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The oscillator method for the construction of unitary highest (or lowest) weight
representations of noncompact groups and supergroups is generalized. Within this
generalization, the method yields unitary highest weight representations of all simple
supergroups whose even subgroups are in the form of a direct product of a compact group with
a simple noncompact group. The method is illustrated by studying in detail the unitary highest
weight representations of the supergroup OSp (2n + 1/2m,R). The generalized supercoherent
states associated with these unitary representations are also defined.

I. INTRODUCTION

The Lie superalgebras have come to play an increasingly
important role in theoretical physics. They appear as sym-
metry algebras of supersymmetrical theories such as su-
perstring' and supergravity theories.> They also appear as
effective dynamical symmetry algebras in the study of nu-
clear states.® For physical theories in which the supersym-
metry enters at a fundamental level the relevant supergroups
are, in general, noncompact. (We define a noncompact su-
pergroup as one whose even subgroup is noncompact.) For
example, the space-time superalgebras are all noncompact.
One can expect noncompact supergroups to be also relevant
as dynamical symmetry groups in various branches of phys-
ics.

Motivated by the possible applications to supergravity
theories, a general method for the construction of oscillator-
like unitary representations of noncompact Lie groups was
developed in Refs. 4 and 5. This method was then extended
to the construction of oscillatorlike unitary representations
of noncompact supergroups.® Later, this method was further
developed and applied to supergravity and superstring the-
ories.” ! The oscillator method developed in the above cited
references yields the (oscillatorlike) unitary irreducible rep-
resentations (UIR’s) of the lowest weight type of noncom-
pact groups and supergroups that have a three-graded (Jor-
dan) structure with respect to a maximal compact subgroup
or subsupergroup. For noncompact Lie groups the oscillator
method is of complete generality for the construction of uni-
tary representations of the highest weight type (or equiv-
alently lowest weight type). This is a consequence of the fact
that the noncompact simple Lie groups that admit UIR’s of
the highest weight type all have a Jordan structure with re-
spect to their maximal compact subgroups. However, this is
not the case for noncompact supergroups. There is a large
class of noncompact supergroups that admits highest weight
UIR’s but does not have a Jordan structure with respect toa
maximal compact subsupergroup. Therefore for noncom-
pact Lie supergroups the oscillator method needs to be gen-
eralized for it to be of complete generality. In this paper we
give such a generalization. This generalization allows one to
construct unitary highest weight representations of all sim-
ple noncompact supergroups whose even subgroups are di-
rect products of a compact group with a simple noncompact

group.
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Il. THE OSCILLATOR METHOD AND THE UNITARY
HIGHEST WEIGHT REPRESENTATIONS OF
NONCOMPACT LIE GROUPS

A simple connected noncompact Lie group G with a
maximal compact subgroup K has unitary representations of
the highest weight type (or, equivalently, of the lowest
weight type) if the quotient space G /K is an Hermitian sym-
metric space.'? (If G has a center Z then K /Z is assumed to
be compact.) A unitary representation of the highest weight
(or lowest weight) type is defined as a unitary representa-
tion for which some generator belonging to the Lie algebra L
of G has a spectrum bounded from above (or from below).
Thus from the list of Hermitian symmetric spaces'? one can
easily read off the simple noncompact groups that admit
unitary representations of the highest weight (or lowest
weight) type. In Table I we give a complete list of such
groups and their maximal compact subgroups. We should
note that unitary representations of the highest weight and
the lowest weight type are related by a simple involution. In
the mathematical literature the use of the term “highest
weight representations” has been traditional. In most phys-
ical problems the term ‘“lowest weight representation” is
more appropriate since the operator whose spectrum is
bounded is often the energy operator or the particle number
operator.

The Lie algebra L of a noncompact group G that pos-
seses unitary highest weight (UHW) representations has a
Jordan decomposition (three-grading) (Ref. 5) with re-
spect to the Lie algebra L, of the maximal compact subgroup
K, i.e, it can be decomposed in a split basis as a vector space
direct sum

TABLE I. The first column gives a complete list of simple noncompact Lie
groups G that possess unitary representations of the highest weight type.
The second column gives their maximal compact subgroups.

G K
SU(n,m) SU(n) XSU(m) xU(1)
SO(n,2) SO(n) XSO(2)
Sp(2n,R) U(n)
SO*(2n) U(n)
Ee_ 1o, SO(10) XSO(2)
E;_25 EsxU(1)
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L=L_ oLyl _,. (2.1)

The elements of L, satisfy the formal commutations rela-
tions

[L,.L,]CL,sn mn= —101, (2.2)
where L, , , =0 for |m + n|>2. In Refs. 4 and 5, a simple
method was developed for constructing the oscillatorlike
unitary irreducible representations (UIR) of noncompact
Lie groups G that admit a Jordan decomposition with re-
spect to their maximal compact subgroup K. In this method,
which we refer to as the oscillator method, the elements of L
are realized as bilinears of an arbitrary number of bosonic
oscillators (annihilation and creation operators) satisfying
the usual canonical commutation relations. In the Fock
space of these oscillators one chooses a set of states, denoted
as |Q) and referred to as the lowest weight state, that is
annihilated by all the operators belonging to the L _, space
and that transforms in a definite representation of the maxi-
mal compact subgroup K. By acting on |Q2) with the opera-
tors belonging to the L, | space repeatedly one generates an
infinite set of states that forms the basis of a unitary represen-
tation of G. The resulting unitary representation of G is irre-
ducible if the lowest weight state |Q}) transforms in an irre-
ducible representation of the maximal compact subgroup X.
Clearly, these oscillatorlike unitary representations are all of
the lowest weight type and the generator whose spectrum is
bounded from below corresponds to the number operator for
the bosonic oscillators.

Subsequently, a classification of the unitary highest
weight representations of simple noncompact groups was
given in the mathematical literature.'* A comparison of the
oscillatorlike representations with the classification of Ref.
14 shows that the oscillatorlike UIR’s exhaust the list of
UIR’s of the lowest weight type for the groups SU(n,m),
Sp(2n,R), and SO*(2n). A straightforward application of
the oscillator method to the noncompact groups SO(#,2),
E¢(_ 14y,and E; _,s, gives, in general, reducible unitary rep-
resentations. A simple systematic algorithm for extracting
the irreducible unitary representations of the groups
SO(n,2), B¢ _ 14y, and E; _,5, within the framework of the
oscillator approach is yet to be developed.

We should note that the bilinear operators belonging to
the L _, and L __, spaces of the noncompact groups G listed
in Table I involve di-annihilation and di-creation operators.
The repeated application of the bosonic di-creation opera-
tors on the lowest weight state |2) generates an infinite set of
states forming the basis of the UIR of G. If one replaces the
di-creation and di-annihilation operators by bilinears involv-
ing one creation and one annihilation operator then the os-
cillator method yields the UIR’s of the compact forms of the
groups listed in Table 1. If we use fermionic oscillators in-
stead of the bosonic ones the method yields the representa-
tions of the compact forms of these groups as well. To con-
struct UIR’s of noncompact groups with fermionic
oscillators we need an infinite set of them. Such realizations
do occur in string theories' and will be the subject of a sepa-
rate study.
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Ill. UNITARY REPRESENTATIONS OF NONCOMPACT
SUPERGROUPS WITH A JORDAN STRUCTURE

The oscillator method for the construction of the uni-
tary representations of noncompact groups*> has been ex-
tended to the construction of the UIR’s of noncompact su-
pergroups.® Later this method was further developed and
applied to supergravity and superstring theories.” "' The os-
cillator method developed in these works yields the UIR’s of
the highest (or lowest) weight type for those noncompact
supergroups G that have a (super)-Jordan decomposition
with respect to a maximal compact subsupergroup K, i.e.,
the Lie superalgebra L of G has a three-graded structure with
respect to the Lie superalgebra L, of a maximal compact
subsupergroup K:

L=L ,eLlyeL_,. (3.1)
In this case the identity (2.2) holds in a graded sense, i.e.,
[Lm,L,,}ng“, (3.2)

with L,, , , = O for |m 4 n|>2. The bracket [ , } means an
anticommutator among any two odd generators of L and a
commutator otherwise. The elements of L are now realized
as bilinears of bosonic and fermionic oscillators. The even
generators correspond to bilinears in purely bosonic or pure-
ly fermionic oscillators while the odd generators are realized
as bilinears involving one bosonic and one fermionic oscilla-
tor. To construct the oscillatorlike unitary representations of
the noncompact supergroup G one proceeds as in the case of
ordinary Lie groups and considers a set of states |{2) in the
super-Fock space transforming in a definite representation
of the maximal compact subsupergroup K and is annihilated
by all the bilinear operators in the L _ | space of L. Acting on
|©2) with the operators belonging to the L , | space repeated-
ly one generates an infinite set of states that forms the basis of
a unitary representation of G. Again the resulting represen-
tation is irreducible if and only if the state |}) transforms
irreducibly under K. Clearly these representations are of the
lowest weight type.

The application of this method to the noncompact Lie
superalgebras SU(n,m/p), OSp(2n/2m,R), and OSp(2n*/
2m) (Refs. 6-10) yields readily the UIR’s of the lowest
weight type of the respective superalgebras. Now the oscilla-
tor method can be used to construct all the UIR’s of the
lowest weight type of the even subgroups of these super-
groups. Therefore we expect the oscillatorlike UIR’s of the
supergroups SU(n,m/p), OSp(2n/2m,R), and OSp(2n*/
2m) to exhaust the list of their UIR’s of the lowest weight
type. For the other noncompact Lie superalgebras that have
a Jordan decomposition with respect to a maximal compact
subsuperalgebra the unitary representations obtained by the
oscillator method are, in general, reducible. A simple meth-
od for decomposing these reducible representations into ir-
reducible pieces has not yet been developed.

IV. JORDAN AND KANTOR DECOMPOSITIONS OF LIE
ALGEBRAS AND LIE SUPERALGEBRAS

With the exception of G,, F,, and E; all finite dimen-
sional simple Lie algebras have a Jordan decomposi-
tion>'>~'® with respect to some subalgebra. Furthermore all
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Lie algebras with a Jordan decomposition can be construct-
ed from Jordan triple systems via the Tits—Koecher con-
struction.'>~'® In this construction the elements of the Lie
algebra L that belong to the L, space are labeled by the
elements of some Jordan triple system. The commutation
relations of the elements of L can all be expressed in terms of
the Jordan triple product and the Jacobi identities follow
from the two defining identities of Jordan triple systems.'>~'®
The Tits—-Koecher construction has been generalized to the
construction of Lie superalgebras from super Jordan triple
systems.'”"'® With the exception of G (3), all “classical” Lie
superalgebras as classified by Kac'® (which include the ex-
ceptional and strange superalgebras) have a Jordan decom-
position and can be constructed from super Jordan triple
systems. A complete list of Lie superalgebras that can be
constructed from Jordan superalgebras via the generalized
Tits—Koecher method can be found in Ref. 18.

The Tits—Koecher method has been extended by Kan-
tor'® to give a construction of all finite dimensional simple
Lie algebras, including G,, F,, and Eg, from more general
triple systems. These generalized triple systems, which we
shall refer to as the Kantor triple systems, are defined by two
identities and include the Jordan triple systems as a subclass.
The Kantor construction has also been generalized to give a
unified construction of Lie algebras and Lie superalgebras
from (super-) Kantor triple systems.'” In the Kantor con-
struction and its generalization one makes crucial use of a
five-dimensional graded decomposition (Kantor structure)
of a Lie algebra or a Lie superalgebra L with respect to a
subalgebra L, of maximal rank

L=L oL_,,9L,eL, 0L, (4.1)

The elements of L belonging to various subspaces L, satisfy
the (super) commutation relations

[L,L}CL,,,, rs=0,FLF1, (4.2)

and L, , = 0if |[r + 5| > 1. The elements belonging to the
L, , space can be labeled by the elements of the underlying
(super-) triple system and all the (super) commutatorsin L
can be expressed in terms of the (super-) Kantor triple prod-
uct. The Jacobi identities follow from the two defining iden-
tities of the (super-) Kantor triple systems.'” All simple Lie
algebras and classical Lie superalgebras have a Kantor de-
composition with respect to a subalgebra of maximal rank
and can be constructed in this manner. Clearly, the subspace
of L consisting of L _, Ly, and L , | spaces form a subalgebra
with a Jordan structure.

Of noncompact simple Lie groups only those that have a
Jordan structure with respect to their maximal compact sub-
groups have unitary representations of the lowest (or high-
est) weight type.'* However, this is not true for noncompact
Lie supergroups. As we shall discuss in detail in Sec. VI, the
noncompact Lie superalgebra OSp(2n + 1/2m,R) has uni-
tary representations of the lowest weight type but does not
have a Jordan structure with respect to a compact subsuper-
algebra of maximal rank. This can easily be seen from the
fact that the even subgroup SO(2n + 1) XSp(2m,R) has a
Jordan structure with respect to its subgroup SO(2n — 1)
X S0(2) xU(m). However, OSp(2n + 1/2m,R) does not,
in general, have a subsupergroup whose even subgroup is

1277 J. Math. Phys., Vol. 29, No. 6, June 1988

SO(2n — 1) XSO(2) XU(m) except for some special val-
ues of n and m. Therefore to be able to construct the UIR’s of
the lowest weight type of all the noncompact Lie superalge-
bras of the classical type the oscillator method must be gen-
eralized to Lie superalgebras that have a Kantor structure
with respect to a compact subsuperalgebra.

V.THE UNITARY REPRESENTATIONS OF THE LOWEST
WEIGHT TYPE OF NONCOMPACT LIE SUPERGROUPS
WITH A KANTOR STRUCTURE

Consider a noncompact Lie superalgebra L with a Kan-
tor decomposition with respect to a suitable compact subal-
gebra L, of maximal rank:

L=L_1@L_1/2$L0®L+1/2@L+]- (5.1)

The subalgebra L, contains the generator N of an Abelian
U(1) subgroup that gives the grading, i.e.,

[NL,]=rL, r=0FLFL (5.2)

Assume that L is realized in terms of bosonic and fermionic
oscillators. Now choose a set of states |)) in the super-Fock
space of these oscillators that transforms in a definite repre-
sentation of the subsuperalgebra L, and is annihilated by all
the operators belonging to the L _,,, space

L_,,|Q)=0 (5.3)

(whichimpliesthat L _,|Q2) = 0). Then the set of states gen-
erated by the repeated application of the operators belonging
tothe L _,,, space on the state |§2) forms the basis of a repre-
sentation of L. This representation will be a unitary one for a
certain real form of L. The easiest way to determine the real
form for which the above representation is unitary is to go to
a super-Hermitian basis of L.° In the super-Hermitian basis
the even generators are Hermitian operators and the odd
generators are anti-Hermitian. Furthermore the structure
constants are pure imaginary for commutator products and
pure real for anticommutators. For details on this point we
refer the reader to Ref. 6. The Kantor decomposition of L
corresponds to a split basis, in general, and to go to a super-
Hermitian basis one needs to take definite linear combina-
tions of the operator belonging to the subspaces L,,
L ,,and L_,. We shall implicitly assume that we are
dealing with that real form of the supergroup in question for
which the oscillator method as outlined above yields unitary
representations.

If the lowest weight state |Q2) transforms in an irreduci-
ble representation of L, then the unitary representation of L
obtained by repeated application of the operators belonging
to the L ,,, space will also be irreducible. To prove this we
need to show that all the Casimir operators of L are diago-
nalized by all the states that form the basis of the representa-
tion. Now the Casimir operators are polynomial functions of
the generators of L. Each term of the Casimir operator has a
vanishing U(1) charge generated by N. Therefore by (su-
per) commutation of the generators one can bring all the
Casimir operators to a form such that the operators belong-
ingtoL_,,, and L _, spaces are to the right of the operators
belonging to L,, L 5, and L spaces in each term. For
example, symbolically, a term of the form L_ ,L,L,,,L,,,
can be brought to the form (LyL, 5L, ,L_y + LoL, L _ 44,
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+ L3+ Ly,L_ 4+ LyLy 5L ). Then acting on the
lowest weight state |2) with the Casimir operators we find
that only those terms involving the generators of L, alone
give a nonvanishing contribution. Since {{)) transforms irre-
ducibly under L, all the Casimir operators will simulta-
neously be diagonalized by it. Similarly, the states generated
by the action of the operators in L_ ,,, space on |{}) will
diagonalize all the Casimir operators since the operators in
L, ,,;and L spaces commute with the Casimir operators
of L. This proves that if the lowest weight vector |Q2) is an
irreducible representation of L, then the states generated by
the action of L, ,, on |Q) will form the basis of a UIR of L. In
some very special cases the eigenvalues of the Casimir opera-
tors of L do not uniquely label the UIR’s. In such cases one
can use the L, labels of |Q) to uniquely label the UIR’s of L.

VI. THE LOWEST WEIGHT UNITARY IRREDUCIBLE
REPRESENTATIONS OF OSp{2n+41/2m,R)

In this section we shall apply the method outlined above
to construct UIR’s of the lowest weight type of the noncom-
pact Lie supergroup OSp(2n + 1/2m,R) whose even sub-
group is SO(2n + 1) XSp(2m,R). The group SO(2n + 1)
has a Kantor structure with respect to its subgroup U(#n).
We can decompose the generators of SO(2n + 1) in a split
basis as

L=L_ ,eLl_,,eLlyeLl HnoeL,,,
L=A4, 06K, el e K"0A",

where the operators belonging to various subspaces satisfy
the commutation relations

[15.15] =810~ 814, [K,K,]=4,,
[KoK*] = — 1}, [K,A"] =8K*— 8K,
[14K,]1 = —&K,, [I%K*]=6.K¥,
[Ie’Az{p] = &;Apv - 8:?‘4,{1/’
[18,4%) =84 — 834,
[4,.,,4%] = — 815 + 8,15 — 814 + &1,
[K#A,,] =K, -~ 8K,.
One can realize the generator of SO(2n + 1) in terms of a
single set of fermionic annihilation and creation operators

transforming covariantly and contravariantly, respectively,
under the U(n) subgroup:

{gp’é‘ v} = 6;’ {§p7§V} = {g v’é-y} =0,

w,... = 12,1,

(6.1)

(6.2)

(6.3)
The generators of SO(2n + 1) in a Kantor basis are then
given as

Auv =§y§v’ Ky, = (l/ﬁ)guy

I =454, — £,6"),

K= (1/2)§", A" =ErE™
The only state in the fermionic Fock space that is annihilated
by the operators K, belonging to the L _,, space and trans-

forms irreducibly under U(#n) generated by I, * is the Fock
vacuum |0):

K,|0) =£,10) =0.

(6.4)

(6.5)
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Choosing the vacuum |0) as the lowest weight state and act-
ing on it by the operators K # belonging tothe L , , ,, space we
generate the basis of a UIR of SO(2n + 1):

0,

K*#|0) = £#|0),

K*K"|9) = £#£710)

KHKY --K* |0> — §#§V. . .é—/l IO)

Nt~

n times

The resulting representation is simply the spinor representa-
tion of SO(2n + 1). Since it is constructed out of a single set
of oscillators we refer to it as the singleton representation’ '°
of SO(2n + 1).

One can also realize the SO(2n + 1) Lie algebra using a

pair of fermionic oscillators a,, 8, carrying the U(n) index
and a single fermionic oscillator ¢,

{a,.@} =6, ={B,.8"}
{e,.a,}={8,8.}={a,8,}={a,.8"}=0,
{vy'r=1,

{a, ¥} ={a, v} ={8,¥} =18,y =0.

The generators of SO(2n + 1) in a Kantor basis are then
given by

A#v = a,uﬁv - avﬁu’ K# = wﬂ# + a#lp*’
Iﬁ = a#av _BVBH9

Ku=¢au+ﬁu¢’r, A’”:a"ﬁ'"—a”ﬂ“.

(6.6)

(6.7)

(6.8)

The vacuum state |0} in the Fock space of all the fermionic
oscillators is annihilated by all the annihilation operators

@,]0) =B,,10) = $/0) =0.

Any set of states of the form

B“B”---B*|0) (6.9)
or of the form
vata’---a?|0) (6.10)

is annihilated by the operators K, belonging to the L_,,,
space. Any subset of these states that transforms irreducibly
under the U(n) subgroup generated by L, can be used as a
lowest weight state for the construction of a UIR of
SO(2n + 1). The set of states of the form (6.9) and of the
form (6.10) lead to the same set of UIR’s of SO(2rn 4 1)
since they have identical U(n) transformation properties.
With one set of the oscillators @, B,,, and ¥ one can con-
struct (n + 1) inequivalent irreducible lowest weight states,
thus leading to (n + 1) inequivalent representations of
SO(2n 4+ 1).Onecan construct all the UIR’s of SO(2n + 1)
by the oscillator method. In the general case, one realizes the
generators of SO(2n + 1) in terms of an arbitrary number of
oscillators as follows:

A;u' = u,u-Bv - av.Bp + €§y§v

p
=Y (@, (NB,(r) —a, (NG, (M) + €&,

r=1
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K, =¥B, + o, + (e/\2)€,

P
=3 (BN +a, (NYHn) + %

It = ata, — BB + (/2)(£7E, — £,6%)

S

= 3 (@*(Na,(r) — B,(NB(r)

r=1

+ (e/2)(E¥E, — £,€6M), (6.11)

K# = + Bt + (e/42) £#

= Ep‘,('ﬁ(r)a“(r) + BN (D) + — ¥,
r=1 ‘/i

AP = a"B¥ — a*B* + €§"§"
= i (@ (r)B(r) —a”(r)BH(r)) + e£*E",
r=1

where € = 0,1 and the oscillators a, (r), B,,(7), and ¥(r)
satisfy the canonical anticommutation relations (CAR’s)

{a,(N.a*()}=86.6,, rs=1,..p,
B,(NBY()}=8.6,, pv=1..n,
{a, (N, (9} =1{8,(NB, (5} ={a,(nN.B"(s)} =0,
v (9} =6,
{v( ¥} ={gr.a, ()} ={¥).8,(s}

= {g(r),a*(5)} = {¥(n.B*(s)} =0.
Interestingly enough, for € = 0 the oscillator method yields
vectorial or tensorial type representations of SO(2n + 1).
While for € = 1 we obtain in general spinorial representa-

tions of SO(2n + 1). In the general case the possible lowest
weight states of SO(2n + 1) are of the form

(419 (D [e* (D] ¢ (D) [a(2)]™

(6.12)

X ¢’ (p) [a*(p)]7]0) (6.13)
or of the form
[E#TE[B* ()] - [B* () ]17|0), (6.14)

where s = 0,1 and [a*(k)]"|0) stands for a state of the
form a*(k)a*(k)---a"™(k)|0) and similarly for
[B#(k)17|0) (n,<n). Every irreducible representation of
SO(2n + 1) can be constructed by choosing a suitable low-
est weight state of the form (6.13) or (6.14) that transforms
irreducibly under U(n) generated by % and acting on it by
the operators K * repeatedly.

The noncompact subgroup Sp(2m,R) of OSp(2n + 1/
2m,R) has a Jordan structure with respect to its maximal
compact subgroup U (m).>® The simplest realization of the
Lie algebra of Sp(2m,R) is in terms of a single set of m
bosonic annihilation and creation operators satisfying

[cic’] =68/ [eie;] =0, (6.15)
Then the generators of Sp(2m,R) in a Jordan basis read as
L=L eLyoL, , =S;eM0S", (6.16)

Lj=12,...m.
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where

S; = ¢ic;,

Si=cd, M;=1\(cc; +¢;c). (6.17)
In the corresponding bosonic Fock space there exist two in-
equivalent lowest weight states of Sp(2m,R) annihilated by
the operators S; belonging to the L _, space and that trans-
forms irreducibly under the maximal compact subgroup
U(m) generated by M ;. They are the vacuum |0) which is
an SU(m) singlet and the one-particle state ¢/|0) that trans-
forms in the fundamental (contravariant) representation of
U(m). Acting on |0) or on ¢|0) repeatedly by the operators
S ¥ we generate an infinite set of states that form the basis of a
UIR of Sp(2m,R). These two UIR’s are referred to as single-
ton representations.® Again the oscillator method yields all
the UIR’s of the lowest weight type of Sp(2m,R). To con-
struct these UIR’s we need to realize the generators of
Sp(2m,R) in terms of an arbitrary set of bosonic oscillators:

S; = a,.-bj + a;b; + eci¢;
p
= 2 (@ (Nb;(r) + a;(r)b;(r)) + ecicy,

r=1

SV =a'b’/ + a’b’ + ec’c’/

= zp"l(a"(r)bf(r) +a/(rbi(r)) + ec'’c’, (6.18)
M; =r;"-aj + b;b’ + (€/2) (ce; + ¢;¢)
E,i,(ai(’)“’(" + b,(Nbi(r)
+ (€/2)(¢c; + ¢;¢),
where the bosonic oscillators satisfy
[a;(r),a’(s)] =6/5,,,
[b,(r),b/(s)] = 6{6,,, (6.19)

[a;(r),b;(8)] = [a:(N,b7(s)] = [a;(r),a;(5) ]
= [b:(r),b;(s)] =0.

