormal basis 
satisfy the relations Cl'ov = - CVOI" we deduce 

01'1' = CI'OI' , Ol'v =0, J.l=l=v. (3.8) 

In the present model, the expansion is equal in all three 
spatial directions. Thus we find 

0 -01' -CI C 2 C3 _3 R(1 1) - I' - 01 + 02 + 03 - - - - + /l, • 

2 R A.. 
(3.9) 

Since the expansion is isotropic, the observers comoving 
with the rotating fluid will not observe any shear. This may 
easily be verified using the definition of the shear tensor as 
the traceless part of the expansion tensor. We write 

(3.10) 

where hl'v is the projection tensor hl'v = gl'v - vl'vv' Hence 
the shear scalar uz. = ~O'l'vd'v is given by 

uz. =:H (C61)2 + (C~2)2 + (C63)2 

-C6IC~2 -C61 C 63 -C~2C63]' (3.11 ) 

which is zero in the present model. An analogous argument 
can be carried through for the vorticity tensor, defined as the 
antisymmetric part of the covariant derivative of the velocity 
vector, to find a general expression for the components of the 
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vorticity vector in terms of the structure coefficients of the 
fluid-comoving basis. Thus one finds that 

-ICO OJl'v-2 VI" (3.12) 

The structure coefficient C~2 gives vorticity in the three­
direction. As both C~3 and C~3 are zero, the vorticity scalar 
is 

(3.13) 

which is Eq. (2.14e). The Robertson-Walker coordinate­
comoving tetrad basis ro

a (the Lorentz basis in which the 
time coordinate t is the proper time) is deduced with the aid 
of Eqs. (2.4). Demanding a Lorentz basis with dt = roo, we 
find 

roO = 0(4) + ~O(1), 
rol = 0(4) - ~O(1), 

ro2 = 0(2), 

ro3 = 0(3). 

( 3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

Because both this and the 0' basis are of the Lorentz type (the 
metric is locally Minkowski), there is Lorentz transforma­
tion between the two systems 0' and ro: 

0'0 = r(roo - uro l ), 

0'3 = r( - rol + uroO). 

(3.15a) 

(3.15b) 

Using Eqs. (3.4a)-(3.4d) and (3.14a)-(3.14d) to express 
these equations in terms of the 0 basis, we find that the Lor­
entz factor is given by 

r = !(lfA.. + A..). (3.16 ) 

This is the time dilation factor between the fluid-comoving 
basis and the coordinate-comoving basis. This difference 
should be taken into account when discussing the time scale 
of transition into an inflationary era. 

The vacuum A term can be regarded as the first approxi­
mation of a homogeneous scalar field for which the potential 
dominates the energy-momentum tensor. Such scalar fields 
are called inflation fields because they can be the driving 
force for inflation. 

Let cp = cp(t) be a complex inflation field. We define a 
gauge-covariant derivative 

DI' = DI' - igAI' , (3.17) 

where D I' is the ordinary covariant derivative, g is a coupling 
constant, and AI' is the U( 1) gauge vector. The Lagrangian 
of this charged inflation field is then 

2" = (Dl'cp)t(DI'CP) - V(cp,cp t). (3.18) 

We define the four-velocity of the inflation fluid (false 
vacuum fluid) to be proportional to the current 
r = - (1/g)(a2" faAI')' 

( 3.19) 

Since the A vector is directed in the coordinate time direc­
tion, Eq. (2.12a), we find that the current form j is propor­
tional to dt and thus 

u=dt, ( 3.20) 
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which is a four-velocity field without vorticity. 
If the inflation field is real there is no current, but we 

may follow Belinskii and Khalatnikov,12 and define a four­
velocity of the inflation fluid as 

u =P (P pa)-1/2 (3.21) p- p a , 

where Pa is the conjugate momentum of the inflation field. 
Using the Lagrangian 

2" = !DprpDPrp - V(rp), (3.22) 

we find 

(3.23) 

which again leads to Eq. (3.20). During the decay of the 
false vacuum the rotating fluid will be diluted by a huge 
factor by this nonrotating fluid. The coupling to a hypersur­
face orthogonal gauge vector field does not affect the nonro­
tating nature of the inflation field. 

IV. ASYMPTOTIC BEHAVIOR 

The parameter A ( t) determining the gauge vector po­
tential through Eq. (2.12a) satisfies Eq. (2.12b). In the 
asymptotic region where R grows exponentially, A satisfies 

e2h'A 2 + 4A 2 = b 2. (4.1) 

The general solution of this asymptotic equation is 

A= ~ sin(arcsin(~O)+ !(e-Ht_e-HIO»). (4.2) 

For large times A approaches the constant value 

A", = ~ sin( arcsin ( ~o ) - ! e - HI} (4.3) 

whereAo is the value of A at to; the beginning of the inflation­
ary era. In the comoving basis of the rotating fluid, the (J' 

basis, the field tensor Fpa takes the form 

r 
~ ~ _~/R2 

Fap = 0 2A IR 2 0 

AIR 0 0 

-~/R] 
o . 
o 

(4.4) 

The components of the gauge vector (2.12) as well as the 
components of the field tensor Fpa will decay exponentially 
during inflation. 