The parameter € takes on the values 0 or 1, depending on
whether we have an even (2p) or odd (2p + 1) number of
bosonic oscillators carrying U(m) indices. The representa-
tions of Sp(2m,R) with € = 1 are the noncompact analog of
the spinorial representations of the orthogonal group
SO(n). The lowest weight states for the construction of a
unitary representation of Sp(2m,R) are, in general, tensor
products of the states of the form

a“(r)b(r)|0) =(a'(r)b/(r) — a’(r)b'(r))|0) (6.20)
tensored with those of the form
[¢Pla/(D)]™---[a"(r]™
X[b'(r+ 1)} 1 [6™(p)]1™]0),
(6.21)

where s = 0,1 and #,,...,n, are arbitrary non-negative inte-
gers. Here it is important to make sure that family indices
(r.5,...) of the states of the form (6.20) do not coincide with
each other or with those of (6.21). Again the expression

[a’(k) ] represents

Murat Gilinaydin 1279



a?(k)a (k) --a’"™ (k).

Choosing a subset of these states that transforms irreducibly
under U(m) and acting on it with .S ¥ repeatedly we generate
the basis of a UIR of Sp(2m,R). These UIR’s are uniquely
labeled by their lowest weight states.

The Kantor decomposition of SO(2n + 1) and the Jor-
dan decomposition of Sp(2m,R ) can be embedded in a Kan-
tor decomposition of the noncompact Lie superalgebra
OSp(2n + 1/2m,R). To do this supercovariantly we com-
bine the bosonic and fermionic oscillators used in the con-
struction of Sp(2m,R) and SO(2n + 1) into superoscilla-
tors whose first m components are bosonic and remaining »
components are fermionic, i.e.,

a; b,
o (2 me(2)
o (2). v (2)

The Lie superalgebra L of OSp(2n + 1/2m,R) can be real-
ized as bilinears of these superoscillators in a Kantor basis as

(6.22)

L=L_,eL_,,eL,eL, 0L,
L=Lg,,eL,eL3eL*"aL"?

where

(6.23)

Ly =¥, —46,= S 007, () — #1(NE (1)

r=1

P
Ly =8ms+ 8= Ca(Nnp(r) + 55 (N, (),

r=1

LA= A, +(_1)degAdegB B
5 =8"Cs MM (6.24)

= S EANEa(r) + (— Disass By (1ynB()

r=1

LA=wr — b= S (N (r) — E4NYn),

L% =g 4 EPy'= 2 AP + S Bt (),
r=1

where deg A is zero or unity depending on whether the index
A refers to a bosonic or fermionic oscillator, respectively.
The operators L, and L # belonging tothe L_,,,and L ,,,
subspaces transform in the covariant and contravariant fun-
damental representation of the compact subsuperalgebra
U(m/n) generated by L,*. The states in the super-Fock
space that are annihilated by operators belonging to L _,/,
space are, in general, linear combinations of the states of the
form

(£ ][EB) ] [£S(P) 17 (1) ¢ (p)|0)
(6.25)

or of the form

[* (D1 [9°(p)17]0). (6.26)
Choosing a subset |2) of these states that transforms irredu-
cibly under the compact subsuperalgebra U(m/n) and act-
ing on it repeatedly with the operators K # belonging to the

K, space we generate an infinite set of states that forms the
basis of a UIR or OSp(2r + 1/2m,R). Since the method as
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explained above yields all the irreducible representations of
SO(2n + 1) and all the lowest weight UIR’s of Sp(2m,R)
we believe that the UIR’s obtained by this method exhausts
the list of all lowest weight UIR’s of OSp(2n + 1/2m,R).

To illustrate how the method works let us consider the
example of OSp(7/4,R) which is simply the ¥ = 7 extended
anti-de Sitter superalgebra in four space-time dimensions.
[Recall that Sp(4,R) is the twofold covering group of
SO(3,2).] For reasons that will become clear shortly we
shall take one set of the oscillators § ,, 7, ,and ¢ (i.e.,p = 1)
and choose as our lowest weight state the Fock vacuum |0),
which is a singlet of the compact subsuperalgebra SU(2/3)
with a definite U (1) charge. By acting on |0) with the opera-
tors L # we generate states that transform in a definite repre-
sentation of U(2/3). Using supertableaux techniques”®*°
we can designate the transformation properties of these
states under U(2/3):

|0),

L410) = @),
LL"0y==)e| § ),
LALPLC|0) = |z ) @ | B@ )s

=

(6.27)

where the supertableaux occurring on the RHS have at most
tWO rows.

The above decomposition of the UIR of OSp(7/4,R) is
with respect to its compact subsupergroup U(2/3). For
most physical applications, such as to supergravity, it turns
out to be more useful to decompose the UIR of a noncom-
pact supergroup with respect to its even subgroup. In our
example, the even subgroup is SO(7) XSp(4,R). The infi-
nite set of states in (6.27) forming a UIR of OSp(7/4,R) can
be combined into certain UIR’s of Sp(4,R) that have defi-
nite SO(7) transformation properties. Since the UIR’s of
Sp(4,R) that occur are of the lowest weight type they can be
labeled by the quantum numbers of the maximal compact
subgroup SU(2) X U(1) of Sp(4,R) which are spin s and
anti-de Sitter energy E,.»*' Therefore our task is simply to
determine all the states in (6.27) that are simultaneously
lowest weight states for both SO(7) and Sp(4,R). These
lowest states are transformed into each other by the action of
the odd supersymmetry generators K'and S*. The
SO(7) XSp(4,R) content of the UIR of OSp(7/4,R) with
lowest weight vector |0) and p = 1 is given in Table II.

The UIR’s of Sp(4,R) can be identified with the Fourier
modes of fields defined in four-dimensional anti-de Sitter
space.®?? The fields associated with the UIR listed in Table
IT are all massless®?? and the full unitary supermultiplet has
the same field content as the massless V= 8 anti-de Sitter
supermultiplet in d = 4 whose highest spin field is the gravi-
ton. This is simply an extension to anti-de Sitter space of the
well-known result from Poincaré supersymmetry.

Before concluding this section we should point out that
the Lie superalgebra OSp(1/2m,R) has a special realization
in terms of bosonic oscillators alone. The generators of
OSp(1/2m,R) in a Kantor basis take the simple form

L,=aa, L =a, Li=da —aad,
g TR e e T (6.28)
L'=4d, LV=dd, ij=1,.,m,
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TABLE II. We give the SO(7) X Sp(4,R) decomposition of the unitary ir-
reducible supermultiplet of OSp(7/4,R) with lowest weight vector |0) and
p=1. The first column lists the states that contain simultaneous lowest
weight states of both SO(7) and Sp(4,R). The second and third columns
give the spin {SU(2)] and anti-de Sitter energy Eo(U(1)) of these lowest
weight states. The last column gives the SO(7) representations of these
states with definite spin and energy E,.

Lowest states Spin E, SO(T)
|0) 0 1 35
K'K/|0) 0 2 35
K'|0) i 3 35
S%0) i 3 21
S#S;”|0) 1 2 7
S*#K 1)0) 1 2 21
S#SHK0) 3 3 7
SHSMS*|0) 3 3 1
Siug kS Pk 110) 2 3 1

where the bosonic oscillators satisfy the usual canonical
commutation relations

[a;.a’] =&, [a,a]=I[d\a’]=0. (6.29)
The only state in the bosonic Fock space annihilated by the
operator a; belonging to the L _,,, space that transforms
irreducibly under the U(m) subgroup generated by L', is
the Fock vacuum |0). Acting on |0) repeatedly by the opera-
tors L' we generate the basis of a UIR of OSp(1/2m,R).
This shows that the full spectrum of states in the Fock space
of m bosonic oscillators forms a single UIR of OSp(1/
2m,R). Note that the even subgroup Sp(2m,R) transforms
states with even (or odd) number of bosonic excitations into
states with even (or odd) numbers of bosonic excitations.
The odd generators belonging tothe L_,,, and L, ,, spaces
mix states having an even number of excitations with states
having an odd number of excitations. In other words, the
odd supersymmetry generators of OSp(1/2m,R) interpo-
late between the two singleton representations of Sp(2m,R).

Vii. SUPERCOHERENT STATES FOR THE UNITARY
HIGHEST WEIGHT REPRESENTATIONS

In Ref. 6 the concept of supercoherent states was first
introduced and the coherent state basis for the highest
weight UIR’s of the noncompact supergroup SU(m,p/n)
was studied. The definition of supercoherent states given for
SU(m,p/n) extends in a straightforward manner to all non-
compact supergroups with a Jordan structure with respect to
a maximal compact subsupergroup. The coherent states of
such a noncompact supergroup g with a maximal compact
subsupergroup K can be labeled by the complex supercoor-
dinates of the quotient space G /K. More specifically if the
Lie superalgebra L of G has a Jordan decomposition with
respect to the Lie superalgebra L, of X, i.e.,

L=L_|eLyoL_,,

then the coherent state associated with the UIR of lowest
weight |Q) is defined as

I0Z) = et 7|0, (7.1)
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where L , |- Z represents the operators in the L ; space mul-
tiplied with their corresponding complex parameters. For
even generators these parameters are complex numbers and
for odd genrators they are complex anticommuting Grass-
mann numbers. Under the unitary action U(g) of the super-
group corresponding to the element geG, the coherent states
with label Z undergo transformations of the form

UQ|NZ)=|(YZ+6)'Q(aZ+ B (yZ+ 8",

(7.2)
where
a B
(y 6)_gEG

and |(yZ + 8) ~'Q1) represents the state obtained from the
lowest weight state |2) by the induced action of the maximal
compact subsupergroup. The matrices a, 3, ¥, and § involve
ordinary as well as Grassmann parameters. For further de-
tails we refer the reader to Ref. 6.

Our aim here is to generalize the concept of supercoher-
ent states to those noncompact supergroups G that have a
Kantor structure with respect to a compact subsupergroup
K of maximal rank. Now the Lie superalgebra L of G decom-
poses with respect to the Lie superalgebra L, of K as

L=L eoL_,0LleL,,n0L,,

Given a lowest weight UIR with the lowest weight state |02}
we define the corresponding coherent state |();Y,Z ) as

|0, Y,Z y=el-aYHLZ|), (7.3)

where Y and Z are the superparameters associated with the
generators belonging to the L, ,,, and L,, space and
L,,;»Y and L ,'Z represent the generators multiplied
with their parameters. Since the subsupergroup generated by
L_,, Ly and L, has a Jordan structure with respect to the
compact subsupergroup K the label Z will be the coherent
state label of this subsupergroup as discussed above.

For the noncompact supergroup OSp(2n + 1/2m,R)
the supercoherent states defined by the lowest weight vector
[©2) of a UIR has the form

Tt 20y = |0,Y,Z). (7.4)

To illustrate the structure of these supercoherent states con-
sider the supergroup OSp(1/2m,R). The supercoherent
state associated with the singleton UIR of OSp(1/2m,R)
has a very simple decomposition

10,6,,Z,) =e"* 7|0y = (1 + 6,¢e™*'|0)
=0:Z;) + 6,c*|0:Z;),  (7.5)

where the 6, are complex anticommuting parameters and
the Z; are the complex parameters labeling the usual coher-
ent states of Sp(2m,R). The coherent states |0;Z,-j) and
c* |0;Z;; ) are the coherent states associated with the two sin-
gleton UIR’s of Sp(2m,R) with lowest weight states |0) and
¢’|0). Under the action of the odd generators of OSp(1/
2m,R) these two coherent states get transformed into each
other.

As mentioned above the labels of the super coherent
states can be identified with the complex (super) coordi-
nates of the (super) coset space G /K. For OSp(1/2m,R) the
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complex coordinates 6; and Z; can be chosen as the coordi-
nates of the quotient space OSp(1/2m,R)/U(m). For the
simplest case of m = 1, the OSp(1/2,R) invariant volume
element du on the quotient space OSp(1/2,R)/U(1) with
coordinates & and Z can be obtained simply using the results
of Ref. 23:

dp=[(1—166)/(1 —2z)*1dzdz d0 db. (7.6)

This can be generalized in a straightforward manner to gen-
eral m. The study of the coherent states of OSp(2n + 1/
2m,R) as defined above requires a detailed knowledge of the
quotient space SO(2n + 1) /U(n). We hope to return to this
and related issues in a separate study.

VHi. CONCLUSION

In this paper we gave a generalization of the oscillator
method so as to be able to construct lowest weight UIR’s of
noncompact Lie superalgebras that have a Kantor structure
with respect to a compact subsuperalgebra of maximal rank.
With this generalization the oscillator method can be used to
construct the lowest weight unitary representations of cer-
tain real forms of @/l the classical simple Lie superalgebras,’®
which include the exceptional and strange superalgebras.
The relevant real form of the classical supergroups are those
for which the even subgroup is a direct product of a compact
group with a simple noncompact (or compact) group. As
mentioned above in certain cases the oscillator method does
not lead directly to irreducible unitary representations. A
simple algorithm for projecting out the irreducible represen-
tations in these instances is yet to be developed. We have also
given a definition of generalized supercoherent states asso-
ciated with the lowest weight UIR’s of noncompact super-
groups with a Kantor structure with respect to a compact
subsupergroup of maximal rank. The extension of the meth-
od to construct unitary representations of noncompact su-
pergroups whose even subgroups contain direct products of
two simple noncompact groups will be the subject of a sepa-
rate study.
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The correlation functions of the two-dimensional Ising model satisfy nonlinear equations both
on the lattice (discovered by McCoy and Wu [Nucl. Phys. B 180, 89 (1981)] and Perk [ Phys.

Lett. A179,3

(1980)]) and in a continuum limit (discovered by Wu, McCoy, Tracy, and

Barouch and generalized by Sato, Miwa, and Jimbo [Publ. RIMS 14, 223 (1978) ]). In this
paper results are presented for infinite spin groups that extend results of Sato, Miwa, and
Jimbo [Publ. RIMS 14, 223 (1978) ] and lead to normal ordered product formulas for the
difference of adjacent Ising spin fields. These product formulas are shown to lead directly to
the lattice difference equations for the correlations and are also a key ingredient in the scaling

limit analysis.

I. INTRODUCTION

Let W denote an infinite-dimensional Hilbert space with
a distinguished conjugation and associated bilinear form. In
this paper we generalize some of the results proved in Ref. 1
for the finite-dimensional spin groups to the infinite-dimen-
sional complex spin groups, Sping ( W), introduced in Ref.
2. In Ref. 3 some such infinite-dimensional generalizations
were already given. In that paper, however, the structure of
the group Spin, ( W) was incompletely understood and the
results in Ref. 3 are consequently limited to a subsemigroup
of Sping, (W). R

The group Spin,, ( W) acts by linear transformation on a
dense invariant subspace & of an appropriate Fock space.
Let L(Z) denote the space Qf linear maps from & into &.
The Fock representation of Sping (W) is a homomorphism
I': Spingy, (W) - L(<Z) the image of which consists of trans-
formations that implement automorphisms of the Clifford
algebra ¢ (W) associated with elements of the restricted
orthogonal group SO, ( I/If\).2 As is explained in Sec. II one
may extend the action of Sping (W) by the invertible ele-
mentsin WC < (W) toget the group Ping (W). One obtains
in this fashion the largest group of transformations imple-
menting automorphisms of ¥ (W) induced by complex
orthogonals on W that can be defined on a domain contain-
ing the vacuum vector in Fock space. The association of
Pin, (W) with a “maximal” family of Bogoliubov transfor-
mations is one of the principal motivations for the study of
this group.

Let Ay ( W) denote the algebraic alternating tensor alge-
bra over W consisting of finite sums of finite products from
W. In Sec. III of this paper we introduce a map N: 4,(W)
X Sping (W) - L(Z) that extends the notion of “normal”
ordering familiar in the physics literature. One of the princi-
pal results of this section is a “structure’’ theorem (Theorem
3.0) for the image of PmQ (W) under F [this result has im-
plications for a cell decomposition of P1nQ (W) but this is
not pursued here]. A second application of the normal or-
dering map isa perturbatlon” result (Theorem 3.3) that
expresses T (g,) in terms of P( g,) when the elements g, and
g, in Sp1nQ (W) have induced rotations that differ by a finite
rank operator.

In Sec. IV we prove a generalized version of Wick’s
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theorem for §pinQ (W) (Theorem 4.2). The proof we give is
a simplification (and generalization) of the proof in Ref. 3
and is based on an idea in Ref. 1. It avoids the rather heavy
product deformation formalism of Sato, Miwa, and Jimbo
(SMJ) that was used in the proof in Ref. 3. If one combines
Theorem 3.0 with Theorem 4.2 one obtains a generic “reduc-
tion” formula for the vacuum expectation of a product of
elements from P1nQ (W). Formulas for the vacuum expecta-
tions of the “elementary types” to which the reduction for-
mula leads are not given here but see Refs. 1 and 3.

In the final section of this paper we give an application of
the results of Secs. III and IV to the correlations of the two-
dimensional Ising model. The results of Sec. II1 lead to “per-
turbation formulas” for the Ising field o(a + u) increment-
ed by a unit lattice vector  in terms of o(a) (Theorem 5.1).
A much less elegant version of these local difference identi-
ties can be found in Theorem 2.1 of Ref. 4. There they were a
principal ingredient in the SMJ analysis of the scaled corre-
lations. The derivation of the local difference identities pre-
sented in Sec. V of this paper is not only more direct than that
given in Ref. 4 but it has the virtue of suggesting the role of
the “disorder variables”” that arise as a matter of course in
the analysis. This is very useful when considering generaliza-
tions to monodromy fields® where there is not yet an inde-
pendent indentification of the appropriate disorder vari-
ables. In a sequel to this paper we will derive analogs of the
local difference identities for monodromy fields. These are
used in the thesis of Davey to establish the SMJ anaysis of the
scaled monodromy correlations. We conclude this paper by
showing that the difference identitites of Theorem 5.1 also
lead directly to the McCoy, Wu, and Perk (MWP)"2 differ-
ence relations for the Ising correlations. The connection is
via the generalized version of Wick’s theorem and no doubt
must be closely related to Perk’s original derivation of these
identities® which also relies on the “thermodynamic” ver-
sion of Wick’s theorem. That the local difference identities
(5.15) lead to the MWP difference identities and are a cru-
cial ingredient in the SMJ analysis of the scaled correlations
reveals their significance for the “deeper” analysis of the
Ising correlations.

What is new in this paper is mostly the formulation and
calculation with Ising model correlations directly in the infi-
nite volume limit. The Ising fields are, in this limit, elements
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of an infinite-dimensional spin group that in general consists
of unbounded operators acting on Fock space. The approxi-
mation of these group elements by algebraic elements in the
Clifford algebra is somewhat subtle but one of the main
points of this paper is that in spite of the fact that the repre-
sentation of the complex spin group does not respect the
Hilbert space structure of Fock space many useful tools from
the algebraic finite-dimensional setting carry over to infinite
spin groups if they are properly formulated. There is, for
example, no useful normal ordered product formula for the
Ising field operators themselves but the notion of “relative
normal ordered products” introduced in Sec. III leads to a
fruitful generalization, Theorem 3.3, of an obvious finite-
dimensional result that may then be applied to the Ising field
to get the new result (5.15). This result may then be used as
the cornerstone of both the McCoy, Wu, and Perk analysis
and the Sato, Miwa, and Jimbo analysis of the Ising model
correlations. It is the author’s hope that the additional com-
plications of the infinite volume analysis will eventually be
compensated by conceptual simplicity. If one recalls that the
study of phase transitions is framed in the infinite volume
limit precisely to obtain the conceptual simplicity of sharp
discontinuities this hope may not seem completely mis-
placed.

Il. THE GROUP Sping (W)

In this section we first review the setting and some of the
results for infinite spin groups that we will need. More de-
tails and proofs can be found in Ref. 2. Let W denote an
infinite-dimensional complex Hilbert space with a distin-
guished congugation P. We write (-,*) for the Hermitian
inner product on Wand (-,) = {-,P-) for the associated
symmetric bilinear form. The algebraic Clifford algebra
¢ (W) is an associative algebra with identity e generated by
the elements of W (and e) subject to the relations

xy + yx = (x,p)e, x,yeW.

The algebra % ,( W) consists of finite sums of finite products
from W and multiples of e. A subspace ¥ of W is said to be
isotropic if the bilinear form (-,-) vanishes identically on V.
Each splitting of W= W_ & W_ into subspaces #, that
are isotropic and orthogonal to one another with respect to
the Hermitian inner product gives rise to a representation of
% o( W) on the complex alternating tensor algebra A(W )
that we will now describe. The space

A(W,)=Ce i AK(W,),
k=1

where A* (W) is the Hilbert space completion of the alter-
nating k tensors over W_ . We write ] = 190 0- - for the
“vacuum” vector in A(W ). For each xeW_ one may de-
fine a creation operator a*(x) and its Hermitian adjoint
a(x) actingon A(W_ ) sothat (i) a(x)1 =0, forallxeW _;
(i) a*(x)a(y) +a(y)a*(x) = (xp)1I; (iii) a*(x)a*(y)
+ a*(y)a*(x) = 0. This construction is described in more
detail in Ref. 2. In terms of these annihilation and creation
operators one constructs a representation of % ,( W) as fol-
lows. The identity e is mapped to J actingon 4 (W ) and the

generator xe W C % ,( W) is mapped to
def

F(x)=a*(x_) +a(x_),
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wherex=x, +x_, x, €W, andX_ = Px_. This repre-
sentation is called a Fock representation of & o( W).

There are many isotropic splittings of W and it is con-
venient to parametrize them by the involution Q thatis Id on
vectors in W, and — Id on vectorsin W _. Let * denote the
Hermitian adjoint for operators on W and let 7 denote the
transpose for operators on W relative to the symmetric bilin-
ear form on W. Then a linear involution Q will have + 1
eigenspaces which are isotropic iff Q" = — Q and these ei-
genspaces will be Hermitian orthogonal iff Q * = Q. Unless
otherwise indicated the involutions we consider will satisfy
both these conditions. We write @, = (I + @)/2 for the
projections on ¥ . When we wish to emphasize the choice
of @ we will write F, () for the Fock representation of
% o(W) based on the decomposition W=Q We Q_W.
The vacuum vector in A(W_)(W,. = Q_ W) will be de-
noted by 1, and we let

def

Co(WM)DX—(X) g = (Fp(X)1p,15)

denote the associated state on the Clifford algebra.

Let G,(W) denote the group of invertible elements
ge% o( W) such thatgxg ™' = Gx forxe WC € o( W) and Ga
complex orthogonal on W. We will say that a map G on Wis
complex orthogonal if G is invertible and G preserves the
symmetric bilinear form (-,-) on W. Thus G is complex or-
thogonal if and only if G" G = I. The elements geG,( W) are
either even or odd in the Clifford algebra” and we define

. [T(g)x, for geven in € (W),
A T(g)x, forgoddin & ,(W).
The map T: G,( W) — Oy ( W) is a surjective homomorphism
onto the group of complex orthogonals, O( W), which con-
sists of finite rank perturbations of the identity on W. The
sign change in (2.1) is introduced precisely so this last state-
ment is true. We will next describe the subgroup Spin, ( W) of
G,(W). The identity on W extends uniquely to a linear invo-
lution 7 on € (W) such that (XY)" =Y "X" for X,Y
€€ o( W). The map G,(W)3Dg—g'g is a homomorphism
from G,(W) into C* known as the spinor norm. We write
nr(g) = g"g. The kernel for the homomorphism nr is a sub-
group of G,( W) we denote by Pin, (). The group

Sping (W) = {gePing (W) |T(g)eSO,( W)},

where SO, ( W) is the connected component of the identity in
Oy (W). An element GeO,( W) is in SO, (W) if and only if
det G = 1. One has the exact sequence

(2.1)

T
Z/2Z —Spiny( W) - SOy ( W) -0

(2.2)
(see Ref. 2).
For G a linear transformation on W we write
G- [A(G) B(G)]
e D(G)

for the matrix of G relative to the W _ & W_ decomposition
of W [or perhaps 4, (G), etc., if we wish to identify the
dependence on the choice of isotropic splitting for W]. If
geG,(W) and G = T(g) then we also write
_[4®) B(g)]
Cg) D(g)
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for this same matrix to avoid the clumsy notation 4 (7(g)),
etc. We now define a metric d, on Spin,( ) as follows:

d,(81,82) = l4(g,) — A(g)|l, + [|1D(g1) — D(g) ||
+[|B(g1) — B(g)|l. + IC(g1) — C(&) |2

+ ||[Fo(g) 1o — Fp(g2) 10|l

where ||-||, is the trace norm, |||, is the Schmidt norm, and
||| is the Hilbert space norm on A (W ). We have also writ-
ten A(g;) = A, (g;), etc., for brevity. One of the principal
results of Ref. 2 is that the sequential closure of Spin,( W) in
the metric d, is a continuous topological group Spin, (W) in
the induced metric topology. Let O, (W) denote the group
of invertible complex orthogonals on W that have a diagonal
element [§ % ] thatis a trace class perturbation of the identi-
ty on W and an off diagonal element [ §] that is a Schmidt
class operator. Let SO, (W) denote the connected compo-
nent of the identity in O, (). The exact sequence (2.2)
survives under completion to give an exact sequence:

T
Z/2Z-Spiny (W) -S04 (W) -0, (2.3)

Furthermore, there is a dense domain & CA( W, ) that
contains 1, and is invariant under the Fock representation
of & (W) such that the Fock representation of Spiny( W)
extends to a strongly continuous representation I'y:
Sping (W) > L(Z). Here L(Z) denotes the collection of
the linear maps from & into . What we mean by strong
continuity is that the map Spin, (W) 3g—T,(g)veZ de-
fined for each veZ is continuous from Spin, (W) into
A(W ). Therepresentation I', acts on the Fock representa-
tion of €', (W) as follows:

Lo (8)Fy(x)Ty(g) ~! = Fy(T(g)x), (2.4)
for geSpin, (W), xeW, and both sides are understood as
elements of L(Z).

The elements of the group of invertible complex orthog-
onals on W that commute with Q have diagonal matrices
A e Dwith D = A4~ 7. We may thus identify this group with
GL(W, ). For AeGL(W_ ) the map W3x—+A4A&A4~ " ex-
tends to an automorphism of & ,( W). It is shown in Ref. 2
that this induces a continuous automorphism a(4) acting
on Spin,, (W). The map 4 »a(A4) is a homomorphism and

T(a(d)g)=(4ded "")T(g)(Adeod ~7)~ ",

There is a representation I': GL(W ., ) - L( %) that fits to-
gether with I'y, in the following manner. Let Spin, (W)
X o GL(W . ) denote the semidirect product with composi-
tion rule: g, X4,°g,X4,=g,a(A4,)g,XA,A,. Then Ty
XT'(gXxA4)=T,(g)T(4) gives a representation of
Sping (W) X ,GL(W ) on L(Z). Let ker denote the ker-
nel of this representation and define
def

Spiny (W) = Spiny (W) X ,GL(W, )/ker.

The map I'; XT induces a representation fQ: §pinQ (W)
SL(D). If welet T(gxA4) = T(g)-(A®A ~7) then this
map induces a homomorphism T Sping, (W) -S0O,, (W),
where SO, (W) is the connected component of the identity
in the group O, (W) of complex orthogonals on W that
have Schmidt class commutators with Q. We have
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o @)F(0T g (e) ™" = Fo(T(g)x),

geSpiny (W), xeW,
regarded as an equality of maps in L(Z). The group
Sping, (W) is not a twofold cover of SO, (). Instead one
has the exact sequence

~ T
C* - Spin, (W) -S0,, (W) -0 (2.5)

so that §pinQ (W) is an extension of SO, ( W) by C¥*. Inter-
esting central extensions of loop groups (associated with
Kac-Moody algebras) and central extensions of the diffeo-
morphism group of the circle (associated with Virosoro al-
gebras) lie buried in (2.5) for special choices of W and Q.!°

If we combine the action of §pinQ (W) with the action of
% o( W) on & then we may “cover” the action (by automor-
phisms) of the restricted orthogonal group O, (W) on
¢ o( W) in the following sense. Recall that a linear map on a
Hilbert space is said to be Fredholm if its kernel and cokernel
are finite dimensional. The difference of the dimensions of
these two finite-dimensional spaces is called the index. If
GeO,., (W) then A(G) and D(G) are Fredholm maps with
index 0.2 The map

def

G-e(G) =

-1 )dim ker D(G)

is a homomorphism from O,,, (W) to { + 1}.? The kernel of
this homomorphism is SO,.,. Given GeO, (W) we will
show how to construct an invertible linear transformation
geL(Y) so that

gFQ(X)g_l = €(G)F,(Gx) (2.6)
is an equality on &. When (2.6) is satisfied for geL(Z ) we
will say that g implements G in the Fock representation. The
sign €(G) is introduced in (2.6) to make the extension of
(2.1) natural. However, the reader should note that the map

— I commutes with Qon Wand I'( — NF,(x)T(—-I)~"
= — Fy(x). Thus if one can implement the automorphism
Fy(x) - — Fp(Gx) asin (2.6) then one can also implement
the automorphism Fy, (x) — F,, (Gx).

If GeSO,,, (W) then G is implemented in the Fock rep-
resentation by an element of Spin, (W). Thus in order to
prove that a g satisfying (2.6) exists it suffices to consider the
case in which D(G) has an odd-dimensional kernel. In this
evente(G) = — 1. We will reduce this to the SO, (W) case
by finding a complex orthogonal reflection O(w) so that
O(w)GeSO,,, (W). Let weW be such that (w,w) #0. Then
the complex orthogonal reflection in the hyperplane perpen-
dicular to w is given by

O(w)x =x—2[(x,w)/(w,w) Jw.
It is straightforward to check that
Fo(w)Fy(x)Fg(w)~'= — Fy(O(w)x), xeW.

Suppose now that O(w)GeSO, (W) and choose g’
€Spin,, ( W) so that I'(g’) img[ements O(w)G in the Fock
representation. Then F, (w)I'(g') implements — O(w)
‘O(w)G = — G = €(G)G in the Fock representation.

It remains to determine weW so that O(w)G
€SO, (W).Let G= [¢ 3] denote the matrix of G relative
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to the W, & W_ decomposition of W. Choose w so that
(w,w) = 2. Then, for xcW,

D(O(w)G)x =Dx — (Gx,w)w_, 2.7)
where w_ = @_w. We want to choose w so that the null
space of D(O(w)G) is smaller than the null space of D
= D(G). Equation (2.7) suggests that one ought to choose
w_ in a complement to the range D. If this is done the right-
hand side of (2.7) will vanish only if Dx=0 and
(Gx,w) = 0 separately. For such a choice it is clear that
ker D (O(w)G)Cker D(G). Now suppose ueker D. Since G
is orthogonal we have D"B + B"D = 0. It follows that B
maps ker D into ker D". Note that the restriction of B to
ker D does not have a null space since G is invertible. Let

w = c(Bu + Bu), where the constant ¢ is chosen so that
(w,w) = 2¢*(Bu, Bu) = 2 (we write ¥ = Px as above). Ob-
serve now that Q_w = ¢ Bue ker D" = ker D * = orthog-

onal complement of the range of D. Thus the kernel of
D (O(w)G)iscontained in the kernel of D(G). Furthermore,

D(O(w)G)u = Du — (Guw)w _
= —c¢(Bu,Bu + Bu)w_

= —c¢ 'w_=#£0.

Thus the kernel of D(O(w)G) is strictly contained in the
kernel of D(G). By choosing a basis for ker D that contains u
and is orthogonal with respect to the inner product
(u,v) 5 = (Bu, Bu) (u,veker D) one sees immediately that
dim ker D (O(w)G )} = dim ker D(G) — 1. It follows that
O(w)GeSO,,(W). We have finished the proof that
O,., (W) is implementable in the Fock representation.

We may summarize these developments in a slightly
more abstract fashion as follows. Let W, denote the ele-
ments of W with spinor norm 1 (i.e., weW,, iff w? = 1) then
Piny (W) is an “extension” of Spiny( W) by W, in the fol-
lowing sense. Each element g’ in Pin,(W) is either in
Spin, (W) or there is a weW,, and geSpiny( W) such that
g = wg. We may thus think of Piny,( W) as the union of
Spiny( W) with W, X Spiny( W)/ ~, where the equivalence
relation ~ on W, X Sping (W) isw X g~w' X g if and only if
w ™ 'w=g'g~" in Spiny(W). The multiplication rules in
Piny( W) are

Wy Xg8'8 =W, X882
81 Wy X8 = T(g)w, X818
(w,Xg1) (w; X&) = w, T(g,) w885

where w,eW,,,, g;€Spiny( W) (j = 1,2) and we used the fact
that w, T(g,)w, is in Spiny (W) when w;eW. The multiplica-
tion rules (2.8) extend to the union of Spin, (W) with
W.. XSping, (W)/~ and makes this union a group we de-
note by Pin, (). The map T Pin, (W) — Oy (W) defined
by

T(g) =T(g), geSping (W),
T(wxg) = 0(w)T(g), weW,,, geSping(W),

is easily seen to extend the homomorphism 7 on Pin,( W)
defined in (2.1). One has the exact sequence:

(2.8)

T
Z/2ZPing (W) =0y (W) 0.
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We may extend the homomorphism I',,: Spin, (W)
—L(D) to Pingy (W) by defining

FQ(g) = Fg(g), gGSpinQ( w),

Co(wXg) =Fy(w)Ty(g), weW,, geSping(W).

The group GL( W ) acts on Pin, ( W) via the automor-
phism «a defined by

a(G)g =a(G)g, geSping(W),

a(GwXg=(Ge G HwXa(G)g,
geSping (W)
[this obviously extends the action of @ on Pin,( W)]. We
may thus form the semidirect product Ping, (W)
X oGL(W, ). The map ', XT is a homomorphism from
Ping, (W) X, GL(W ) into L(D). Define

Ping (W) = Piny (W) X, GL(W, )/ker(I'y XT)
and let fQ denote the induced homomorphism from
Pin, (W) to L(D). Then T(g%G) =T(g)G &G "7 in-
duces a homomorphism from Pin,(#) to O, (W) for
which there is the exact sequence

weW,,,

A~ T
C*—Piny (W) -0, (W) 0.

lll. A GRASSMANN CALCULUS FOR §plno(W )

In thig section we introduce a “relative” Grassmann cal-
culus for Spin, ( W) inspired by the finite-dimensional cal-
culus in Ref. 1 and the somewhat limited infinite-dimension-
al extensions presented in Ref. 3. For comparison with Ref. 3
the reader should note that the results in Ref. 3 were  estab-
lished for those geSpin,, (1) with the property that I', (g)
extends toa bog\nded linear transformation on A(W_,).

Suppose geSping (W) and w;eW (j = 1,...,n), then we
inductively define a linear map Ny (w, - w,g)eLl(Z) as
follows:

No(g) =T(g),
No(w, - wg) = Fo(w, )Ny (w, _, " w,g)

+ (- l)n_lNQ(wn—] Cwsg)
X Fo(w; ), 3.1

where wF = @, w,. The motivation for this definition of
normal ordering comes from the finite-dimensional situa-
tion where every geSping (W) can be expressed as an even
normal ordered product.? Such an even element does not
contribute to the sign change needed to move F, (w,”) all
the way to the right in a normal ordered product.

We now wish to show that the map

AK(W)Dw, A Aw,»Ny(w,*w,g)
is well defined. To show that N, (w,, * - w,g) is antisymmet-
ric in the arguments w,,w,,...,w,, it is enough to show that it
changes sign when two adjacent w; are interchanged. By
using the reduction formula (3.1) this immediately reduces

to the case where w, and w,_, are interchanged. Two
further applications of (3.1) show

No(w,w, _w,_ 5" w,g)
= _NQ(wn—lwnwn—Z.”wlg)'
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Let A,( W) denote the algebraic Grassmann algebra over W.
The algebra A,(W) consists of finite sums of products
w, A+ Aw, and multiples of 1€A°(W) ~C. Then Ny (-g)
extends by linearity to a map

Ag(W)DX—~Ny(Xg)eL(D).

It is not reasonable to expect to extend this map to a closure
of Ay( W) since the domain & is not closed under infinite
sums.

As an illustration of the significance of this notion of
normal ordered product we will prove a structure theorem
for the maps on & that implement transformations
GO0, ( W) in the Fock representation.

Theorem 3.1: Suppose that GeO,, (W) and that
dim ker D(G) = n. Then thereAexist vectors zy,...,.2,€W
[given by (3.4) below] and g.eSping (W) with (g,),#0
such that

def

8§=Ny(z, " 2/8)

implements G in the Fock representation.

Proof: Let G = [ ¢ 3 ] be the matrix of G relative to the
W, _eoW_ decomposmon of W. Choose a basis u,,...,u, for
ker D that is orthonormal with respect to the inner product
(u,v) 5 = (Bu, Bv), u,veker D. Then let w, = Bu;, + Bu,.
Define G, = O(w,) --O(w,)G. Then a straightforward
calculation shows that, for xe W _,

D(GYx=D(®)x— 3 (Gxw,) By,

=1

(3.2)

sinceQ_w; = —B;lj_ The null space of D(G,) is contained in
the null space of D(G) since the vectors B_uj all live in the
orthogonal complement of the range of D(G). However, the
vectors

D(Gyu, = — z (Bu,,Bu; + Bu ) Bu = — Bu,

j=1

are linearly independent since the restriction of B to ker D
does not have a kernel. Thus D(G,) does not have a kernel.
Since it is Fredholm of index O it follows that D(G,) is in-
vertible and hence that G,€SO, (W). Thus there exists
goeSpan( W) such that FQ (g,) implements G, in the Fock
representation. The condition that D(G,) is invertible is
equivalent to (g,) o #0.’ In the remainder of the proof it will
be convenient to unburden the notation writing I', F, and N
for I‘Q, F,, and N,,.

Since G =0(w,) " ‘O(w,)G, it follows that
F(w,) - F(w,)T'(g,) implements the automorphism of
L o(W) induced by G. We will show that F(w,) -
F(w,) f(go) can be expressed as a normal ordered product
N(z," 'z,8,). We begin by showing that F(w,)I'(g,) is a
normal ordered product N(z,g,). Suppose z,cW and write
zif =@, z;. Then

N(z,80) = F(z{ )T (go) + T'(g0) F(z)

= F(z;* + Goz~ )f(go)'

Thus F(w,)T(go) = N(z,85) if (GoQ_ + Q. )z, = w, In
W, & W_ coordinates this becomes

(3.3)

op0
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where B, = B(G,) and D, = D(G,). But (3.2) implies that
Dyu, = — Bu,. Thus z, = (—u,) + (B + By)u, solves
(3.4). Now let G, = O(w,) - - - O(w, ) G, and suppose for the
sake of an inductive argument that

def

= F(w,) " F(w)T(go)

is a normal ordered product N(z,* - -z,g,). We will show that
&+ is a normal ordered product N(z, .z, -z,8,). Con-
sider the normal ordered product

'2180) = F(z;%, )8 + (— 1)lg1F(zl_+1 )

= F((GIQ— + Q+)z;+ 1 )gh
where z; , =2z;% | + ( — 1)’z;3 ;. Thus it will be possible
to write F(w;, , )g; in normal ordered form if one can solve
(G,Q_+Q.)zi,, =w, . Let [é; ‘;',] denote the matrix
of G, relative to the W, @ W_ decomposition of W.
In W_o W_ components the equation (G,Q_
+Q.,)z,, =w, ., becomes

N(z, 2z,

[1 Bl][ zZh ]_[Bu1+1]
0 DJL(=D427, Bu, ]

But the analog of (3.2) for D, is

n

D)x =Dx — (Gx,w;) Bu;.
j=I+1
Thus Dju;, , = — Bu,_, and it follows that we may
choosez;, , = (— 1)*'u,,, withz/, | = (B+ B)u,,,.
Hence

zl+l =(_1)I+lul+l +(B+Bl)ul+1 (3-4)

solves (G,Q_ + Q,)z,., =w; ., for /=0,..,n — 1. This
finishes the proof that given GeO,. (W) there exists
g=N(z, 2,8, that implements G in the Fock representa-
tion. Q.E.D.

We next want to review some of the finite-dimensional
results for the Grassmann calculus of the Clifford group de-
veloped by Sato, Miwa, and Jimbo in Ref. 1. Suppose Wis a
finite-dimensional complex vector space with nondegener-
ate symmetric bilinear form (-,-) and distinguished isotrop-
ic splitting W= W_ & W_. Then there is a linear map 6
from the Grassmann algebra 4 (W) onto the Clifford alge-
bra % (W) determined by the conditions

(1) é(1)=1, O(x)=x, xcW,
(2) (XAY)=6(X)6(Y), if xed(W,)
or Yed(W_). (3.5)

It is not hard to see that @ is surjective and a dimension
argument then shows that @ is injective. This map may be
used to give a calculus for the Clifford group G(W) that is
nicely adapted to the Fock representation. To see how this
works suppose that GeSO( W) and that D(G) is invertible.
Define R(G) = (G—D(Q_G+ Q,) ', where @, isthe
pair of projections associated with the splitting W = W
® W_ as usual. It is easy to check that R(G)” = — R(G)
and that G = (1 — RQ_)"'(1+ RQ,) where we have
written R = R(G). Furthermore, one may easily prove that
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if R is a skew symmetric (R” = — R) map on W such that
(1 — RQ_) is invertible, then

def

G=(1-RQ_)""(1+RQ,)

is in SO( W) and D(G) is invertible. Let {w; } denote a basis
for Wand let {w}} denote the dual basis defined by (w;,w})
= ;. If R is a linear map on W with R” = — R then the
sum 2_, Rw; Aw} is an element of the Grassmann algebra
that does not depend on the choice of basis {w, }. To avoid
introducing extra notation we will denote this element of
A%(W) by R. The reader should have no difficulty with this
abuse of notation since R will be regarded as an element of
A*(W) only when it appears as an argument of & or the
normal ordering map N,. For ReA*(W) we define

exp (iR) =3 2" 'R "
2 n=0
where R"=RARA--- AR (n factors). When W is finite
dimensional the sum defining this exponential is of course a
finite sum. We summarize the results we will need from Refs.
2 and 3 in the following theorem.

Theorem 3.2: Suppose R: W— W is skew symmetric
(R™ = — R). Then @(exp iR)eZ (W) is in the Clifford
group G(W) if and only if (J— RQ_) is invertible.
If (1-RQ_) is invertible then T(6(expiR))

= (1—RQ_)"'(1 + RQ. ). Furthermore, every element

in G(W) has a representation 8(z, A - Az; Aexp 4R) for
some choice of z;eW and skew symmetric R such that
(1 — RQ_) is invertible.

This is proved in Refs. 2 and 3. The reader should have
no difficulty making the connection between the second part
of this result and Theorem 3.1 above.

We now return to the consideration of the infinite-di-
mensional situation. In the remainder of this section W will
denote an infinite-dimensional Hilbert space as described at
the beginning of Sec. II. We are interested in a relative ver-
sion of the map @ for the infinite spin group Sping (). Let
geSpiny, (W) such that D(g) is invertible. Define

R(g) =(T(g) —1)Q-T(g) +Q.)".

Let R, ( W) denote the class of linear maps R on Wsuch that
R™ = — R and such that

r_| PR BR)
o C(R) D(R)

has matrix element D(R) in the trace class and matrix ele-
ments B(R) and C(R) in the Schmidt class. Note that
ReR, (W) with (1 — RQ_) invertible gives rise to an ele-
ment G= (1 —RQ_)~"'(1+ RQ.) in SOy, (W). The to-
pology on R, (W) is given by trace norm convergence on the
diagonal and Schmidt norm convergence on the off diag-
onal,

Definition 3.2: Suppose gegpinQ (W) and (g) , #0. Sup-
pose ReR, (W) and that (/] - R'Q_) is invertible where
R’'=R+ R(g). ,’\I‘hen we define &(exp(R)g) to be
the element of Spiny, (W) with induced rotation G’
= —-R'Q_)"'I+R’'Q,) and vacuum expectation
equal to (g) 5.

Remark: At the moment the notation 8 (exp(4R)g) is
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merely suggestive. However, we shall see that in certain cir-
cumstances it does make sense to expand the exponential
exp(JR).

It is ingtructive to consider the case where g = e = the
identity in Sping, (W). If ReR, (W) and (I—RQ_) isin-
vertible then @ (exp(4R)e) is the element in Spin, (W) with
induced rotation (I — RQ_)~'(I 4+ RQ_) and vacuum ex-
pectation 1. We would now like to make a connection be-
tween (3.5) and Definition 3.2. If ReR, (W) is finite rank
(rank K, say) then by choosing a basis {w;} so that
Wy 4 15Wg 4 2,.-- is a basis for the null space of R we may
arrange that the sum

© K
Y Rw;AwF= 3 Rw; Aw}
i=1 =1
is a finite sum [here {w*} is the dual basis (w¥,w, ) = 8,.]
Theorem 3.1 then implies that & (exp(4R)) has induced rota-
tion (1—RQ_)"'"(1+RQ,) and it is clear that
(@(exp(iR))), = 1. Thus

O(exp(iR)) = @(exp(iR)e),

where on the left 8 is defined by (3.5) [ReA} (W) ] and on
the right Definition 3.2 applies.

We now consider making “finite-dimensional” approxi-
mations to elements geSpin,, ( W) with (g) , 0. The condi-
tion (g) , #01is equivalent to D(g) being invertible which in
turnimplies (] — RQ_) isinvertible where R = R(g). Thus
if we write G=1T(g) we have G=(I—RQ_)!
X (I + RQ_ ). We will now approximate G in SO,( W) by
making finite rank approximations to R. Let P, denote a
sequence of finite rank orthogonal projections on W con-
verging strongly to the identity with the further property
that the range of each P, is a subspace of Winvariant under
both Pand Q. Define R, = P,RP,. It is shown in Ref. 2 at
the end of the proof of Theorem 3.4 that R,eR,(W), R,
converges to R in R,(W), for n sufficiently large
(I — R,Q_) is invertible, and finally that

G,=(U—-R,0_)""(1+R,0Q.,)eSO,(W)
converges to G in SO, (W). By Theorem 2.1 the element

8(exp(iR,)) in Go( W) has induced rotation G,,. It is not in
Spiny (W) in general but we have

1 =(6(exp(iR,)))% = nr(6 (exp(iR,)))det D,,

where D, = D(G, ) (see Theorem 2.1 in Ref. 2). Thus since
nr(-) is a ‘“quadratic” homomorphism we can put
f(exp(iR,))in §pin0( W) by multiplying it by a square root
of (detD,). Let A, denote a square root of (detD, ).
Choose the sequence 4, so that it converges to (g),

=./det D. Then let

def

g, = A,0(exp(iR,))eSpiny( W).