Using Eq. (3.13) the vorticity is also seen to decay ex­
ponentially during inflation: 

( 4.5) 

V. CONCLUDING REMARKS 

Until the advent of the inflationary cosmological mod­
els, the very slow rate of cosmic rotation was explained by 
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invoking Mach's principle. Ellis and Olive 13 pointed out that 
inflation could solve the problem of slow cosmic rotation. A 
general discussion of inflation in anisotropic space-times can 
be found in Rothman and Ellis. 14 

In the present model vorticity and the energy density of 
the source-free U( 1) gauge field are intimately connected. 
With this in mind, it can be understood that vorticity does 
not speed up expansion in this model as the energy density of 
the gauge field will also increase when UJ is increased. 

Through a time dilation effect with respect to the coor­
dinate time, the rotating fluid observers will find a greater 
cosmic age than that of the coordinate time. For these ob­
servers, the transition into an inflationary era takes more 
time than in the nonrotating coordinate frame. 

It should also be noted that the energy density of the 
U( I) gauge field and the vorticity of the cosmic fluid will 
have an exponential decay during inflation. The amount of 
decay depends on the total expansion during inflation. To 
solve the flatness and horizon problems an expansion ofthe 
order 1028 is required. Thus the minimal decay of vorticity is 
of the order 10-28. In addition the nonrotation of the vacu­
um fluid should be taken into account, as this will introduce 
a further diluting effect that reduces vorticity by a factor of 
the order 10 - 112 during the reheating period. 15 

The effect of vorticity on the microwave background 
was analyzed by Collins and Hawking l6 and by Barrow et 
al.,17 who found that the present rotation period must be 
more than 3 X 105 T H' where THis the Hubble time 
( 1-2 X 1020 years) in the case k = O. Taking into account the 
diluting effect we find that the present period of rotation will 
be much greater than the observed limit even for minimal 
inflation. The huge rotation period of the universe may be a 
test of the inflationary hypothesis, if an observed lower limit 
to the period could be established. 

IL. Bianchi, Mem. Mat. Fis. Soc.ltaliana Sci. 11,267 (1898). 
2p. C. Vaidya and L. K. Patel, Gen. Relativ. Gravit. 16, 355 (1984). 
3L. K. Patel and B. Pandya, Ind. J. Pure Appl. Math. 17, 1224 (1986). 
'P. C. Vaidya, Pramana J. Phys. 25, 513 (1985). 
50. Gron, Phys. Rev. D 33, 1204 (1986). 
6R. T. Jantzen, J. Math. Phys. 27, 2748 (1986). 
7D. Brill and F. Flaherty, Ann. Inst. H. Poincare A 28,335 (1978). 
"H. H. Soleng, Astrophys. Space Sci. 137, 373 (1987). 
9R. Stabell and S. Refsdal, Mon. Not. R. Astron. Soc. 132, 379 (1966). 
'OE. R. Harrison, Mon. Not. R. Astron. Soc. 137,69 (1967). 
IIG. F. R. Ellis, "Relativistic cosmology," in General Relativity and Cos­

mology, Proceedings of the International School of Physics "Enrico Fer­
mi" course 47, edited by R. K. Sachs (Academic, New York, 1971), pp. 
106ft'. 

12V. A. Belinskii and I. M. Khalatnikov, Sov. Phys. JETP 36,591 (1973). 
13J. Ellis and K. A. Olive, Nature 303, 679 (1983). 
l4T. Rothman and G. F. R. Ellis, Phys. Lett. B 180, 19 (1986). 
150. Gron and H. H. Soleng, Nature 328,501 (1987). 
16e. B. Collins and S. W. Hawking, Mon. Not. R. Astron. Soc. 162, 307 

(1973). 
17J. D. Barrow, R. Juszkiewicz, and D. H. Sonoda, Mon. Not. R. Astron. 

Soc. 213, 917 (1985). 

O. Gron and H. H. Sol eng 1517 



                                                                                                                                    

Erratum: Canonical formalism of dissipative fields in the thermo field 
dynamics [J. Math. Phys. 28, 2741 (1987)] 
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Institute of Physics. University of Tsukuba. Ibaraki 305. Japan 

H. Umezawa and Y. Yamanaka 
Theoretical Physics Institute. Department of Physics. University of Alberta. Edmonton T6G 2J1. Canada 

(Received 14 January 1988; accepted for publication 27 January 1988) 

At the end of Sec. V, p. 2751, left column, it is stated that 
K(k) = 0 is one of the solutions of the self-consistent equa­
tions (5.11). But the solution K(k) = 0 is not allowed for the 
following reason. When we perform our perturbation calcu­
lation with the free fields without dissipation (K = 0), the 
non vanishing imaginary part of the self-energy is naturally 
created even at one-loop level through the decay process of a 

nontilde particle into another nontilde particle and a tilde 
one. What was wrong in the paper resides in the dispersion 
formula (5.13c) for the renormalized energy. Since the Lor­
entz symmetry is broken in thermal situations, we should 
not assume the relativistic form of the dispersion like 
(5.13c). 
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