Since T(g,) = G, converges to G in SO, (W) and (g, ),
= A, converges to (g) , #0 it follows from Proposition 3.5
in Ref. 2 that g, converges to g in Sping, (#). Note that
A,0(exp(iR,)) gives a “formula” for g, that depends only
on the induced rotation for g, and a choice of square root for

detD,.
We are now prepared to state the principal result of this
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section. As in the proof of Theorem 3.0 it is convenient to
unburden the notation writing F F,and N for I‘Q, F,, and
No.

Theorem 3.3: Suppose ReR, (W) and R isrank K < .
Let geSme( W) with (g),#0 and suppose ] — R'Q_
invertible where R' = R + R(g). Then

A K
Iof (exp(—%—R)g) =y (2% ) ~'N(R “g).
k=0

Proof: We first prove this result for GeSpin, (W) and
then show that the general result for Spin, ( W) follows from
this special case. Let geSpiny(W), and let R,(g)
= P,R(g)P, denote a sequence of finite rank approxima-
tions to R(g) as above. Choose A, so that g,

=A,60(exp 1R, (g))eSpin,( W) converges in Sping (W) to
g Suppose Risarank K elementof R, (W),andletR’ = R
+ R(g). Suppose I — R'Q_ is invertible. Let R, =R
+ R, (g). Then since R ; converges to R’ in R, (W), and
hence in uniform norm, it follows that / — R/, Q_ is invert-
ible for all sufficiently large n. By Definition 3.2 the group
element @(exp(iR,)g,)ESpiny, (W) has induced rotation
(I—-R,Q ) "I+ R,Q,) and vaccum expectation
(8.)¢ =A,. Since R, is finite rank, Theorem 3.1 applies
and this same element of G,(W) may be written
A,0(exp(iR ;)). Thus
6 (exp(3R)g,) = 4,0 (exp(4R 1)).
But
6 (exp(JR ;)) = O(exp(})(R + R, (8)))

= 6(exp(JR)exp(iR, (8)))

since R and R, (g), regarded as elements of A2 (W), com-
mute with one another. Since R has rank K we choose a basis
{w;} of W so that

(3.6)

z Rw; ANw} = ERw Awy.

j=1 ji=1
Thus
o K
exp(—l—R)z S (2*k) 'R * = 3y %k 'R*
2 K=o K=0

Thus

1
o(eol3 R Jer)
exp 5
is 2"k')"0(R" (IR ( )))
=4, ! exp| —R, .
k§=)0( P\ R. (8
Suppose now that v,;eW, j=1,...,m, and consider
(v, A=+ Av, AexplIR, (8)))
=v a0, _ N Av,Aexp(iR, (8)))
+(—1D""'0w,,_, A Av,AexpR, (&),
(3.8)

where vX = Q, v,,, and we used (3.5) and the fact that
exp(3R, (g)) is an even element of the Grassmann algebra.
This reduction formula is the same as that which de-
fines the normal ordered products (3.1). Thus since
A, FO(exp(iR,(8))) = [y(g,) it follows that

A, F0v, A--- Av, AexplR, (8))) = N(v,, -

3.7)

'vlgn)‘
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Hence A, FO(R “ exp(iR, (8))) = N(R *g,) and we have

K
FO(exp(4R)g,) = Y (2% "'N(R*g,). (3.9)
k=0

To obtain the desired result we want to pass to the limit
n— o in (3.9). To do this we regard each side of (3.9) as an
element of L(Z). Since g, converges to g in Spin, (W) it
follows that I'y(g,) converges to I';(g) strongly on the
dense domain D (Theorem 3.10 in Ref. 2). It is straightfor-
ward to use this fact and the reduction formula (3.1) to show
that N(R*g,) converges strongly on & to N(R*g) as
n— . Theelement & (exp(1R)g, )G, ( W) is not necessarily
in Spin,(W) but since T@(exp(iR)g,) converges in
SO, (W) as n— o and its vacuum expectation (g, ), con-
verges to a nonzero limit it follows from Proposition 3.5 in
Ref. 2 that 6 (exp(4R)g,,) differs from a convergent sequence
in SO, (W) by a scalar that also converges. It follows from
Theorem 3.10 in Ref. 2 that F@(exp(iR)g,) converges
strongly on & to I'6 (exp(JR)g) as n— . Thus

A K
re (exp(%R )g) =3 2% 'N(R *g).
k=0

We wish to extend this from geSpin, (W) to g’e§pinQ( w).
Suppose then that g = gXa(ker)eSpin, (W)
X oGL(W _)/ker = Spin, (W) and that (g') , = (g), #0.
Let

A B
T(g)=[c D
so that
A BlJa 0
e =|¢ DHO a"]'
One easily calculates
D-"-1 BD™!
R(g)_[p—'c 1-D!
and
D~ "a—1 BD !
R(g) =
&) [a’D"Ca 1—a D!
a 0 a—1 0 ]
R
0 ()[0 1] [ 1—a”

(3.10)

The element 6(exp(4R)g) is the unique element of
Sping, (W) with R matrix R + R(g’) and vacuum expecta-
tion (g')g = (g)o- Let e denote the identity in Spin, (W)
and write e X a for the element e X a(ker)eSpin, (W). Let

a 0]~ a 0]!
R, = [o 1] R [0 1] ‘
Note that R,eR, (W) and R, is finite rank. Consider the

element 6 (exp(4R, )g)- (e X a)€Spin, ( W). A simple calcu-
lation using (3.10) shows that the R matrix of this element is

a O] a 0 a—1 0
[o 1](R“+R(g))[o 1]+[ 0 1—a’]

=R+ R(g)
and since I'(eXa)l=1 the vacuum expectation is
(0(exp(£Ra )g)>Q = (8>Q- Thus
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O(exp(JR)g’) = O(exp(IR,)g) (eXa). (3.11)

If we apply the homomorphism f* to both sides of (3.11)
then

[0 (exp(4R)g) = T (exp(IR, )g)T (e X a).
But we know that

A K
o (exp(% R,,)g) = 3 %D'N(R%g).
k=0
Thus we will have the result we desire if we can show that

N(R“g)T'(exa) = N(R*gxa) = N(R“g).
To see this, first consider what happens when f(eXa) is
moved inside a normal ordered product N(v, - -v,g). Using
the reduction formula (3.1) one finds

N(v"---vlg)f(eXa) = N(v,--vigXa),

where

qtoo
vj:O afvj

(remember T(eXa) = [¢ ,°-1). Recall that, thought of as
an element of A2 ( W), we have

(3.12)

K
R= Rw; Aw}.
i=1
The basis
def a O
wta) = [o 1]“’"

is then the right sort of basis to use in calculating
R,eA} (W). The basis

a O]~ 1 0
wf'(a)*=[o 1] wf:[o a_,]w;-*

is dual to w; (a). Thus

K
R, = Z R, w;(a) Aw;(a)*

j=1

K
=2[1 ?]ij/\[l (ir]w}".
=0 e 0 a
Comparing this with (3.12) one sees that N(R ’;g)f(e)(a)
= N(R *(g X a))and we have finished the proof of Theorem
3.3. Q.E.D.
There is a slightly more symmetrical rephrasing of
Theorem 3.3 that is useful.
Corollary 3.4: Suppose g;€Spin, ( W) and (g;) o #0, for
j=1,2. Suppose T(g,) — T(g,) is finite rank and define
AR = R(g,) — R(g,). Then AR is finite rank and one has

(820 i (2% 'N((AR)*g)),

(g 1 ) Qo k=0
where K = rank AR.

Proof: It is straightforward to show that 7(g,) — 7(g,)
is finite rank if and only if R(g,) — R(g,) is finite rank [giv-
en that D(g;),j = 1,2, is invertible]. The rest is just a trans-
lation of Theorem 3.3.

T(g,) =

V. A GENERALIZED WICK THEOREM

In this section we prove a generalization of Wick’s
theorem. The proof is based on an idea in Sato, Miwa, and
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Jimbo' and requires the introduction of generalized Q func-
tionals on € ,( W). To avoid technical complications we will
introduce these Q functionals only in the case where W is
finite dimensional. We will prove Wick’s theorem directly in
the finite-dimensional case and then extend the result to
Pin, (W) in much the same way that Theorem 3.3 was
proved.

To begin, suppose that W is a finite-dimensional com-
plex vector space with nondegenerate bilinear form (-,-).
Let Q denotean involution (Q2 = I) on W thatis skew sym-
metric (@7 = — Q). In Ref. 2 it is shown that each such
skew symmetric involution gives rise to a Fock representa-
tion F, of the Clifford algebra on A(W,) [where W
=Q, Wand Q, = (I+ Q)/2]. We have, for xeW,

Fo(x)=c(x,) +c"(x),

xX=x,+x_, X, €W,

where c(x . ) =x_ A - are creation operators on A(W )
and ¢"(x_) is the transpose of ¢(x_), with A(W ) identi-
fied as the dual of A(W_) via the bilinear form (-,-). The
anticommutator

c(x)c"(y) + " (Ple(x) = (xp), xeW,, yeW_. (4.1)
More details can be found in Ref. 2, Sec. 2.
The vacuum vectors led(W,) and 1*ed(W_)

~A(W __)* give rise to a linear functional (), on € (W)
defined by

<X)Q=(FQ(X)1y1*)’ XE%(W),

where (-,-) is the dual pairing between A(W_) and
A(W_). Wewill refer to the linear functional (), as the Q-
Fock state on € (W). We will now extend this notion by
removing the condition that Q is an involution. Let We W
denote the vector space direct sum of W with itself with the
nondegenerate bilinear form

(X1 ®Y,%, 8 ;) = (X,X5) — (y1,2)
(note the minus sign here!).Let Weo W * denote the vector
space direct sum of W with itself with the nondegenerate
pairing

(X, @ Y1,X, 8 9,) = (X,2) + (V1,X5).

Evidently this pairing identifies the second component with
the dual of the first and this is the reason for the notation
Weo W*. Now let Q be any skew symmetric map on W and
write @, = (/ + Q)/2 (note that the maps ¢, arenot, in
general, projections). The matrix [;_ _§_ ] defines an or-
thogonal map from We W to We W * and hence extends to
an algebra homomorphism from € (WeW) to
% (W e W*) which we denote by 0(Q). The natural inclu-
sion W w-we0eW & W extends to an algebra homo-
morphism from ¢ (W) into € (We W). We will use this
homomorphism to identify ¥ (W) with a subalgebra of
¢ (W e W) without introducing special notation. The map
Qo= 1[5 %] on We W* is a skew-symmetric involution.
Let (), denote the Q,-Fock state on € (W e W*). We de-
fine the Q functional {-), on € (W) by

def

(X)o =(0(QX)y XeC(WCE(WaW). (4.2)
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For this notation to be consistent we must check that
when Q is an involution this reproduces the Fock state on
& (W). It is enough to check this for X = w,*--w, a mono-
mial. It is well known (and easy to prove) that

(wl"'w,,)Q =PfA, (4.3)

where A is the skew symmetric matrix with jj entry (i < j)
given by (Q_w,,w;). The Pfaffian of 4, Pf A4, is defined in-
ductively for an nX n skew symmetric matrix 4 = (a;) as
follows:

0 a]
Pf[0] =0, Pf[—a 0 =a,

PfAd = 2 (—1)* *lay PR(A) ks
=

where (4),, isthe (n — 2) X (n — 2) skew symmetric ma-
trix obtained from A by deleting the columns 1 and & and the
rows 1 and k. It is known that [Pf(4)]* = det 4.

If we apply (4.3) to (o(Q)w,"*‘w, ), then we find that
this vacuum expectation is the Pfaffian of the skew symmet-
ric matrix B with ij entry

(ese@ 5] @ [3])....

N ([g ?][Qlfw] ’ [Qi}w]) wews

=(Q-w,w;) (i<)).
Thus B = A and we have {o(Q)w;" " w,)o = (w;"* W, ) g,
where Q is a skew symmetric involution and on the right
(*)¢ is the Q-Fock state on & (W). It is convenient for a
later application to observe that the calculation we just did
shows that (4.3) remains valid for general Q functionals
with the skew symmetric matrix A that has entries

a; = (Q_w,w,;) = (w,w;)o, for i<}

There is a Grassmann calculus for % (W) associated
with these generalized Q functionals.'® In general, however,
the subspace W, = @, W need not be isotropic (think of
@ = 0) and so the “normal ordering” prescription we gave
for @ earlier does not apply. It is in fact simpler to give a
formula for the inverse of @ (which is denoted Nrin Ref. 1a).
Suppose Xe? (W) and Q is a skew-symmetric map on W.
Define Nr,, (X)ed (W) by

NI'Q (X) = Folo(Q)X)1,, (4.4)

where F, is the Q-Fock representation and 1,64 (W) is the
Q,-Fock vacuum vector. It is not hard to show that Nr,, is
surjective. Since € (W) and A(W) both have dimension
29m it follows that Nr, is bijective. Thus we may define 6,,
= (NrQ)". Again, in order to see that this is consistent
with previous usage we must check that it reproduces the
normal ordering prescription for 8, when Qis an involution.
We will demonstrate this inductively. Suppose Q is a skew
symmetric involution. Let # denote the normal ordering
map (3.5) and Nr,, the map (4.4). We wish to show that
O(Nry (w,"**w,)) =w,"*‘w,, where w;eW. This is trivially
true when # = 1 and for the sake of an induction we suppose
that it is true for products of length less than or equal to
(n—1). By (4.4) we have
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Nry (w, - w,) = (c(w,) + ¢"(w; ))Nry (w,"--w,),
where w;” = Q_w,. If we move the annihilation operator
¢" (wy ) past the factors c(w;) + ¢"(w;” ) in Nry (w," - w,)
until it hits the vacuum ¢"(w,” ) 1, = 0 and make use of the
anticommutators (4.1) then we find
¢ (w, )Nrg(w, - w,)

n

=¥ (= D*w w,)Nrg(w, i+ w,),
k=12

where the over w; means that w, is absent from the prod-
uct. It is clear from (4.4) that Nry (w,* - -w, ) is the sum of
elements in the Grassmann algebra with the same parity as
(n—1). Thus

c(w; )Nry(w, - w,) =wi ANrg(w, w,)
=(—1)"""Nry(w, w,) Aw;".
Thus we find
NrQ(w,-”w,,)
=w;" ANry(w, " w,)
+ (= 1)""!Nrg(w, " w,) Aw;”

+ Y (= D*w; ,w)Nrg (w0 -w,).
k=2

If we apply @ to both sides of this equation and make use of
(3.5) and the inductive hypothesis then we find
O Nrg(w,"""w,)

=wwyw, + (—1)""'wyw,wi

+ ¥ (= Dy we) (wy -y w,).
k=2

Making use of the Clifford relations one finds
(= D" 'wyw,w

=w; W, w, — Z (— D*w; ,w,)
k=2

X(wz...ﬁ\)k...w").
Thus
O (Nro (wy,eey,)) = (W + w7 )w, " w, = wWw," " " W,.
This completes the inductive step and shows that @ = Nrg’.
Suppose @ is map on W with Q"= — Q. Suppose
GeO( W) such that Q_G + @, is invertible. Define
RQ(G) = (G'—I)(Q_G+ Q+)_1-

Then Ry(G)"= — Ry(G) and we may identify R, (G)
with an element of A?( W) as before. The following result
will be of use to us.

Theorem 4.0: Suppose geG(W) and (g),#0. Let G
= T(g). Then Q_G + Q. is invertible and

8= (g>Q09 exp(%RQ (G)).

Conversely, suppose R: W— W is skew symmetric and
I— RQ_ is invertible. Then g = y(exp IR, (G))eG(W)
and

T(g) = (I—RQ_)"'(I+ RQ,)eSO(W).

Proof: This result is a consequence of Theorem 3.1 as the
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reader can find worked out in the proof of Theorem 2.0 in
Ref. 3. Q.E.D.

We next introduce a slight extension of (4.4) that will be
used in the proof of the generalized Wick theorem.

Theorem 4.1: Suppose Q7 = — @ and that geG(W)
with {(g) , #0. Let w;eW (j=1,...,n). Then

(w,* 'wng)Q = <g)Q Pf(H),
where H is the n X n skew symmetric matrix with i entry
<wiwjg)Q/<g>Q (i< j).

Proof: This is a special case of Theorem 2.1 in Ref. 3 so
we only sketch the proof. It is convenient to first prove this
result in the case that Qis aninvolution. Let G = T(g). Then
(8) o #0implies Q_G + Q. isinvertible. Since @Q_G + @,
is invertible we may factor G = UL, where UeSO(W) is up-
per triangular and LeSO(W) is lower triangular with re-
spect to the decomposition W =W, e W_ (with W

= Q. W). There exist elements u,/leG(W) such that T'(u)
= Uand T(/) = L (Sec. 2 in Ref. 2) and we may normalize
uand/sothat/1, = (g) o1, and "1 = 13. It follows that
g = ul and hence that

(W w,8) g = (&) oWy w,u) g = (g) o (Wi -

where w] = U ~'w;. Thus using (4.3) we find
(wy"w,8) g = (8) o PI(H),

where H is the skew-symmetric matrix with i entry

(w;w;>Q = (wiwju>Q = <wiwjg>Q/<g>Q-
This finishes the proof when Q is an involution. If Qis not an
involution then (X ), = (o(Q)X ), expresses the Q func-
tional in terms of the @, functional. But the map @, is an
involution and it is straightforward that the result for Q,
implies the result for Q. Q.E.D.

Before we state the principal results of this section we
introduce some notation. Let M be a positive integer. For
J=1,.,M, let [, denote a non-negative integer. For j such
that /; > 0 let u;, denote an element of W for 1<k</;. Let Q
denote a skew symmetric map on Wand forj = 1,.. ,M letg;
€G(W) with (g;), #0. Forj = 1,...,M define ;€% (W) by

.w:l)Q’

U, Nuy - Auy ANrp(g), ifl.>0
NrQ(hj)z[ e

Nry(g;), if, =0.
Let v, =u;, where i=/ +L+ - +/_, +k and

I, = 0. The v, are the vectors u, recorded as they appear in
the product 4,4, - - h,,. We will say that v; belongs to the jth
string of the set of vectors {u,z} if v; = uy, for some k. We
writes(m) =1, + L, + -+ + [,,. It might help the reader to
recognize the familiar form of Wick’s theorem as the special
case of the following result obtained by setting all the group
elements g; equal to the identity /.

Theorem 4.2: (Generalized Wick Theorem): Suppose in
addition to the conditions listed above that (g, - -g,,) o #0.
Then

(hy- 'hM>Q =(g,"" 'gM>Q Pf(H),
where H is the s(M) Xs(M) skew symmetric matrix with
entry (i < j):

H; = (g "8y)/{&" " 8um)s
where Nr(g, ) =v; Av; ANr(g,) ifboth v; and v, belong to
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the k th string in {u,,}, Nr(g;) = v; ANr(g, ) if v; is in the
k th string but v; is not, Nr(g;) = v; ANr(g,) if v; is in the
k th string but v; is not, and finally, Nr(g; ) = Nr(g,) if
neither v; nor v; is in the k th string of {u,,}.

Proof: For the proof we will construct a representation
for (h,--+hy), that will permit a direct application of
Theorem 4.1. For each j with /; > 0 let W, denote the vector
space C% with the standard basis e; = (1,0,..,,0), e,

= (0,1,0,...,0), and €y = (0,0,...,0,1). Let

W=we z

i >0

o W,

The space Wisa complex vector space with a distinguished
nondegenerate bilinear form given by the direct sum of the
bilinear form on W with the standard bilinear forms on W,
~C.

Let @ = Q0 denote the skew symmetric map on w
equal to Q on Wand 0 on each W,. Let € denote a positive
real number, with Nr = Nr, and Nr = Nry and define
g€t ( W) by

1,-
Nr(@,) = exp(:sk;1 ex N
Nr(g;),
where here and in what follows we regard W and W, as
subspaces of W. Let f; =2¢™ e, with i=1, + - —+—lj_l
+ k fori=1,...,s(M). The representation we are interested
infor (A, hy )y is
Ay M>Q=(f1"'fs(M)§1"'§M>@ (4.5)
In order to prove this we first establish a formula for g;.
Write 6 = 6, and 0 = 05. Then for (/; > 0),

ujk) ANr(g;), ifl;>0

§j=i€k D e. e

Jik Ji
K0 1<ij<* <il

XO(u; N~ Nuy,

Jix

ANr(g;)). (4.6)

Settinge; = e;,, u; = u; and / = /; to unburden the notation
we have

!
exp (6 D eiAu,»)

i=1
=Y 5 e N
K=0 1<i < <ig<d
Thus to prove (4.6) it suffices to show that for i, < i, - <,
we have

9(e,-k/\"'/\e-/\u~/\-'
=e 0, N

'k

Ne, Nug N~ A, .

U, /\Nr(gj))
/\u,-k/\Nr(gj)). 4.7)
To calculate 8 one may recast the definition of 8 as follows:
BwAX) =w-B(X) + 6(wAX — Nr(w-6(X))),
where weﬁ’and xeA( f/\V) Thus since
Nr(w-é(X)) = [e(w) +c"(w_ )] X=wAX+c(w_)X
it follows that
O(wWAX) =w0(X) —O(c, (w_)X), (4.8)

= @,w. When X is a monomial w, A - Aw,,
-c(w,, )1 of order m it is clear that c"(w_)X isa

where w_
—_ C(w,) ..
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sum of monomials of order m — 2 [see (4.1)]. Thus (4.5)
gives an inductive means for calculating 6. If we apply (4.8)
to the left-hand side of (4.7) with w= €, then the term
— 9(c’(w )X) vanishes since w_ = Q e, =}e;, and
c’(e;) anticommutes with c(e¢;) (i##i,) and with c(u)
(ue W) Repeated application of this observation establishes
(4 7) with @ on the r1g\ht-hand side replaced by 6. However,
f=0on A(W) CA(W) and this finishes the proof of (4.6).
In order to prove (4.5) observe that if we let e, = €ey

with i=0L+ - +1_,+k then for ij<--i and
Ji1< ' <J; we have
<f;'| -f;k Jr >Q 6"‘ g '6ikjk' (4.9)

It follows that the only term in (4.6) that survives after being
substituted into (4.5) is

elfej,j' e 0(u;, A~ Auy AN1(g;)).
This and (4.9) prove (4.5) up to a possible sign difference.
The sign change required to disentangle the factors e;, - - -¢;
from the factors A, = 6 (u;, A--- Auyy, ANr(gy))is
b+ U+ L)L+ -

+ Ui+ oMy =Y L

< j
However, the groups of factors e, A --- Ae; appears from
left to right in increasing order with j. To put them in de-
creasing order requires

(l|+ +lM_1)lM+(11+"'

+ L= 1

i<j

o2y

sign interchanges. These sign changes cancel out and (4.5) is
proved.

Now we wish to show that Theorem 4.1 applies to the
evaluation of the right-hand side of (4.5). We need to know
that g, --8,,€G(W) and that (g, - -&,,) 5 #0. We will show
that both these conditions are satisfied for € sufficiently
small. To show that &,---£,,€G(W) it suffices to prove that
geG(W), for j=1,..,M. But Nr(g;) is (a multiple of) the
exponential of a quadratic element in 4( W). Theorem (4.0)
implies that g,eG(W) provided the associated skew sym-
metric map R(g;): W W determines an invertible map
I—R(g; )@_. However R(g;) differs by order € from a map

R(g;) for which I — R(g;)Q_ is invertible. Thus by choos-
ing € small enough we may insure that §,eG(W). The vacu-
um expectation (g," -8, ) is polynomial in €. It is clear
that
6111(1)1(@1" "8u) o #0.

Thus by choosing € small enough we have (8,2, )5#0
and it follows Theorem 4.1 applies to the evaluation of the
right-hand side of (4.5),

(fl"'fs(M)gl"'gM)@= (él"'gu)b Pf(H), (4.10)
where H is the s(M) X s(M) skew symmetric matrix with Jj
entry (i< j):

Hij = <f;f,'g1§1u)@/<§1§

'§M>Q = <gl"'gu)a =(g""

M ) 0"
But (4.5) applies to the numerator of Hj;. Thus

(fifi& 8udo =181 ""8u)o- (4.11)
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Because of (4.5) the left-hand side of (4.10) does not depend
on €. Thus we may put € = 0 on the right-hand side and since
@1 "8m)3le—o = (81" '8m) o the theorem follows from
(4.10) and (4.11). Q.E.D.

Theorem 4.2 has an immediate generalization to infinite
dimensions. We turn now to this result. In the rest of this
section W will denote a complex Hilbert space with a distin-
guished conjugation P. We will suppose that Q: W— Wis an
involution with @ * = Qand Q" = — Qasin Sec. I. We reit-
erate the notational conventions of Theorem 4.2.

Let Mbe a positiveinteger. Forj = 1,...,M let/; denotea
non-negative integer. For j such that /; > 0 and & such that
1<k</; let uy denote an element of W Forj=1,..M letg;
eSme (W) w1th (g;)o#0.Forj=1,..,M define h,eL(Z)
by

_ {N( 'ujljgj)y
77 |T(g) = Ng)),

where N = N, and T'= Ty.

Let v; = uy, where i=/+ -+ +1[_, +k, and as
above we will say that v, is in the jth string of {u,,, } if v, = u,,
for some k. Recall that s(m) =1, + L+ -+ +1,, and to
lighten the notation we write (&, -hy), for
Chy o ohplg,lp).

Theorem 4.3: Suppose in addition to the conditions list-
ed above that (g, gy ) o #0. Then

(hy 'hM)Q = (g, 'gM>Q Pf(H),
where H is the s(M) X s(M) skew symmetric matrix with ij
entry (i < j) given by

H; =g ""8u)o/{81" " "8u) o
where g, = N(v,v,8,) if both v, and v, are in the & th string,
8. = N(v;g,) if v; is in the kth string but v; is not, g;
= N(v,8,) if v; isin the k th string but v; isnot, g;, = N(g)
if neither v; nor v; is in the & th string.

Proof: We first prove this result assuming g;€Spin, ( W).
As in the proof of Theorem 3.3 we can approximate g;
€Spin, ( W) by a sequence g, €Spin,, ( W) converging to g; in
Spingy (W) as n— «. Theorem 3.10 of Ref. 2 implies that
I'5(g;.) converges strongly on the dense domain & as
n— o to Iy(g;). Let h;, denote the approximation to A;
obtained by replacing g; by g;,. Then A, converges strongly
to h; on & as n— 0. Now approximate (h,'-hy ), by
(A1n, " " Bamm,,) o- Each hjn €F (€ o( W) so that Theorem 4.2
applies provided that (g, ***gum, ) #0. Strong conver-
gence on 7 guarantees that we can make (g,,, ***8am,, ) 0
#0 by choosing n,,...,n,, sufficiently large since (g, - *gx)
#0. Evaluate (h,, **hyy,,, ) o using Theorem 4.2 and then
in reverse order pass to the limits n,, — 0, n,, | —» o, and
finally n,- o, making use of strong convergence on & to
evaluate the limits on both sides of the resulting equation.
This establishes the desired result for g;eSpin, (W)
(j=1,..M).

Suppose now that g; = g; X a; when g;eSpin, (W) and
a,eGL(W ). and we write g/ Xa, for t/}\le element g;
Xa; (ker) of Sping, (W). Use (3.12) to pull I' (e X a;) out of
the normal ordered products defining 4;. Then move each
I'(eXa;) to the right until it hits the vacuum using

if,>0
if ], =0,
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T(exa)Fpw)F(exa) ! = Fy(a; 007 w),

T(exa)To(g)T(exa) ! = Tola(a))g),
and

T(exa)1=1.

What results is a vacuum expectation of a product of normal
ordered forms with elements g; from Spin, (W). Apply the
result just established for Spin, ( W) to evaluate this in terms
of the Pfaffian of a matrix #. In the formulas for the matrix
elements of the matrix H put the operators I'(eXa;) back
inside the normal ordered products by reversing the proce-
durg above. In this fashion one finds the theorem is true for
8;€Sping (W). Q.E.D.

V. DIFFERENCE IDENTITIES FOR THE ISING FIELD

In this section we derive local difference identities for
the Ising field using Corollary 3.4. Such identities provide
the foundation for the SMJ analysis of the scaled correla-
tions in the version of this analysis presented in Ref. 4. Here
we will show that the quadratic identities for the Ising corre-
lations discovered by McCoy and Wu’ and Perk® are simple
consequences of these identities coupled with the general-
ized version of Wick’s theorem (Theorem 4.3).

We review the representation established in Ref. 5 for
the two-dimensional Ising correlations. The ingredients of

€ ¢, — §; cos 0
sin @ + i(s,c, — ¢, cos )

T(z) = 55" [

and z=¢€" ¢, =cosh(2K)), 5; =sinh(2K;), j=1,2. The
constants K are the interaction strengths for the horizontal
(K,) and vertical (X,) bonds in the two-dimensional Ising
model. The map T on W is complex orthogonal on W and
when the constants K, and X, are real T 'is self-adjoint with
respect to the Hermitian inner product on W. We will sup-
pose from now on that X, and K, are real and positive. De-
fine (z) >0 and a(z)eS ' by

cosh ¥(z) =s; '(¢,¢, — 5, cos 6),
a(z)sinh ¥(z) = — s; '(sin @ — i(s,¢c, — ¢, cos 0)).
These functions are of interest to us since
0 a(z)]
K

T(z) =exp — y(2) [a ()~

a(z)

Let @ denote the matrix muliplication operator [a(z(,)q o ]
onL%(S',C>. ThenQ?=1,Q*=Q,and Q" = — Q. Let
Q. =1+ Q)/2. The subspaces W, =@, W give an
isotropic splitting of W = W, & W_. The subspace W _ is
the spectral subspace for T associated with the interval
[0,1].

sflk) = —e(k)flk), keZ,,,
where
1, k>0,
e(k) = { —1, k<O
1294 J. Math. Phys., Vol. 29, No. 6, June 1988

the description are a Hilbert space W; an isotropic splitting
of W= W, & W_ associated with the induced rotation 7 of
the transfer matrix; and the “spin field” oeSpin, (W).

Let W denote the Hilbert space /2(Z,,,,C?), where
Z,,,=Z+ }and /*(Z,,,,C?) has the inner product

(fg)= 3 fik)- glk),

KZ,,,
where x'y =x,y, + x, ¥, For fel*(Z,,,,C*) let Pf(k)
= f(k) denote the conjugation on W that acts by complex
conjugation on each of the components of f. The distin-
guished bilinear form on W associated with P is thus
(f&)= Y flk)gk).
kezl/:
We often identify W with L 2(S ',C?) via the Fourier se-
ries
floy= Y k), 2§ L
keZ,

The multivalued functions z* = e*'°8 where log z = i6 and

0<0 < 27. The branch cut is located at z = 1.
Define the induced rotation T for the transfer matrix as
the matrix multiplication operator on L *(S',C?) given by

Tf(z) = T(2)f(2),

where

sin @ — i(s,c, — ¢, cos B)
ciC; — S5, cos 8

, (5.1)

r

Let o denote the element in §pinQ( W) with the induced
rotation 7(o) = s and such that ¢ 2 = I. Such an element
exists if s,5,5%1 (5,5, = 1) is the critical point for the Ising
field. The conditions T(¢) = sand 0? = I determine o up to
an ambiguity in sign. The condition s,s, > 1 corresponds to
the Ising model below the critical temperature. In this case
we normalize o so that (o) , > 0. Now suppose a€Z? and let
v(a) = zT*, where z= multiplication by z=¢“ on
L?(S',C?) =~ W. Write v, (a) for the restriction of v(a) to
W [note that v, (@) is multiplication by z"e¢~*"® on
W_]. Thenv, (a)eGL(W,) ggping( W) and we define

o(a) =v,(a)ov,(a) " 'eSpiny (W) (5,5, #1)

[note that 7' (v, (a)) = v(a)]. In Ref. § it is proved that the
+ state infinite volume correlations at sites a,, a," - *a, €Z*
for the two-dimensional Ising model below the critical tem-
perature is given by (7 o(a,)---0(a,)) o, where the “time
ordering” .7~ arranges the factors o(q; ) in order of increas-
ing second coordinates from left to right. The fields o(@) and
o(b) commute when a and b have coincident second coordi-
nates so there is no ambiguity in this circumstance.

The result we are interested in is a formula expressing
o(a + u) in terms of o(a) where u= +e¢,,+ e, and
e;=1[6]> 2= [%]. We will first consider the case T< T,
and then use the representation derived in Ref. 5 to obtain
results for T'>T,. It will suffice to consider the case
a = (0,0). The general result will follow from an application
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of the translation operator v(a). Let R = R (0(0)) and
R(u) = R (o(u)) where u = + e,, + e,. Define AR(u) by
R(u) — R. Then since {(o(u)), = (0)o#0 (T'<T,) and
since (as we shall see in a moment) AR (u) is finite rank it
follows that

o(u) = 6,(exp[1AR(u)]0(0)). (5.2)

Much of the work in this section will be devoted to calculat-
ing AR (u) regarded as an element of the algebraic Grass-
mann algebra A,(W).

Let [X,Y] = XY — YX. Then using the fact that v(u)
commutes with ¢, and the derivation property for
[v(u), ] one finds that

ARu) =v(u)(s —D(Q_s+ Q,) "w(u) ™"

—(—-D(Q@s+0,)!

= [v(u),(s —D(Q_s+ @, ) ~'v(u)~!

={[v(w)s1(Q_s+ Q)"
+ (s =D [vw),(@_s+ Q) Iv(u) ™!

= {[v(w),s] — (s —D(Q_s+ Q,)'Q_[v(u),s]}
X(Q_s+ Q) lv(w)™!

=(I—(s—D(Q_s+ Q,)7'Q_)[v(u),s]
X(Q_s+ Q) v(u)™!

But I—(s—D(Q_s+Q,)7'Q_=(Q, +s@_)"" so
that
AR(u) = (Q, +sQ_) '[v(u),s1(Q_s+ Q) 'w(u)~".

(5.3)

The commutator [v(u),s] is finite rank for each choice of u.
A closer examination of [v(u),s] will suggest a basis for
calculating AR (u)ed,(W). Let P, (keZ,,,) denote the or-
thogonal projection in /%(Z,,,,C?) on the two-dimensional
subspace spanned by §(* — k)e; (j = 1,2). One calculates

[2,5] = 2P,z =22P_, 5,
1

(54)

[Z—l,s] = —2P_1/22_ == —ZZ—IPI/Z.

Since v( +e,) = z*! this gives two of the desired commu-

tators. From (5.1) and cos@ = (z+2z"!)/2, sin@
= (z — z~")/2i one finds
T(z)=T, z+ To+T_z7', (5.5)
where
—i(e,—1)
T = —(2 _l[ 51 o ],
= 7@ e+
To=2[?l _iSI],
s, Lis, ¢
(e, + 1)
T_= —(2s —l[ 51 1 ]
(252) —i(c, — 1)

Using (5.4), (5.5),and T(z) "' = T(z™!')" one finds that
(T(2),s] =2(T zP_,;, — T_z7'P,;y),
[(T(2)"'s]=2(T"_2P_,;, — T", z7'P,),).

Let ¢;(k) =6(- — k)e,el*(Z,,,,C?) denote the standard
basis for /2 Recalling (5.3) one sees the basis
v(u)(@_s+ Q.) 'e;(k) is appropriate to calculate

(5.6)
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AR(u)eA(W) since it extends a basis for the null space of
AR(u). We will not use this basis but a modification of it on
the complement of the null space of AR (u) that takes advan-
tage of the fact that the 2 X2 matrices T, are both singular.
Observe that

sinh X, ] [ sinh K ]
k T N k Tr ,
[—icoshKl cker(7.,) cosh K, er(T7_)
cosh K, ] [ — cosh Kl]
k T .
[l‘sinh Kl € er(T+ ), isinh Kl eker(T_)

Consulting (5.3) and (5.6) one is lead to introduce the fol-
[ sinh K, ]
é
L/ cosh K| ® (

lowing basis for P, ,,We P_,,W:
7)
2
sinh K

+
_ 1 1
.~icoshK] 6( -2_)’
’coshK,] 1
i sinh K, 86( _7>’
w4, +) = (Y25,)"! {“.°°ShK'] @5(.— i).

| isinh K 2

The reason for notation u( + , + ) and the choice of norma-
lization will be apparent only after we have done some
further calculations. The basis B we use to calculate AR (u)
is the union of

{v()(Q_s+ Q) u(ee) |6 =
with

{v(u) (Q_s+ Q+)ej(k)lkezl/2,j =1,2and k # + i}
We also require the basis B * dual to B with respect to the
distinguished bilinear form on W. Let

{u*(ee)le,= +,6,= £}
denote the basis of P, We P_,,, W dual to

u(—,—)=(2s)""

u(—,+)=2s)"!
(5.7)
u(+,—)=2s)""

T,.6= i}

{u(ee)le,= +,6,= 1}

with respect to the bilinear form on W. Then
W —,—)=V3 _°:’::‘nf'Kl] @6(- +%)
ut(—,+)=V2 "’s‘:i};f]‘;']] ®5(- +%) y
TSR] L0 OO
u*(+,+)=V2 __ISC‘E:‘hI;‘l] @5( —1—)

Making use of v(u)" = v(u)~', Q7. = Q@ ,ands"=swe
find that B * is the union of

{o) (5@, + Q) 'u*(en&), €, = +,
with
{v(u)(sQ, + Q_)"'e;(k)|keZ,)p, j=1,2and k # + 1}.
Using (5.3)-(5.5) one finds

&= +1}

AR(w)= ¥ (@i +5Q ) '[v(u)slu(ene,)

= +.6= =+

Av(u)(Q_ +5Q.) " 'u*(e,e,),
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where the basis u(¢€,,6,) has been chosen so that only two

terms of the sum defining AR(u) survive in each case

(u = + e, + e,). Without difficulty one may verify that
T+zu( s T ) = (2S2)_1u*( + 1) + ),

0 + ) = O,

T z7'u(+,—)=—2s) 'u*(—,+),

T z7'(+,+)=0

T, zu(

and
T zu(—,—)=0,
T zu(—,+)= —(25) " 'u*(+,—),
T, z7'u(+,—-)=0,
T z7'u(+,+)= —(25) " 'u*(—,—).
Making use of these identities and
(Q_ +50.) 'u*(e6,)
= (sQ_ + Q) 'su*(e,€,)
= —€,(s0_ + Q,) 'u*(ey€6;)

one finds
AR(e)) =s; (w(+,—)Azw(—,+)
—w(+,+)Azw(—,—)),
AR(—e) =s7 w(—,+)Az7'w(+,—)
—w(—,=)Az7'w(+,+)), (5.9)
AR(e)) =s;7 'w(+, +))AT@Qw(—,—)
—w(—, +IANT@w(+,—)),
AR(—e)) =s; w(—, = )AT@) 'w(+,+)
—w(+,=)YAT@) 'w(—,+))

where
def

w(ee;) = (@, +5Q_) " 'u*(€,6,).

We will now calculate the vectors w(e,¢€,) in coordi-
nates that are natural for the transfer matrix. This calcula-
tion will simplify (5.9) and will also show that the vectors
w(€,€E,) “cry out” to be located on the half-integer lattice
Z,,,XZ,,,. We begin by using the Weiner—-Hopf method to
calculate (Q, +sQ_)"". Let €, =(1+¢€)/2 so that
s=€_—e€,.Then (@, +50Q_)=(e_+€_0Q).

Now suppose that Q(z) = A4_(2)A4 (2), where 4_(z)
has an analytic (invertible) continuation into the exterior of
the circle |z| =1 and 4, (z) has an analytic (invertible)

continuation into the interior of the circle. Standard
Weiner-Hopf arguments show that
(e_+e€, A A ) '=I4+A47€ (42" —4,). (510)

For T < T, the matrix
_ 0 a(z)]
2@ = [a(z)‘l

does have a Weiner—Hopf factorization as we now demon-
strate. Going back to the definition of a(z) one finds
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a(z)* = a(z) _ sin @ —i(s,c;, — ¢, cos @)
a(z) sin@+i(s,c, —c, cos 8)
_ _1—az! 1-0a
l—az ' 1—az’
where a,=e *Te~2% and a, =e*Te— 2% Here the
“dual” interaction strengths K3 are defined by

sinh 2K ¥ sinh 2K, = 1.
The condition 7'< T, is equivalent to &, <a, < 1. We
define

b_(2) = (—1—“—22;:)1/2, mm—:(ﬂ)w,

l —a,z
where the square roots are normalized so that they are posi-
tive for z= — 1. It is clear then that a(z) = ¢_(2)é . (2),
where ¢ _ (z) has an analytic continuation into the exterior
of |z| =1 and ¢ (z) has an analytic continuation into the
interior of |z| = 1. We define

_(¢-@ 0 )
A—(z"( 0o 4.0/
(0 ¢+<z>)
A+(Z)_(¢+(z)_l 0 y

so that Q(z) =A_(2)4.(z). We now calculate

(Q. +5Q_) 'e;( +1) using (5.10). Since €,4_ ¢e;(})
= A, e;(}) we have

IT+A47'€e (A2 —A4))e()
=A,e, 4 (2)7'e(})
=A4,(2)4_(0)7'e;(})

=4, (2)e;(1).
Since

€ (A e(—1))=A,e(—1)—A4,(0)e(—1)
we have

(I+A4 7€ (42" —4,))e(—)

=e(—p—47'e,d,.e(—1)
=A ;‘(z)A+(0)ej( - 1.
Thus

(Q, +sQ_) e (1)=[ 0 ]

* IR U I N3
(Q++SQ )—192(%) [¢+(Z)\/_]

(5.11)
(@, +50) e (~ ) = [ ’¢+(Z)‘f ]
-1

(@ 450 el [¢ Y2z ™! ]

Recall that the square root vz is calculated with O<arg z
< 27. With this choice note that (z—1)V/2 = — (z1/2)~ L
Next we calculate the vectors in (5.11) in a spectral repre-
sentation for 7°(z). A more complete rationale for the trans-
formation to this representation is given in Ref. 11. Let M(z)
= (a@(z)sinh y(z))" 2 where the square root is normalized so

that M(— 1) = [(1 + H/A2) ¥ (positive number). Since
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a(z)sinh y(z) does not wind around O for T< T, a unique
continuous square root is picked out by this normalization.
Now define

fo(@) = [(1+D20M(2)f,(2) + M(2)£,(2)),

fo(2)=[(1=D21M(z"")fi(z7") = Mz~ ")z h).
(5.12)
Then

fz)- g(z) dz
st 2

= f+(z) g, (z)(sinh ¥(2))* ‘Z
f /- (2)g_(z)(sinh ¥(z))~! f:'
and the map
fl(z) __’[f+(z)
fz(z) f(2)

is a spectral representation for 7(z) in the sense that 7(z) is
given by the diagonal matrix multiplication operator
[677 %] inthe [ # ] coordinates.

It is straightforward to calculate the [ 4+ ] coordinates

for (Q, +5Q_)"'e;( +14) from (5.11) and (5.12). One
finds

000 (1)L [ F]

(@4 +5Q_) e, (%) = % zf?((z))‘/\/é] ;
o0 )13t [908]
(@, +50) e, (— 7 =1_};_" [;F((:)’g__:

where F(z) = [¢_(z)sinh ¥(z)/¢, (2)]'/? is the contin-
uous square root normalized so that F(—1)
=[(1=-/2]x (positive  number), and G(z)

= [¢, (2)sinh ¥(z)/¢_(z)]'/? is the continuous square
root normalized so that G( — 1) = [ (1 +i)/V2] X (posi-
tive number). We also used the fact that

([#]=] ]
Lr —if_
We can simplify F(z) and G(z) by making the following
observations:
sinh?(y/2) = (cos y — 1)/2
= (5,/45,0,) (1 —a,z” ") (1 — a,2),
cosh?(y/2) = (cosh y — 1)/2
= (5,/45a)(1 —az7")(1 —a,2)
[since cosh ¥ = 55 '(¢,c, — 5, cosh 8)] from which it fol-
lows that
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¢_(2)sinh y(2) _ a(z)sinh y(z)
$.(2) . (2)2
= — 21[ sinh?(y/2),
¢, (2)sinh y(z) _ a(z)sinh y(z)
é_(2) ¢_(2)?
= 21'\/Z cosh?(y/2).
a,;
Thus
F(z) = (1 — )" sinh(3/2),
G(z) = (1 + i)e *T cosh(7/2),
so that
_ 1 x| sinh(y(z)/21z
(@, +50_)"" (—)=2 [
Q. +50 “ 2 2 s1nh(y(z)/2)J_
(Q, +35Q_) e, (—1—) = ﬁe‘”[' cosh(y(2)/21z |
2 i cosh(y(z)/2)z

(Q+ +35Q_) e (——%)

cosh(y(z)/2nz ™!
— cosh(y(z)/2Nz™!

@ v )

_ Jie‘f[ i sinh(y(z)/2Nz ™! ]
— isinh(y(z)/2Nz!

where the terms on the right are the [ ] coordinates of the
vectors on the left. Finally we may use (5.13) to calculate the
[ f., f_] representation for the vectors

w(€p,E,) = (Q+ +SQ_)'—lu*(6,,62).

(5.13)
= ‘/ie—KT

One finds
[ er(z)/zﬁ—l
w(—, =) =1 | __e—r(z)/Z‘/E—l]
o~ r(z)/z‘ﬁ—l
w(—,+) =15 _ oz
- y( )/2\/— (5.14)
eV ?’%z
W(+)"')=\/s_l‘ L_e—Y(Z)/z‘/E )
'e—y(z)/Z z
w( 4,4+ ) =15, ey(z)/z‘{/—z].

Since 7'(z) is multiplication by [¢ ;" .o | and zis multipli-
cation by [ 7] in the spectral representation (5.12) it fol-
lows from (5.14) that T(2)w(e, — ) =w(€ + ) and
zw( — ,€) = w( + ,€). Making use of these results in (5.8)
we find

AR(e)) =25 'w(+,—)Aw(+,+),

AR(—el)=25'|—1w(—,+)/\lU(—,—),

5.15

AR(ez)=2sz_1w(+’+)/\w(_)+)a ( )
AR(—¢) =257 'w( —, = )YAw(+,—).
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We have established the following theorem.
Theorem 5.1: Let u = + e;, + e,. Then

o(u) =6, exp[1AR(u)]a(0), (5.16)

where AR(u) is given by (5.15) and the vectors w(e,,¢,)
have spectral representations given by (5.14).

Remark: Since zw( — ,e) =w( + ,€) and
T(z)w(e, — ) = w(e, + ) it is quite natural to “locate” the
vector w(€,€,) at the point {€,(1),€,(})) on the half-integer
lattice Z,,, X Z, ,. If this is done then (5.15) may be remem-
bered with the following graphical device:

w(—,+)
l 0,0
w(—,—) w(+,—)
To get from (0,0) to (1,0) one crosses the directed bond
joining w( 4+, — ) to w( +, + ) in the picture. The factor
w( +,—)YAw(+,+ ) with weight s¥ is just what is need-
ed to obtain o(e,) from o(0) via (5.16). The other cases are
precisely analogous.
The vectors w(€,,€,) have another significance that we
now describe. It is easy to check that

w(—,+) =v2(Q, +sQ_) '(cosh K,e,( — 1)
+ isinh Kje,( — 1))

w(+,+)
(1,0).

so that
N(w( —, + )o)=2[cosh K,F(e,( — 1))
+isinh K\ Fle,( — D)NT(o).  (5.17)

In Ref. 5 the operator on the right-hand side of (5.17) was
denoted by u_,,,. Here it is more appropriate to write
1 ( —1,3) for this operator. Let ¥(m) = I'(v, (m)) and de-
fine

lu'(kl’kZ) = V(kl + %’kz - %)#( - %,%) V(kl + %9k2 - 5)_19
(5.18)

for (k,,k,)€Z?,,. The significance of the disorder variables
1 (ky,k,) was established in Ref. 5. Suppose one has interac-
tion strengths K; (j=1,2) given for T<T, (sinh 2K,
X sinh 2K, > 1). The dual interaction strengths K * then de-
fine a model with T> T, (recall sinh 2K sinh 2K} = 1).
Let 7¢+ (ky,-...k, ) denote the infinite volume correlations
for the Ising model with interaction strengths K¥, K7 at
sites k,€Z3 ,, on the half-integer lattice. Then it is proved in
Ref. 5 (Sec. 3) that

Tiee (Rpyeokn) = {T (k) (k)Y ok » (5.19)

where the time ordering .7~ puts the operators u (k;) in order
of increasing second coordinates from left to right. The oper-
ators u (k) and u (/) commute when the second coordinates
of k and / agree so the time ordering prescription does not
lead to ambiguity in (5.19). The notation Q(K) means that
the vacuum expectation on the right of (5.19) should be
calculated at interaction strengths X, and X, (below 7,).We
may summarize (5.19) by saying that the correlations above
the critical temperature are given by vacuum expectations of
disorder variables below the critical temperature with inter-
action strengths related by the duality
sinh 2K; sinh 2K * = 1.
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We are almost ready to derive the McCoy, Wu, and Perk
difference equations. Before we do this we will show that all
the w(e,,€,) occur on an equal footing in the sense that

N(w(e,€6;)0) = u(€,/2,6,/2).

It will be enough to prove this for w( 4+, + ), the other cases
are analogous. We have by definition N{w( —, + )o)
=p( —4,1). Making a similarity transformation of both
sides by ¥V(e,) one finds

44 =Nw( +, +)0(1,0))
since zw( —, + ) = w( +, + ). But Theorems 3.3 and 5.1
imply that
Ne(1,0))=N([1+s "w(+, —)w(+,4+)]o(0)
Thus
Nw(+,+)0(1,0))

=Nw(+,+)
X[1+s7w(+, =)w(+,+)]0(0))
=N@w(+, +)o(0))

since w( + , + )% = 0 in the Grassmann algebra.

We are now prepared to use Theorem 5.1 to derive quad-
ratic difference identities for the Ising correlations. It will be
useful to simplify notational matters by concentrating on the
two point functions. For acZ? define

7(a) = (j‘U(O)U(a))Q(K),
™(a) = (LO/—#(k)lJ(k'i'a))Q(K)s kGZ%/Z,

where Q(K) is Q evaluated at K, K, with sinh 2K sinh 2K,
> 1.
Letu = +e,, + e, and define

F,(a)=1(a+u)/7(a), F¥a)=1*(a+u)/7(a).

We shall derive the MWP difference identities by seek-
ing a relation for F,(a + «'), where ¥’ = + e, + ¢,. But

Fat+u)=7m(a+u+u')Ym(a+u)
=ma+u+u)/r(a)F,(a)”".
Thus
F,(@)F,(a+u)=7m(a+u+u')/7(a).

It is convenient to suppose that the second coordinate of
a(m,(a)) is sufficiently large so that 7, (a) >0, m,(a + u) >0,
mo(a + #') >0, and m,(a + u + u’)>0. Then we have

T@a+u+u')=(o(0)o(a+u+u))
= (o( —uw)ala+u))
={(o( —u) —o(0))o(a + u') —a(a)))
+ (o(0)o(a+u'))

+ {o( —u)o(a)) — {a(0)o(a)),
from which it follows that

ratutu)
T(a)
=F,(a)+F,(a)—1
Llo(=w) —o@)ot@+u) —a@)) (549,
7(a)
John Paimer 1298



The rest of the calculation is the use of Theorem 3.3,
Theorem 5.1, and the generalized Wick theorem to evaluate
the last term in (5.20). In order to keep track of the points on
the half-integer lattice that arise in the application of
Theorem 5.1 it is useful to introduce complex notation for
points in Z? and Z},, writing (a,,a,) = a, + ia,. We may
summarize Theorem 5.1 as follows:
f(a(a + u)) — I'(o(a))
=s(u) " 'N(wla + [(1 — N /2]ujw

X{a+ [(1 +i)/2]u)o(a)),
where s( +¢;) =s; (j=1,2). Now substitute this in the
last term in (5.20) and use Theorem 4.3 to get
{lo( —u) —o(0))o(a + u') — o(a)))/7(a) = PI(G),

where G is a 4 X 4 skew symmetric matrix with entries above
the diagonal:

G, = {o( —u) —o(0))o(a))

=F, (a)—1,
7(a)
G.. = Sulli—1)/2Jupa + (1 = i)/2]u))
13 T(a)
_mMa+ (u+u)/2 —i(u+u')/2)
7(a) ’
G =l —1/2]upla + [(A = D/2]w))
14 T(a)
_m™Ma+ (u+u)/2+i(u—u')/2)
7(a) ’
G.. = = [ +D/2]upa + [ —=72]u')
23 T(a)
_TMa+ (u+u')/2 +i[(u—u')/2])
(a) ’
G.. — Su = [ +0)/2]ujula + [(1 = i)/2]u)
24 'r(a)
_ ™a+ (u+u')/2+i[(u—u')/2])
7(a) ’
(;34 —_ <0'(0)(0'(a + u’) _U(a))> =Fu.((1) _ 1.
7(a)
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Since Pf(G) = G,,G4 — G13Gy4 + G,G,; one finds after
substitution in (5.20)

F,(a)(F,(a+u') —F,(a))
= — (s(u)s(u'))"'7(a) " r*(a*)7*(a* + iu + iu')
— 7*(a* + ' )r*(a* + iu)),
where
def

a*=a+ (u+u)2—i[(u+u)/2].

Clearing the denominator 7(a)? one finds the more symmet-
rical

ra)yr(a+u+u') —rla+u')r(a+ u)
= — (s(u)s(u'))"(r*(a*)7*(a* + iu + iv')
— m*(a* + iv')r*(a* + iu)),

which is a slight variant of the MWP difference identities.
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Gell-Mann formula for simple complex Lie groups and geometric quantization
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A Lie-Poisson isomorphism for Lie algebras g and q = £X ¥ is derived in a closed form, where
g is complex and simple, and { is the maximal compact subalgebra in g. This isomorphism
enables one to find a generalized Gell-Mann formula relating unitary irreducible
representations of the corresponding Lie groups G and Q. The case g = sl(n,C), f = su(n) is
considered in detail. A simple relation between characters is obtained.

I. INTRODUCTION

The Gell-Mann formula sets up a correspondence be-
tween unitary representations of two Lie groups that have
algebraically different structures but are related by their
physical or geometrical meaning. The typical example is that
of the de Sitter group and the Poincaré group. This corre-
spondence is stated in an infinitesimal form, it represents a
polynomial dependence between generators of the corre-
sponding Lie algebras. Validity of the “standard” Gell-
Mann formula in the case of a semisimple Lie group was
investigated by Hermann.! The “standard” Gell-Mann for-
mula means a correspondence of the form P, =T, + ¢
[A?,T;]. Weimar proved? that the validity in this case is
restricted to the pseudo-orthogonal algebras only. The only
attempt to generalize the Gell-Mann formula, to the auth-
or’s knowledge, was made by Mukunda® for the groups
SL(3,C) and SU(3) &su(3). Mackey* investigated the rela-
tionship between unitary representations of a semisimple Lie
group G, on one hand, and the semidirect product Q = K&T
of the maximal compact subgroup K C G with the additive
group T of the vector space T,(G /K), on the other hand. He
did not take care for the Gell-Mann formula but compared
the constructions of unitary representations for both groups
and looked for an analogy, which in some cases is quite strik-
ing.

The main motivation for considering the Gell-Mann
formula is the observation that unitary representations of
semidirect product groups are comparatively simpler in
their construction than those of semisimple groups. In the
former case there exists a systematic approach based on a
general theorem due to Mackey.® Another meaning of the
formula arises when one is dealing with the enveloping alge-
bras and fields.®

In this paper we exploit the idea suggested by one of the
authors of Ref. 6 (Havli¢ék), who insists on comparing
coadjoint orbits for both groups. This procedure is based on
the method of orbits and geometric quantization.”® Suppose
we are given a symplectomorphism which, moreover, pre-
serves the polarizations on the corresponding orbits. Then
we can identify in a distinguished way the underlying Hilbert
spaces and compare both representations. We confine our-
selves to the case where G is a complex simple Lie group,

® Permanent address: Department of Mathematics, Faculty of Nuclear
Science, Czech Technical University, Prague, Czechoslovakia.
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connected and simply connected, Q = K&¢. In this case we
are able to describe in a closed form a Poisson isomorphism
J: q* — g* defined on an open dense subset. Further, we shall
show that there exists a generalized Gell-Mann formula; a
more detailed description for the group G = SL(n,C) is
postponed to the Appendix. The obtained correspondence
between unitary representations coincides with that pro-
posed by Mackey. Moreover, there a simple relation between
characters is found.

1l. NOTATION

Let G be a complex simple Lie group, connected and
simply connected, # = dim¢G, ! = rank G, G = KAN (the
Iwasawa decomposition), M the maximal torus in X,
H = MA the Cartan subgroup, and B = MAN the Borel sub-
group. Let g,f,a,n,m,h,b be the corresponding Lie algebras,
B(-,) the complex Killing form in g, (-, =Re B(",")
({-,") restricted to f is the negative definite real Killing form
inf). Let A_ = A, UA_ be the set of roots, § = 12,00,
{H,,E,} o the Weyl generators normed by [E,.E_,]
= —H,,B(E,,E_,) = — 1. Let X+— X be the complex
conjugation in g with respect tof ( g = f + /f over reals), H,
= —H, E,=E_,.Let n_ = fi and u be the orthogonal
complement of m in £.

We identify the dual space g* with g by the bilinear form
(-,-). Consequently, the coadjoint representation is re-
placed by the adjoint one. Let C, Ca be the dominant Weyl
chamber, m, =iC,, ), =a+m,, ¥ the Weyl group
identified with the normalizer factorized by the centralizer
of 4 in K. Let ¢,,...,¢; be the fundamental weights in C__,
A=TZe + - + Ze,.

We denote by Q = K& the semidirect product, where
the second term f means the additive group of the underlying
vector space, the action of X in f coincides with the adjoint
representation, q = £&f. We identify g* with q by the bilinear
form (X,Y)), (X,,Y,) — (X,,X,) — (Y,,Y,). Then

keK, X,Y,Zet.

The images of the above specified embeddings of K into G
and Q are identified; the same is true for the Lie algebras.
The identification of mXmCgq with HCg by the mapping
(X,Y) — X + 1Y will also turn out to be useful.

© 1988 American Institute of Physics 1300



Iil. POISSON STRUCTURES

In this section we summarize some necessary facts on
Poisson structures and refer to Weinstein’s paper® where the
subject is studied in detail.

Let Pbe a smooth manifold, and { , } designate a Pois-
son structure on P. Let £ be the Lie algebra homomorphism
from C = (P) into the Lie algebra of vector fields £(P) de-
fined by &,'g = { f,g}. Vector fields £, span a smooth involu-
tive distribution D, which is integrable.'® The integrability of
D is an immediate consequence of the generalized Frobenius
theorem due to Sussmann and Stefan'': A smooth distribu-
tion D is integrable if and only if it is involutive and the
dimension of D remains constant on all integral curves of
vector fields belonging to D.

Consequently, there exists a foliation with singularities
on P. Each leaf becomes a symplectic manifold, the symplec-
tic form is defined by w( £,¢,) = — {f,g}. Weinstein’s
splitting theorem gives more information. To each point peP
there belongs a canonically defined transversal tangent Lie
algebra.

A mapping J: P,,{ , },—P,,{ , },is said to be Poisson

if the pullback J *: C = (P,) —» C = (P,) is a homomorphism.
In this case J. (p) maps D, (p) onto D,(J(p)), J, ( &,+.) (p)
= £,/(J(p)). We shall need the following criterion and its
corollary. We denote by w; the symplectic forms living on
leaves of foliations on P;, j = 1,2, and by V, the subspace of
D,(p) [the w,-orthogonal complement of the kernel
ker J, (p),ie., V, =ker(J,|p);]. Then Jis a Poisson map-
ping if and only if J *w,|, = @[,

Corollary: Suppose, moreover, that the derivative
J,. ( p) restricted to the vector space D, is injective. Then the
Poisson mapping J induces a local symplectomorphism at
the point p of leaves passing through the points p and J( p).

Let g be any Lie algebra. The Lie-Poisson structure is
defined on g* by { £,g}(F) = (F,[dfr,dgr]). We identify
g** with g. Leaves in g* are exactly the coadjoint orbits with
their standard symplectic structure. Let P be another Pois-
son manifold, J: P—g* a smooth mapping, A, =J*X for
Xeg** = g. Then J is a Poisson mapping if and only if 4:
g— C *(P) is a homomorphism. Then J is called a momen-
tum mapping. The Poisson action A determines an action of
g on P by the homomorphism %: g~X(P), Ny =&,(x)-

Remark about polarization: Let (5,0, ) be a polarized
symplectic manifold and we suppose the polarization .# to
be accessible. For open subsets UC.S we put (keN)

A (U) ={feC=(U); &f=0o0n Uif £ belongs to 7 },

A (k)(U) = {fecw(U); {gl){gZV",{gk.Q_],f}'”} =Oy
for all ¥'CU open, geds (M)}

All these spaces can be considered over complex numbers as
well as over reals. It holds that 4 ! is a subsheaf of the sheaf
of Poisson-Lie algebras on § and a real smooth function
defined on Ubelongs to 4 (' (U) if and only if the flow of the
vector field £, preserves the polarization.'?

Let us consider, in addition, a symplectomorphism J:
S—g* of Sonto a co-orbit L = J(.§) in g*. The polarization is
mapped onto a polarization J, (.¥ ) on L. The polarization
J,.( & ) will be invariant with respect to the coadjoint action
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(supposing G to be connected) if and only if it is invariant
with respect to flows of vector fields 7y, 1y (F) = ad*X(F),
Xeg. This is equivalent to the requirement A, = J*Xe4 Y,
1.e., values of the homomorphism 4 belong to the subalgebra
AV A:g-AW,

Summary: In the case of interest, i.e., for our Lie alge-
bras g, q, we are given the following problem. Let (0,5 ) be
a polarized coadjoint orbit in g*. We look for a homomor-
phismA:g—4 " = 4 "(Q,R) such that the differential J, of
the corresponding momentum mapping is injective. Then J
induces a local symplectomorphism between orbits in g* and
g* that, moreover, maps the Q-invariant polarization onto a
G-invariant polarization. Global aspects must be solved in
the concrete case.

IV. THE POISSON ISOMORPHISM

Coadjoint orbits in g*=g: We consider only orbits of
maximal dimension containing regular elements. Any such
orbit intersects § exactly in | #7| points. Let F, = (1/2mi)
X (v + i), v,oea. The orbit ), satisfies the integrality
condition if and only if veA. The orbits Q2 with vea, oeC
fill up an open dense subset g, C g and are parametrized in a
unique way by the set axX C,. On Q. there exist | #7| real
invariant polarizations and they are in one-to-one corre-
spondence with Borel subalgebras containing f). All these
polarizations lead to equivalent representations. In what fol-
lows we fix the subalgebrab. Let 7 = K /M, 0 = Me? be the
origin. There exists a projection p,: Q. —: g-Fy—k-o,
where g = kan is the Iwasawa decomposition. The polariza-
tion satisfies the Pukanszky condition'® since the mapping
N-n: n—Adn(F,) — F, is a diffeomorphism.'* Conse-
quently, the fiber of the projection p, over the origin is
F,+n

Denote by y,: B— T ': man—m®a” the character of the
Borel subgroup, veA, oeC,. Here we denote by m"
= exp(B(v,X)), m = exp X, Xem, and a” = exp(B(ic,Y)),
a = exp Y, Yeq, the characters of M and 4, respectively. The
unitary representation corresponding to the orbit Q is
T ,» = Ind§ y,. The representations .7, veA, oeC, are
irreducible and mutually nonequivalent, they belong to the
principal series. The complement of the set AX C, CG is of
Plancherel measure zero. [The Plancherel measure is
wn(v,0)dv do,

w(v,o) = [[ la(v+io)|?,
a>0
dv is the discrete counting measure on A, do is the Lebesgue
measure on C, . ]

Coadjoint orbits in ¢*=q: A more general case was in-
vestigated by Lipsman.'* Orbits (), passing through points
F, = (1/27i) (v,0), vea, 0eC ., ﬁll_up an open dense subset
g, € q and are parametrized in a unique way by the set
aX C, . The orbit Q. satisfies the integrality condition if
and only if veA. The subalgebra m&f induces a real invariant
polarization on {1 . Again, there exists a projection p,: Q.
—&: (k,X) Fy—k-o. The polarization satisfies the Pu-
kanszky condition since the linear operator ad((1/27¢) o) on
u is bijective. Consequently, the fiber of the projection over
the origin is F, + u x0.
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Denote by
X M&E-T — B(0,Y))

the character, veA, geC . The unitary representation corre-
sponding to the orbit Q. is %, = Ind$s, x». The repre-
sentations % ,,, v€A, oeC,, are irreducible and mutually
nonequivalent. The complement of the set AXC, C Q is of
Plancherel measure zero. [The Plancherel measure is
u,(v,o)dvdo,

' (m,Y )—m” exp|

II lete)?.]

a>0

Let y: E-X(Z) [resp. E(T*Z)] be the infinitesimal
actionof Kon & (resp. T*&); T * is the cotangent bundle
over . Using y we identify tangent spaces T,.,& with {/
Ad k(m). Using the metric we identify cotangent spaces
Ti..*7 with Ad k(u). There exists an unambiguously de-
fined Q-equivariant diffeomorphism between the Q-homo-
geneous spaces (. and T*Z such that F, is mapped on
0T *7 . Denote by py: @ = O (1 oriyes P21 € = C (1 y2miro the
K-equivariant mappings determined in a unique way by the
condition { p,(0), p,(0}) = F,. Then K acts on T *& by tan-
gent mappings; O X f acts on the fiber 7, *£ as the group of
translations by vectors — 77, (x): = ad p,(x)(Y), Yef.

Let 7: T*£ — & be the projection, ¢ be the canonical
form on T*Z, 8,(§) = (x,7, §). The K-orbit & 5.,
CI* = f is integral; let »' be the corresponding symplectic
form. For the symplectic formw on T*& = (), the follow-
ing expression is valid:

0= —d¥+ (por)*e'. (N
Both sides are Q-invariant, hence we can check the equality
in one point only. Since & is embedded into T*¢& as the null
section and since 7, 77y = 0 and integral curves of the vector
field 7, do not leave the submanifold 7 CT*Z, ¢|, =0,
we have (all expressions are evaluated at the origin, £ is
arbitrary)

(prom)*@' (§my) = dd(yx,¥y) =dd(nxmy) =0
o(Yx,7y) = — {F([X,Y],0)) = — (127, [X,Y ])

(proT)*o' (Yx,¥y)

Ly(v,o) =

w(7/x;77y) = — (Fzy(o, [X’ Y] ) >
= {((1/27)o,[X,Y 1)
= — (ad((12m)o)(Y ),X )
=7y ¢ (yx) = —d3(¥x7y) -
The real polarization on T * ¢ is a foliation whose leaves
are exactly fibers of the projection 7. The subalgebra 4 ' of
the Poisson algebra C * (T *¢) consists of those functions

that, when restricted to 7, *¢, are polynomials of at most
first order for all xe7. We can identify

AV=C>(F)eX(0) (2)
using the embeddings

C=(O0) D fr>*feC=(T*0),

E(T) D @b(x) ={x,6x))EC=(T*0) .
The Poisson bracket then reads

=0 {5fr=¢1,
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(3a)
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{gl’gz} = (Pl*wl)(gvgz) + [§1,6.] - (3b)

Let 0! = — di be the standard symplectic structure on
T*&; the corresponding Poisson algebra is well known.'>
Denote by £ (resp. £©): C*(T*0)-X(T*C) the Lie
algebra homomorphism corresponding to & (resp. ‘).
Then (3a) follows from the equality &, = £, for fe4
= C=(). In general, it holds that 7 &, = 7, &, for all
geC *(T*7) since

(£, —&) 1di+¢, J (por)*e' =dg—dg=0
and hence for feC (&) we have 7, £, =0,

0= —dd(£pg, " — &) = dfir, (§,'7 — &) .

Let §;eX(0), @, =@ & =£,, j=1,2. Since 7, (£,.)
=0 9E,¢) = @*, wehave
—{pup,} = —dd(£,6) + (poT)* @' (£1,6,)
f-—p— §I.¢2 + §2-¢l + ¢) [£0é:]

+ (p*0") (§1,82) -
Using &, ¢, = — &9, = {@1,¢,} we obtain (3b).
Let A q—'A(”, ili f—*cw(ﬁ(l/zm')v)’ /12: f
—C*(7 (12my») be the canonical Poisson actions. Then
(Xef)

j~(x.0) =p*Ax + vy Z(O,X) = —p*%. (4)

We are now going to describe all homomorphisms A:
g — A 'Y that fulfill the a priori assumption (respecting the
identification of KC G and KC Q)

Ax =p*AL + 7y, Xef. (5)

Weput Ay = fy + x Xet, f€C = (0), Exc¥(0). We re-
quire (X, Yet)

{/lx,}*iy} = /li[x,yl s (6a)
{AIX’;LiY} = - A[X,Y] . (6b)
It follows that

[Tx’grl =§[x,y1’ (7a)
[gx,gyl = ~Ywxy;- (7b)

Equation (7a) implies {x(k'x) =k, Caqs-x (X),
keK. Since K acts transitively on Z, it is sufficient to know
the value of £, only in the origin. Using the decomposition
we identify 7,0 = f/m=u. We define a mapping I: u - u

by .

$x(0) =v,x(0) . (8)
This definition is consistent if

(Ad m)ol =Io(Ad m), meM, (9a)
or equivalently

(ad H)ol = Io(ad H), Hem. (9b)
Further, we define I on m trivially, I|,, = 0, and put, for
x=k-o, kek,

I(x) = (Ad k)oIo(Adk~"). (10)
Then {y (X) = ¥;yx (%). Since yx.J(x) = — [ad X, I(x)],
(7b) means that
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[I(x)XI(x)Y] — [adI(x)X )] (x)] Y
+ [adI(x)Y)J(x)]-X + [X,Y ]e Ad k(m),
x=ko.
Regarding the K equivariance, this is equivalent to
[IX,1Y] — [X,Y] - T[XIY] —I[IX,Y ]Jem. (11)

If Hem then IH = 0 and hence (ad H)o(1 +71%) =0.IfH
is regular then ad H restricted to u is an isomorphism and we
have

I, = —1. (12)

Linear mappings I with properties (9a) and (11) arein
one-to-one correspondence with invariant complex struc-
tures 7 on &.'® By linearity we define 7 on g = £ ® C. There
exist || different K-invariant complex structures on &
that are in one-to-one correspondence with Borel subalge-
brasin g containing §), I — (1 + iI)g. Moreover, it holds that
the eigenspaces for the eigenvalues + i, — i are maximal
nilpotent subalgebras in g, the left-hand side in (11) is equal
to zero for all X, Yeg and the mapping [ is skew-Hermitian
with respect to the bilinear form (-,-). All these assertions
follow immediately from the fact that the root spaces g,,
ael, are one dimensional and hence, according to (9b) and
(12), H,,E,, are the eigenvectors of I, where the only possi-
ble eigenvalues are 0, + i, — i.

We conclude that (Xef)

Aix (X) =/11(x)x(x) +/fx(x), fxeC=(T).

It remains to determine f. Inserting into (6a) and (6b) we
have 7y fy = fixy and $y fy — &y fx = 0. The first equa-
lity means fy (k'X) = faqx-1x) (%), 1.e., fy is determined by
the value fy (0) = {((1/2mi)€,X ), where ecif is unambigu-
ously defined. This definition is consistent if Ad m(e) =€
for all meM, i.e., eca. The second condition means
{i,[IX,Y ] — [IY,X ]) = 0, but from the above-mentioned
properties of I it follows that [ZX,Y ] — [/Y,X leb* for all X,
Yeg.

Let J be the momentum mapping corresponding to A.
Then 2miJ(0) = v — ie. By differentiating the relation
(J(x),X +iY) = Ay, ;y at the origin we obtain

2mid, (0) (Yy + 7v)
=(adv—iade)U— (14 il)cad o (V) , (14)

where U, Veu. Since ad o], is injective, ker J, (0) is isomor-
phic to ker(ad v — Ioad €). The mapping (ad v — Ioad €)
defined by linearity on ' = u® C has eigenvectors E, and
eigenvalues a(v) F ia(€), acA. Hence J, (o) is injective if
and only if (v — ie) is regular.

Since J, (0)(T,*7) = (1 + il)u, the polarization on
T * & is mapped onto the polarization on £ ppF1 = (172mi)
(v —ie), which corresponds to the Borel subalgebra
(1 + il)g. In what follows we fix the Borel subalgebra b.
Then n, n_ are the eigenspaces for the eigenvalues — i, i. If
HeC _,then I = — isgn(ad H). In general, we put for Yef,
Y regular,

I, = —isgn(iad Y). (15)

The just chosen complex structure is distinguished by
the fact that it converts, together with the standard symplec-

u

(13)
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tic structure, the orbit & = & ,,,,,;,, into a Kédhlerian mani-
fold, i.e., the positivity condition {(1/27i)0,[IX,X]) >0,
Xeu nonzero, is fulfilled. Moreover, this complex structure
coincides with the complex structure gained by the Iwasawa
decomposition & = K /M = G /B.

We use again . instead of 7*& and get the following
expression for the momentum mapping:

JXY)=X+i{—-AY)+1I,X), (16)

where f: & (12,0 @ (1 j2050¢ 1 the K-equivariant mapping
determined by f((1/2mi)o) = (1/2mi)e. Here J maps ().
into QF; , F1 = (1/27i)(v — i€). Both orbits are fibered
spaces over the same basis—the K-homogeneous space
¢ = K /M. This J is K-equivariant, preserves the fibers and
maps them one onto another diffeomorphically (since
1 + iI: u>nis an isomorphism ), and projects onto the basis
as the identity. Hence Jis a symplectomorphism that, more-
over, preserves the polarization.

In what follows we choose € = — ¢. The reasons are the
following: (1) the simplicity, (2) the character formula stat-
ed in Sec. VI, and (3) with this choice,

JX,Y)=X+i(Y+1,X). 17

Clearly, J(X,Y ) = X + iY, Xea, YeC _; hence J is a diffeo-
morphism mapping q, onto g,. The transversal tangent Lie
algebra in the case of Lie—Poisson structures coincides with
the Lie algebra of the isotropy group. We shall show that
J* = (dJg)* induces the previously fixed isomorphism
between ) C g** and mXm C g**. It holds that

VI)xn(GV)=0+iDU+iV

~i(ad X)o(ad YY) toI(V),
(18)

where Xem, Yem ., and hence (ad Y ) ~": u—u is well de-
fined. This equality can be obtained from (14) using ¥,
(X,Y) =(ad X(U),ad Y(U)), (X, Y)=(—ad Y(V),
0). Another calculation of the differential 9, ,/d¥V will be
given in Sec. VI. From (18) it follows that
(U+iV,J (Z,W))=(UZ) — (V,W), for U,Vem, and
hence J*(U+ iV ) = (U, V).
Theorem 4.1: The mapping

Jg*=q-g*=0: (X,Y) > X+ i(Y+ I, X),
I,= —isgn(iadY),

is defined and smooth on the open dense subset q, C g and
maps q, diffecomorphically onto the open dense subset
8o C g. Then J is a Poisson mapping that, moreover, maps
the real Q-invariant polarization on the orbits Q. C g, cor-
responding to the subalgebra m&f onto the real G-invariant
polarization on the orbits )y C g, corresponding to the
Borel subalgebra b. Clearly, J(F,) =F,, F, = (1/2mi)
(v +i0), F, = (1/2mi) (v,0), vea, oeC ..

V. THE GELL-MANN FORMULA

Let veA, oeC_, and .7, % be the differentiated repre-
sentations 7 ,,,% .. Hilbert spaces for both representa-
tions can be identified with help of the momentum mapping
J. Then ¢ = K /M is connected and simply connected and
hence there exists a unique up to isomorphism complex line
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bundle with connection (.Z ,,V) over & such that the cur-
vature satisfies curv V = p,*w'. There exists a unique up to a
multiplicative constant Hermitian metric in (.¢,,V). We
choose on the manifold ¢ a smooth measure x from the
Lebesgue measure class, the standard choice is the measure
induced by the Haar measure on K normed to unity. Then
the underlying Hilbert space for both representations is 77,
=LY ,»du) consisting of measurable sections in .Z,
with finite L 2-norms. The method of geometric quantization
and the results of the preceding section enable us to write
down the formulas (Xet, T is the complex structure on &)

T(X) = U (X,0) = V(yy) + 3div, ¥x + 27i(p,*A })

(19a)
T (iX) = V(Iyy) + div, (Tyy) — 2mi(p,*A%),  (19b)
U (0,X) = — 2mi(p,*A%) . (19c)

Choose {L,,...,.L,} to be a basis in f and put P, = iL,.
Then {L,,P;}is a basis in g. We identify L, = (L;,0) and put
T, = (0,L;). Then{L;,T;}isabasisinq. Let {L',...,L "} be
the basis in f determined by (L/,L, ) = — &{. The operators
(27 (T,),....(1/27i) % (T,) mutually commute and
their common spectrum consists exactly of those points
t=(t,...,t,)€ER" such that L =¢L"'4---+¢,L"
€0 (1/2miyo- Denote by (I(2)F) the matrix function defined by

I,L,=I"iL, . (20)
The representations 7 ,% are related by (j = 1,2,...,n)

T (L) =2 (L), (21a)

T (P) = U(T;) + {I((1/27) U (T),...,(1/2mi)

XU(T)) % (L)}, (21b)

Equation (21b) follows from the equalities

V(y,) =1((1/27) % (D) (y,,)
and

V($) +3div, §=4V() = V(™). (eX(2).
We shall prove

IX;= —zsgn(ladX) = z (_ 1)s+las(adX)25_l’

s=1

(22)

where Xef is regular, r = |A | = }(dim { — rank f) and the
a, are K-invariant smooth functions defined on the open
dense subset of regular elements f, C f. Hence for a given
representation, the a, are constants determined by the value
on & 1,2, Regarding the K invariance, it is sufficient to
check the equality (22) for X = iH, HeC, . Both sides are
thought to be defined by linearity on g = f ® C, both sides
vanish on }j and, acting on the root vectors E,,, a€A, we have

sgna(H) = z aa(H)Y=—".
s=1
Clearly, it is sufficient to check only aeA,. Put B;
=a;(H)>0, where A, = {a,,...,a,}. Then the numbers
a,,...,a, are required to solve the system of linear equations
with matrix C= (¢ ), ¢z =B;>*~", and the right-hand
side (1/B,,...,1/8,). The matrix Cis regular if and only if 5,
#pB, for j%k. This condition is satisfied for almost all
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HeC, . Since the system is invariant with respect to the per-
mutations of 3,,...,8, and from the Cramer rule, it follows
that

-1
(Bt = 118,11 5, +ﬁk)] p(BrviB,)
J <

where p, is a symmetric polynomial of order
ir(r+1) + 1 — 2s. Regarding the continuity, the a, are
well defined for all HeC ,, with the condition B, #B,, j#k,
omitted.

It follows from (22) that the functions I(z) J" coincide on
& (1,200 With some polynomials. Let 4(¢) be the matrix of
the linear operator ad(s-L) expressed in the basis
{L,,....L,}. Then

I(t)j’.‘= z (—1Dstlg A", (23)
s=1
Inserting (23) into (21b) we obtain a polynomial depen-
dence of the generators .7 (L;), 7 (P;) on % (L;), % (T;),
i.e., a generalized Gell-Mann formula. The Appendix is de-
voted to some concrete calculations for K = SU(n).

VI. CHARACTERS

Let veA, o0eC,, F,=(1/2m)(v+io)eg, F,
= (1/2mi) (v,0)€eq. Both representations .7, , %, fulfill
the Kirillov character formula

7(@) =f p(X)m(exp X) j(X)dX, @& (D),
D

tro(p) = f [ f JXO 2p(X)emEOdx ]dB(F) ,
Q D

where 7= .7, (resp.% ,,,), D is the set containing those
Xeg [resp. those (X,Y)eq] for which eigenvalues A of the
operator ad X satisfy |Im A4 | < 7, & (D) is the test-function
space, j(X) is the Haar measure density in canonical coordi-
nates normed by j(0)=1, j(X) = det(sinh(ad
X/2)/(ad X /2)), Q=Q, (resp. Qp), df=(d!)'
X|wA---Aw| is the canonical measure on Q,
d = idim Q = n — I. The formula was proved for semisim-
ple Lie groups by Dufio and Gutkin,'” its validity for Q fol-
lows from Kirillov’s reduction theorem. '

We specify the normalization of Lebesgue measures on
some subalgebras. The decomposition g=n_ + § + n in-
duces the Fubini decomposition of the measure on g,
dZ =dX_dH dX_.ThemeasuresdX_,dX, arenormed by
the conditions

f a, *du=1,
N.

f [f<p(X)e2’”'<Y"">dX dY = @(0), @ (n).

The decomposition g = (m + u) X (m + u) induces the Fu-
bini decomposition on q, dZ =dXdY =dSd,UdTd,V.
We require the isomorphism mXm—4: S,7— H=8+iT
to preserve the measure dH = dS dT, the isomorphism
u-n: Vi>X=(1+4i)V to preserve the measure
dX = d,V. The measure d, U is normed by

f { fc;)(U)ez”i(U'V) d,U] d,V=g¢(0), @cZ(u).

u==k,a,n

ututur

du=d(expX_),
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By a simple calculation it can be shown that the isomor-
phismu—n_: U Y= L(1 — i) U preserves the measure,
dY=d,U.

In what follows we shall need the following result.'® The
mapping X — Ad u(F, + X) maps N_ X u diffeomorphi-
cally onto a subset of full measure in . , the canonical mea-
sure in these coordinates reads df = du dX.

Here 1, is the fibered space, the fiber over F, is F, + n.
On this fiber we choose the Lebesgue measure dF induced by
the measure on n and we transfer this measure on the other
fibers using mappings Ad k, keK. The Gauss decomposition
N_HN C G induces the embedding of N_ onto a subset of
full measure in & = G /B. The standard measure on & is
then a = ** du, u = kaneN_. Denote by Q,,, the fiber over
x€; then

J;f(F)dB(F) =f

{ f(F)dF}tz““s du . 24)
- Ny
In the case of the orbit {1 we can exploit the symplectomor-
phism J from Sec. IV. We obtain parametrization
N_Xu- Qp: w,U— Adk (F,+ (U0)), u=k,a,n,.
The measure on (), now reads df = a, ~** du d,U.

The value of tr 77() does not change if we replace g by

Pk

Px(x) = f o (Ad k(x))dk; (25)
K

the Haar measure on X is normed to unity. Supposing ¢ tobe
K-invariant we can further simplify the expression in Kiril-
lov’s formula since we integrate over ) a K-invariant func-
tion in variable £. Hence the integral over {1 can be reduced
to the integral over one fiber only and the inverse Fourier
transform can be used. In the case of # = .7, using (24)
we have

tr 7, (@) =j

H4+n

FRVAREVATAERE): I &

Z=H+ X. (26)

A further simplification is possible according to the follow-
ing lemma.

Lemma: Let yeZ (g), ¢ be K-invariant, CC a be a
Weyl chamber, we#", Fel). Put ) = a + iC C §j; then

W(Z)eFD g7 =

be+n

zﬁ(Z)ei(“"EZ)dZ .

Buc+n

(27)

Proof: It is sufficient to check (27) only for reflections
w; corresponding to simpleroots @,...,a,, since w,...,w; gen-
erate % . Let a be a simple root, w=w,, §, C§ be the
subset of regular elements. Putn, = 25 44, CEg. Thenn
=CE, +n, and u, is invariant with respect to ad E_,
ad £_ . We define a function

- a

b, XC* - K: Haw> k(H,a) =exp(zE, +ZE_,),
c*=c\{0},

where
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- _ a(H)a 2
la(H)a| {a,a)
X arctan( 2 a(H) )
(a,a) a

By a straightforward calculation it can be verified that for
Heb,, aeC*, Xen,, it holds that

Adk(Ha)(H+aE, + X)) =w-H+aE, + Z(Ha)X,

where % (H,a) is a nonspecified isomorphism n, -n, de-
pending smoothly on H and a. Since the operators
Ad k,keK, preserve the metric (X,Y) = Re B(X,Y) on g,
the isomorphism % (H,a) preserves the Lebesgue measure
on n,. In this way we get the diffeomorphism

b +CE, +n, -+ §,c+CE, +n,: H+aE, + X

— Ad k(H,a)(H+aE, + X),

which preserves the Lebesgue measure. Now, to prove (27)
it is enough to use this special substitution in the integral.

Noting that the Weyl group acts simply transitively on
the Weyl chambers and using the above lemma we obtain the
final expression

tr. 7, (@)= z f jﬂ(Z)‘”
we¥ Jh, +n
XP(Z)e ™ P gy gy, Z=H+X.
(28)

A similar and even simpler procedure can be used in the
case of m = % . The integration over {2 is reduced to the
integration over one fiber only, the fiber over F, is F,

+ uX0. Since the action on m of each we %" can be realized
as Ad k|, for some keK, we have directly

v 2.@= 3 [ " esT+n
wed Jm, x

Xleri(w‘Fz,(S'T))deszV'

We note that j, (X,Y) = j, (X)>.
Theorem 6.1: The mapping

GIX g XY X -1, Y+iY

is defined and smooth on the open dense subset £, X £ C q (£,

C tis the subset of regular elements) and maps it diffeo-
morphically onto the open dense subset ig, C g. Let veA,
oeC ., e (ig,); then

tr T o (@) =tr U, (2%, /i, ) D*p). (30)

Remark: If X,Yet, X, Z= ®(X,Y), then the imagi-
nary parts of eigenvalues of the operator ad Z in g coincide
with the eigenvalues of the operator ad Xin f; = g. To show
this, regarding the K invariance, we can confine ourselves to
X=S8Sem,. Putting Y=T+4 Vem+u, we have
Z=H+ Weh+n, where H=S+iT, W=i(1+iDV.
Since H is regular there exists ueN such that Ad u(H) = Z.
Hencead Z has the same eigenvalues as ad (S + iT), namely
0 and (@(S) + ia(T)), ael; a(S), a(T) are imaginary.

Proof: The first part follows from the relation
®(X,Y) = — iJ(— Y. X) and Theorem 4.1. In the second
part we can confine ourselves to the case where @ is K-invar-
iant since P is K-equivariant and both sides in (30) do not

(29
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change if we replace @ by @, . Now, regarding the formulas
(28) and (29), we only add that the diffeomorphism
m, X(m+u)-h, +n SST+V—>H+X

=Q(S,T+ V), H=S+iT, X=i(1+ihHV,
preserves the measure, dH dX = dS dT d2

The generalized function ¢ — tr .7, (@) is represent-
ed by a locally integrable function ¢

Vo

tr 7, (@) =J p()1,,(2)j,(Z2)dZ . (31)
D

Moreover,? ¢,,, is analytic on the subset of regular elements

g, N D, it is G-invariant, and, for He)),,

z eZm'(w'F,,H)

we¥"

% ( H |e=t 72 _

a0

to(H) =

e—a(m/zlz)_l‘ (32)

This expression can be, in principle, derived by inserting into
(28) a sequence @, of test functions converging t0 6, —the
Dirac-type generalized function supported on the K orbit

Oy-
A similar assertion holds for the representation %,

tr %,, (@) =J PX,Y)u,, (X,Y)j,(X)dXdY.  (33)
D

We find explicitly the function u,,, using Theorem 6.1 and
(32). Regarding the Q invariance we evaluate the function
in points (S, 7y)em  Xm. Put H, = S, + iT€h . . Inserting
into (31) and (32) a sequence @, converging to the Dirac-
type generalized function 8., & = & 5 , we have

Ja (Ho)t,p (Hy) vOW(O) = (4 (So) Jy (Hp))' 14,5 (S, Tp)
X |dX dY /®*(dZ)|vol(L) ,
Uy (8o, To) = (Jy (Ho)/J, (So’To))”2
X|dXdY /®*(dZ)|"'t,, (H,) . (34)

Calculation of the differential d® at the point (S,,7;) is
clear except of d(Is, , yT)/dU. But this term can be calcu-
lated using the identity (22),

d
— (s . suT5)s—
ds( s,+sudo 0

r

=2(_

j=1

— (ad S,) ~'o(ad Ty)eI(U),
where (ad S,) ~' is well defined on u. Hence we obtain the
linear mapping
do:(m+u)X(m+u) »n_+h+n (S+UT+V)

1)/+1a,(ad Sp)2 =" ad U(T,)

—Y+H+ X,
where
H=58+4+1T,

X=i(1+iDV+i(1+iD
X(1 + (ad T,) (ad Sp) ~'1)U,
Y=1(1—iD(1 + (ad T,) (ad Sp) ~'I)U.
Regarding the measure normalization, we find
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_dxdy

—17yj—1
Tz = |det, (1 + (ad Tp) (ad So)~'1)|

=11

a>0 a(H )
Inserting the last term into (34) we obtain the desired
expression [S,Te(m_ Xm)ND ]

Uvo (Sy T) =

z e2m’(w-F2,(S.T))

X( H lea(svz _e

a>0
Clearly, the converse procedure is also possible, i.e., to derive
(32) starting from (35).

_a(S)/2|2) . (35)

Vil. CONCLUSION

The case described with G being simple and complex
and K being its maximal subgroup, suggests some obvious
generalizations interesting from the point of view of physical
interpretation. This G can be replaced by an arbitrary semi-
simple real Lie group; K need not be compact. Clearly, in the
more general case new difficulties arise. We point out one of
them in connection with the recent result due to Bohm and
Moylan.?! They realized unitary irreducible representations
from the principal series of the de Sitter group in the direct
sum of two Hilbert spaces, each of them with a definite uni-
tary irreducible representation of the Poincaré group. This
result can be overlooked using the Gell-Mann formula since
it yields a Lie—Poisson isomorphism that maps two orbits in
the Poincaré algebra onto one orbit in the de Sitter algebra
(up to a subset of measure zero) and the images do not inter-
sect. But we emphasize that a general formulation is lacking.
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APPENDIX: THE CASE G=SL(n,C)

Let G =SL(n,C), K =SU(n) (of course, now dim¢ g
= n? — 1), and let E % be the standard basis in gl(n,C), L ?
= E% — (1/n)851. The matrices L 2 generate sl(#,C) be-

ing constrained by one linear equation L & = 0 and satisfy
the commutation relation

[LALY] =60L% — 8 L% .

We identify sl(#,C)* with sl(n,C) using now the bilinear
form (-,-) =Retr(-). The fundamental weights are €
=L+ -+L} j=1l.,n—1 Put v=gqe +
+q,_ 1€y, o=+ "+, _€,_, q;€Z, §4,>0.
The representation belongs to the Gelfand—Naimark princi-
pal series and is induced from the subgroup B of upper trian-
gular matrices by the character usually given in the form?*

x )y =T el =™ (™)
2

where
—my=4q,+
__7—2=1_9|+...

+qn—l""’_mn =qn—l ’
+ =T, =%, -
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A closed form can be derived if we extend by linearity
the representations .7 ,% on the complexified Lie algebras
gc =su(n)g +isu(n)g, qc =su(n)c&su(n)e, su(n)g
= sl(n,C), respectively. We put P2 =iL 5,18 =(0,Lp5,
and identify L £ = (L %,0). We write L # instead of 7 (L ?)
= Y (L#?), etc. The skew-Hermiticity of the representa-
tions 7 ,% now reads

ey =F2, (BB =Ps, L&+ =L13.
Let X = (x3)esu(n), ie., X = x3L%. By induction we
can verify (seN)
(ad X)'L% = [4*(X)E45 L7,
where

(=3

j=o

Js.)( —1Y(XDE (X

Then according to Sec. V,

Ing = [ngli ]Lﬁ ’
where

[L55]1= 3 (=1 la [4°(X5],

s=1

r=in(n—1),
the a, are constants depending on o.

The common spectrum of the operator matrix
((1/27i) T%)is exactly the orbit &, /5,.;,,. According to Sec.
V and using

[L2.(Toy] =8 (T —ou(T9f
to simplify the final expression, we obtain [r = ln(n — 1)]
r a, 2s§—: 1 (zs —_ 1)

- I= J
X(— ITILT=—1 =08

The commutation relations

[L5,P4] = 85Ps — 8:P%,

[ﬁg’;l/{] = _552;; +5ﬁ2€ ’
can be also verified directly, by a tedious but straightforward
calculation. The fact that the spectrum of ((1/2i) T'8) lies
in su(#), is utilized and at the end the identity

—[XY|=I[IX,Y] - [IXJY]+I[XIY],
X, Yesu(n),
is again met.

Mukunda described a generalized Gell-Mann formula
for SL(3,C).> Although his formula is similar in nature to
the one above there is a substantial difference. In our for-
mula the operators T2 are allowed to appear only in odd
powers, namely 1,3,5 for n = 3. On the contrary, the powers
in the paper? are 1,2,3.

In this case (n =3) we add the determination of the
constants g, in terms of the Casimir polynomials. Let C; (X)

1307 J. Math. Phys., Vol. 29, No. 6, June 1988

= (i)Y tr X/, j = 2,3, be the independent invariant polyno-
mials on su(3), r=3, A, ={a,a,a,}, o= 7€, + y6,.
Then
B; = |a;((1/2mi)o)|,
o p_ P g Hi+d,
Bl 21’_! 2 27’ BS 217_ .

Let s,,5,,5; be the elementary symmetric functionsin the 8 s,
si=P1+ B+ B 5,=B8>+ BB+ BB,
83 =PB\BpBs .

We have
a; = p;/ (5,8, — 53)83, j=12,3,

where

2 2
PL=3515"—5"S3 — 8,83, — P, =5 —255,+5;,

P3=5;, $=2/2C, cos ¢,
s, =4Cy(1 + 4 cos2¢), s;=(1/42)C,**cos 3¢,
¢ = Jarcsin(y2/3 C,C,3?) .
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The connection between 7 functions and zero curvature equations for the homogeneous
construction of the basic module L(A,) over the simplest affine Kac-Moody algebra 4 {"’ is

studied.

I. INTRODUCTION AND SUMMARY

In the representation theoretic approach to soliton
equations, initiated by Date ez al.,' one derives so-called Hir-
ota bilinear equations as defining equations for the orbit of
an algebraic group associated with an affine Kac-Moody
algebra in a representation space for this algebra; see, e.g.,
Kac.? The relation with the usual formulation of soliton
equations is then given by a change of dependent variables

exemplified by the famous formula
2

J
u=2£510g7'. (1.1)
If 7 satisfies a certain set of Hirota equations, » will satisfy
the KdV hierarchy.

Formula (1.1) is a quite mysterious and unmotivated
substitution; what one would like is an explanation of this
formula and, more generally, of the older theory of soliton
equations including zero curvature conditions, conservation
laws, Miura transformations, etc. For a review of these mat-
ters we refer the reader to Drinfeld and Sokolov.?

Wilson** has given a group theoretical explanation of
the formula

d 7V
="
where 7 and 7'V are the 7 functions associated with the
principal realizations of the fundamental modules L(A,)
and L(A,) over the simplest affine algebra 4 {*’. This substi-
tution leads to the modified KdV hierarchy, which is related
to the KdV hierarchy by a Miura transformation. A slight
extension of Wilson’s method also provides an explanation
for (1.1), where one may choose for 7 either 7© or 7'

In the homogeneous realization of the modules L(A,)
and L(A,) the 7 functions are multicomponent objects
7 = (78) 1z, i = 0,1, and it is interesting to see what the
Hirota bilinear equations look like in this case. These equa-
tions were constructed in Ref. 6. There we found that an-
other unmotivated substitution, namely,

v (1.2)

(1.3)

; . . . . A
q=_7'1(‘+)1/7'§')’ rlzT;l—)l/T;’)’ i=0,1,

leads to the first two equations (nonlinear Schrodinger and
mod-KdV) of the AKNS hierarchy on a lattice L ~Z, while
the quantities «': = In ¢’ satisfy the equations for the Toda
lattice. It was, however, not clear to us whether the Hirota
equations for 7 would really imply all AKNS equations
for ¢' and 7.

The AKNS equations are usually derived as integrabi-
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lity conditions for an infinite set of linear differential equa-
tions for the so-called wave function. In this context one
often speaks of zero curvature conditions. In view of the
results obtained from representation theory it was natural to
look for an extension of this zero curvature formalism to an
AKNS system on a lattice. In Ref. 7 we have shown that
such an extension of the AKNS system can be constructed in
a natural way and that solutions in different lattice sites are
indeed related by Toda equations.

The main motivation for writing this paper was to ex-
plain the relation between the representation theoretic ap-
proach and the zero curvature construction of this Toda—
AKNS hierarchy in the spirit of Wilson. The key ingredient
is the Birkhoff decomposition, which, together with some
background material on Kac-Moody algebras, will be dis-
cussed in Sec. I1. In the next sections we will, using the Birk-
hoff decomposition of the “dressed vacuum,” derive differ-
ential difference zero curvature equations both on the affine
algebra (i.e., including the center) and on the loop algebra
lying underneath it. These equations turn out to be the
Toda-AKNS equations for a pair of fundamental fields ¢’
and . We will proceed to show that these fields are related
to 7 functions via (1.3), thereby explaining this substitution
and proving that the ¢’ and # from (1.3) do indeed satisfy
all AKNS equations.

In Sec. VI we will review two well-known constructions
of the AKNS conservation laws and we will show how they
are related. Moreover, we will supplement these *“‘contin-
uous” conservation laws with conservation laws for the dis-
crete evolution. It is interesting to remark that the explicit
form (6.8) of the AKNS conserved densities led Flaschka,
Newell, and Ratiu® to introduce the 7 function as a kind of
potential. Another reason for writing this paper was to de-
rive their results in a pure Lie algebraic framework.

From the construction of the Toda~AKNS equations in
this paper it will be clear that the orbit of the algebraic Kac—
Moody group gives rise to a certain class of solutions to these
equations. This then leads to the question of whether con-
versely every solution in this class comes from an element of
the group orbit. In Sec. VII we will see that this is indeed
true, showing that the Toda—AKNS equations describe the
orbit of the algebraic group, just as the Hirota equations do.
In order to give a group theoretical description of more gen-
eral solutions, one will have to consider orbits of various
completions of this algebraic group. We will not discuss this
here.
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il. PRELIMINARIES
A. Introduction

In this section we will, mainly in order to fix notation,
briefly recall some of the basic facts about affine Kac-
Moody algebras and the groups associated with them. For
more details we refer to Kac.? Following Goodman and
Wallach® we will also mention certain completions of these
algebras and groups, which are needed to make some of the
constructions of this paper rigorous. Finally we will describe
the Birkhoff decomposition for affine Kac-Moody groups
and their completions, which will be the main tool for deriv-
ing zero curvature equations in Sec. IV.

B. Affine Kac-Moody algebras

Let g be a finite-dimensional simple Lie algebra,

= C[/l A ~'] ® g the polynomial loop algebra associated

w1th g and g : = g & Cc the universal central extension of .
The degree derivation d: g—§ is given by

di:=14 di/l :
The untwisted affine Kac-Moody algebra g° (e = extend-
ed) associated to g is then defined as the semidirect product
algebra g° : = g @ Cd and one has g = [°,§°].

Fix a Cartan subalgebra A of g. Let ACh * be the corre-
sponding root system {a,,az, ,a,} a system 1 of simple roots
and 6 = 3!_ a,a; the highest root. Choose root vectors E,,,
acl, normed in such a way that the triple E,,, E_, and

= [E,,E _,] has the standard sl(2,C) commutation

relations. The vectors E; : =E,, F,:=E_,,i=12,.,],

d(c) = (2.1)

generate g and one has = & |_,CH,, where H, : =
the simple coroots.
The algebra 2g° has a Cartan subalgebra

Ee =heoCcoCd and a correspondmg root system
Ze(h" )*. The so-called imaginary root el is given by

8, =0, (8c)=0, (8d)=1, (2.2)

~

and A is the disjoint union of a set of real roots
A'e = {j5 + aljeZ, acA} and a set of 1mag1nary roots
am — {/6/jeZ~{0}}. Define root vectors e :=18E,
fi:=18F,, i=1,2,..,l, associated with the roots a;€A and
e:=A®E_,, fo:=A4 '®@FE, associated with the root
ay:=8— 6. The set {apa,,...,.;} is then a simple sys-
tem for A and the vectors e,.f;, i =0,1,..., generate . The
simple coroots are, as before, defined by a;:= [e;, f],
i=0,1,.,.L

For all real roots acA®™ one defines a reflection 7,
(h" ) R (h‘* )* as usual. The group w generated by the re-
flections r; ro» i=0,1,...1, is called the affine Weyl
group. It contains an Abelian normal subgroup 7, called the
translation group, which is defined as the group generated by

T.

= ot i=12,00 (2.3)

—al i

The quotient W /Tis easily seen to be isomorphic to the (fin-
ite) Weyl group W of g and therefore one has

W=wWxT (2.4)
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C. Affine Kac-Moody groups
In order to describe groups associated to é one uses the

representation theory of this algebra. Let Aeh be a domi-
nant integral weight, i.e., (A,a?)eZ, U{0},i=0,1,...,/, and
(L(A),m,) the unique irreducible highest weight module
with highest weight A. We recall that such modules can be
equipped with a Hermitian form H,:L(A)XL(A) -G,
giving them the structure of a pre-Hilbert space. Such a form
is—up to a constant factor—uniquely determined by the
contravariance condition

H,(v,m, (x)(w)) = — Hy (@l7p (X)}(0)w), (2.5)
where o, §—& denotes the antilinear involution defined
by wole;)) = —f, wo(fi)= —e, wyla))= —aj, i
=0,1,...,/

Let G be the connected and simply connected group
associated to g. By considering a faithful representation of G,
it can always be realized as a subgroup of SL, (C). This
enables us to define the polynomial loop group G by

G = {geSL, (C[A,A ~'1)(g(A)eG VAeS'}. (2.6)

Letm= &!_,7 A where the fundamental welghts A;
are defined by (A,,a]) =&, ij=0,1,..,], and let G be the
group generated by exp t7(e; ), exp tm( f;),i =0,1,...,}, teC.
This definition makes sense because 7, (¢;) and 7, ( f; ) are
locally nilpotent operators for all dominant integral weights
A. One can show that Gi is a central extension of G by C*, i.e.,
there is an exact sequence

1-C*~G-G-1. Q.7

Instead o£ this “universal” group G, one often considers the

groups G" generated by exptm,(e;), expim,(fi),
i=0,1,.

I, teC. These groups are qg\otie/gts of G, i.e., there
exist surjective homomorphisms f,, : G-~ G” . The kernel Z,
of f, can be shown to be a finite central subgroup of G (see
Ref. 9).

D. Completions

Consider the matrix

h= (’é ~0/1 )e slL(C[4.A ~']).

Exponentiating this matrix we obtain

& 0
exp h = (0 e"l)’
which is clearly not in the polynomial loop group
S1,(C[4,4 ~']). Still, we want to be able to exponentiate ele-
ments like this. The example shows that this only makes
sense in suitable completions of the polynomial loop group

G.

(2.8)

In Ref. 9 several completions of the groups G and G are
constructed. For the reader’s convenience we will give a
short summary of the results relevant to this paper.

A function p: Z— (0, 0 ) is called a weight function if it
satisfies p(k + m)<p(k) -p(m). (N.B.: we use p instead of
the more obvious w to avoid confusion with elements of the
Weyl group.) We will also require that p is symmetric, i.e.,
p (k) =p ( — k), and that p (0) = 1. In this case one has
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pR)Y=Vp(R)p(—k)>Jp(0) =1, VkeZ. (2.9)

Weight functions are used to define the so-called
weighted Wiener algebra 4, as the Banach algebra of func-
tions f+ S ' — C with norm

+ oo

1A Nee= 2

= — o

lai |p (K), (2.10)
the a,’s being the Fourier coefficients of £ The ring
C[A,4 ~'] is obviously a dense subset of 4,,.

We will also use the weight functions to construct com-
pletions of the algebras g and §; let x;, i = 1,2,...,n, be a basis
of g and define norms on g and g by

Ixll, :=3 laylp (0, Yx=7 a;4 e xeg,
I ' (2.11)

1%l : 2 laylp (1) + lal, ¥&=73 a;A'®x; + aceg.
i

(N.B.: another choice of basis yields an equivalent norm.)
Denote by (g), and (§), the completions of g and g with
respect to these norms. For arbitrary weight p the algebra
(g), is a Banach Lie algebra, i.c.,

Nl <M X[, [Wll,s - Vxpe(@),- (2.12)

The same holds for (g), if p is chosen such that
p (k)>C |k |'"* for some constant C.
Define the Banach Lie group G, by

G,:={ge G, (4,)|g(1)eG, VieS'}. (2.13)

The exponential mapping carries the Lie algebra (g), into
Gp and one can show that it covers a neighborhood of the
identity in G.

To construct a group associated with the algebra (2),,
we use again the integrable modules L(A). Since we aim to
exponentiate elements that are not nilpotent, we will certain-
ly have to consider the Hilbert completion H(A) of L(A)
with respect to the Hermitian form H, . It can be shown
that, if the weight p is chosen from the family

Do, (K):=expt|k|V?, >0, (2.14)

there exists a dense subspace of H(A) on which the _opera-
tors exp 7, (x), x€(g), are well defined. Therefore G can
be defined as the group generated by these operators.

One now proceeds along the same lines as in the preced-
ing section; the universal group G, is the group associated
with the representatlon T=@!_ o7a, It is again a central
extension of G by the finite group Z" and a central exten-
sion of G by C*

t<o<2,

E. The Birkhoff decomposition

_Let U be the subgroup of G generated by exp tm(E, ),
aeA’j, teC, and H the Cartan subgroup generated by
exp tm(a}), i =0,1,...,], teC. Define for i = 0,1,...,],

ri:=expm(e)exp[ — 7w ( f;)exp w(e;). (2.15)

The group I/‘\V” generated by r}’,A i=0,1,...,/, is then an exten-
sion of the affine Weyl group W by an Abelian normal sub-
group D “CH.®

Kac and Peterson'! have proved that G admits the Birk-
hoff decomposition
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G= U U_wHU,.

weW™
On the level of the completed group Gp one has an analogous
formula,

(2.16)

g, -

%F(U_)pwH(UQP. (2.17)
Here (/(\] + ), are the completions of /G 4 in Gp.

For our purposes we need a slight modification of
(2.17); let U, (U_) be the subgroup of G consisting of all
upper (lower) triangular matrices with 1’s on the diagonal
in G and denote by ( U ), the projections of ( U )p in G

Then for all Ue( U_ )p and Ve( U ), we may wrlte

U=(1+UA+UA%+ --)U,,
V=Vo(14+V A+ VA% + ),

UelU._,

vev.. (218)

Using this and the projection of (2.17) on G we see that any
geG can be factorized as

8§=8_'808+

where
g =1+UA+UA*+ ", &=
Bo=1+VA+ VA + -,

and correspondingly any ger can be written

8=8_88.-

(2.19)

UwHYV,,

(2.20)

IIl. THE r FUNCTION
A. Introduction

In this section we briefly describe the homogeneous re-
alization of the module L(A,). For more details we refer to
Frenkel and Kac'® and Segal.'? Although most of the results
of this paper can be derived for an arbitrary simply laced
algebra g, we will restrict ourselves to the simplest affine
algebra 4 {*’. We proceed to write the components 7{% of the
7 function in the homogeneous realization as vacuum expec-
tation values of certain group elements ¢ (dressed vacua),
which will play an important role in the construction of zero
curvature equations in Sec. IV. We will also study the rela-
tion between the Birkhoff factorization of these group ele-
ments and the zeros of the components 7.

B. The homogeneous realization of L(A,)
Let g = s1(2,C) with standard basis

0 1 1 0 0 0
E‘_(o o)’ H'z(o —1)’ F‘=(1 o)'

In the sequel we will write e for E,, h for H,, and f for F,.
The homogeneous Heisenberg subalgebra § of g is given by

3.1

S = .eBOCp,A ® Cc_eaOCq,., (3.2)

where p, :=11"@h and g, : = (1//))A ~'®h satisfy the
Heisenberg commutation relations
[pirg;] = 8¢ (3.3)
Let T be the operator
T:=rytr™ (3.4)
M. J. Bergvelt and A. P. E. ten Kroode 1310



and denote by 7™ the group generated by 7. It is well

known that the elements of 7" centralize the action of
7a, (3) and that the module L(A,) is irreducible under the

action of the pair (m,,(5),T"). Therefore L(A,) has the
following structure:
L(Ay)=C[x;; i>0]eC[Q]. (3.5)

Here Q : = Za is the root lattice of s1(2,C) and C[Q] is the
group algebra of Q, i.e., the vector space spanned by formal

exponentials €**, keZ. The action of 7, (§) and T "™ is given
explicitly by
7r (p) (Pa ey =22 g ok,

Ix;
7, (g:) (PO ) =x,Po e, (3.6)
T!/(Peet) = Pee*+ 1% VYPeC[x,], kileZ, icZ,.

The action of the other algebra elements is given in terms of
vertex operators. We will not need these operators in this
paper.
For future use we also mention the welght system P(A,)
of L(A);
P(Ay) = (Ao + ma — (m* + k)8|meZ, keZ ,U{0}}.
(3.7)
Remark: Since we will only work with the module
L(A,) we will from now on leave out the symbol 7, and
simply write x-v for 7, (x)(v) [x€g, veL(A,)]. We will
also write H for H, , the Hermitian form (2.5) on L(A,),
and v, for the highest weight vector at L(A,).

C. The 7 function as vacuum expectatlon value

Consider the Kac—Moody group G™ and the orbit

0, :={r"=¢v |geG Ao} passing through the highest

weight vector. In the homogeneous realization (3.5) of
L(A,) the elements of the group orbit 7'¥ are of the form

0 =3 7 (x) @ (3.8)
ez

Since we are working with the algebraic group G , the com-
ponents 7%’ (x) are identically zero for almost all /eZ, while
the nonzero components are polynomials in the x;’s.

We introduce an isomorphism of L(A,),

tipi)’ t;€C.

This operator does not belong to the group a"" but if we
take almost all #,’s to be zero, it does belong to an arbitrary
completion G Ao where p is a weight of the form (2.14). It
acts on the group orbit as a shift operator

@

B )= e 3

i=1

(3.9)

Bone (D7V(x) = 7O(x + 1) = i (x4 1) ®e".
ez
(3.10)

Using the Hermitian form H on L(A,) we can project
(3.10) on the vector ¢'*, thereby obtaining a useful expres-
sion for 7% (2);

7O(1) = H(€"® Ppae ™)
= H( TI' UO’;}VBC .g‘ v())

= H(oT ~ Prne "8"00)- (3.11)
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Note that, since 7{” is a polynomial, we may indeed take
almost all ¢, to be zero in (3.9).

We find that the components 7{”(¢) are the vacuum
expectation value of

V(1) =T ~ ¢, (£)geG ). (3.12)

Expressions for = functions in terms of vacuum expectation
values were introduced by the Kyoto school, see, e.g., Ref. 1.
The element ;b' will provide the connection between repre-
sentation theory and zero curvature equations in the follow-
ing sections. This connection was first explained by Wil-

on*> for the modified KdV equation [using the principal
realization of L(A,)].

D. Birkhoff decomposition for i/

_In this section we will study | the Birkhoff decomposition
of P'. Since ¥ (¢) belongs to G"" for all / and ¢, it has a
factorization (2.20). (We use here the projection G — G Ao
described in Sec. C.) Therefore we write

P =9 WGP, o, (3.13)
where
(1) =exp{a(0f} TR w-expld L (Day + A1 (e}
exp{b/(t)e}. (3.14)

Here we{1,77*} and the integer k depends on / and .
Substituting (3.13) in (3.11) and using the fact that 1/1’

and exp{b’ e} stabilize v, as well as the contravariance of the

form H, we obtain for the components of the 7 function

7O) = Hwod'_ 9o, vo)

= H(vy, T*w-exp{A{aj + 4 \a’}v,). (3.15)
Since a}v, = 85, W-vy, = U, this becomes
7O (1) = H(vg, T*0y) > = 8,06, (3.16)

This formula shows that 7{® (¢) vanishes if and only if
k #0. Remember that 7{%(¢) is a polynomial, say in the vari-
ables 2,,¢,,...,t, . Therefore if it does not vanish identically, its
zero set is a closed, nowhere dense subset of C”. For all ¢
outside this set k must be zero. In this case the factorization
(3.13) has very nice properties; projecting on the loop group
G, one obtains [see (2.19)]

Py =9_ G, ),
where

PO =14+447" 44,4724,

¥ (1) = ByeG = SL,(C),

V. (O=14+CA+CA + -
Thus we have a factorization in strictly negative powers of 4,
powers zero, and~strictly posj}ive powers. Furthermore, the
factors ¢'_ (), ¥} (2), and ¢, (1) are differentiable with
respect to ¢ (see Pressley and Segal’®).

On the zero set of 7{%(#) this is no longer true, giving
rise to singularities in the solutions of the zero curvature
equations to be derived in the following sections. For more

information on the zeros of 7 functions we refer to Hel-
minck'* and references therein.

(3.17)
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IV. ZERO CURVATURE EQUATIONS
A. Introduction

In Sec. IV B we will derive linear differential equations
for the operators z// (¢) and ¢0 (t)¢’ (¢), which are valid
for all 7 outside the zero set of the polynomial 7{” (¢). More-
over, we will show that, if 7 is such that 7{9’, (¢) is also non-
zero, these differential equations may be supplemented with
a set of linear difference equations. Compatibility of the re-
sulting set of differential difference equations leads to the
usual zero curvature conditions together with a set of lattice
zero curvature conditions, both formulated on (g),,.

In the second section we will project out the center to
obtain zero curvature equations on the algebra (g), and see
that no essential information is lost.

B. Zero curvature equations on (j),,

Using the definition (3.9) and (3.12) of the operator /z/\r’ ,
we see that it satisfies the differential equations

3,,@'=P.@’, i=12,... (4.1)

Using the Birkhoff decomposition (3.13), this can be rewrit-
ten as

@AY + @ DT =R'p), (4
where we have introduced
U =Y., Ry =@ )" 'p@) (4.3)

Note that (4.2) is an equation on the algebra 7, ( (@),)=8,.
Define subalgebras ¢, and g_ of g by

g.:=o04'2geCc,

>0 (4.4)
g :=ol'vg
- i<0

and denote by (£, ),, (§_), their closures with respect to
Il |l,- One has

&,=@),oE), (4.5)
Since 7{®’(¢) is assumed to be nonzero, the left-hand side of

(4.2) is already decomposed according to (4.5); for the
right-hand side we write

R'py=R" (p) +R', 0. (4.6)
Now (4.2) is equivalent to the following linear equations:

[0, +R_ @)]@)'=0, i=12., (47a)
[3,—R', () ]dh . =0. (4.7b)
Define covariant derivatives by

Di=a,-R' (), i=12,... (4.8)

The compatibility conditions for (4.7b) are the zero curva-
ture equations

[2\)5,..13 3] =0 ij=12,.. (4.9)
One easily checks that
[f)fﬁ’(p, ]—~0 Lj=12,.. (4.10)

Hence the elements R (p;), defined by (4.3), are (up to
multiplication by a power of A) resolvents for D’ in the
sense of Dickey. "
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Besides the differential equations (4.1), the operator ¢’
also satisfies the difference equation

P =TY (4.11)
Using the factorization (3.13) this may be rewritten as
1// )—1¢1+1¢1+1(¢0 . )yl = (¢ )—-IT—lal_ )
(4.12)
If we define
’01:___ (@’ )“'T_]AI
=@ )P (4.13)

O, = @' TP =% @,

we have the factorization
U'=U"_U',. (4.14)
Note that, if 7{9, () #0, the factorization (4.14) has again
nice properties, i.e., on the level of the loop group we have
v'=0_170',,
_ _ (4.15)
U_=1444A""'4+, U\ =By+BA+

Moreover, U'_ and U’ . depend diiif"erentiablz ont.
From the definitions (4.13) of U’_ and U’, we read
off the difference equations

=9 T, (4.16a)
Hrr =T P, (4.16b)

Equatlon (4.16b) suggests the introduction of a lattice co-
variant derivative D' which is defined on group valued fields
#' (1) by

1¢1___(’[}1+)—1&1+1_$1‘ (4.17)
From (4.16b) we see that a(’,, + is covariantly constant with
respect to this derivative. This equation may therefore be
considered to be the discrete analog of (4.7b).

The compatibility of (4.7b) and (4.6b) gives the follow-
ing differential difference zero curvature equations (see
Ref. 7):

i{ +1(p,) = ’[}1+

(c?U )(U’ )~

(4.18)
We stress that, although (4.16a) and (4.16b) are always
valid, (4.18) can only be derived if both 7/ and {9, are

nonzero.
One easily checks that

Ri(p) =UR"p,)(UH™, (4.19)

which shows that (4.19) is essentially the lattice resolvent,
introduced in Ref. 7 (there we used U’ rather than U’ ). In
that paper we could only verify the factorization (4.15) by
explicit calculation. Here it is a simple consequence of the
specific form of the Birkhoff decomposition for z//’ 1/1’ +1

following from the assumptions 7{”’#0 and 7%, #0.

R, (@) +

C. Zero curvature equations on (g),

In this section we calculate the central component of the
zero curvature equations (4.9) and (4.18) and we will see
thatit is trivially satisfied. First we calculate the central term
of R ! (p:), which we denote by c';
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ci=m (ﬁ L)) (4.20)

Here 7. is the projection on the center of the Kac-Moody
algebra. Using (4.7b) we may write

m(R', () =7 (@, @) (4.21)
and since the center is contained in fx_ we obtain
¢ = (8, 96) () ~"). (4.22)

For {9 #£0 (3.14) reads
9 =explafwexp{dic + (4 1 —=A8)ayYexp{b e},
(4.23)
where we have used ¢ = aj + a]. Substitution in (4.22)
yields
=)= (3, Inre (4.24)

Since the two-cocycle, defining the central extension, is zero
on (£, ),, the central component of (4.9) becomes

d,¢; =d,ci,
which is trivial in view of (4.24).
Similarly we find, (see 4.15),

7(3,0, )0, )" )=(3, n Y, —3, In )¢
(4.26)

(4.25)

and the central component of (4.18) reads

citl'=cl+ (3, In7%, —8, In7{V)c, (4.27)

which is again trivially satisfied.

From the discussion above it is clear that we may project
the zero curvature equations (4.9) and (4.18) on the loop
algebra without loss of information. More generally, all ob-
jects (and relations between them) introduced in Sec. IV B
have, by projection, their counterparts on the loop group and
loop algebra. We will denote them by the same symbols with
the hat ~ replaced by a tilde ~ and will refer to them by
their formula number in Sec. IV B.

V. THE RESOLVENT
A. Introduction

In Sec. IV we saw that the central component of the zero
curvature equations carries no information and that these
equations may . therefore just as well be formulated on the
loop algebra. This does not mean that the center is unimpor-
tant; in this section we will use the complete affine algebra,
or rather its basic representation L(A,), to compute the re-
solvent R’ (p,) explicitly. N

In Sec. VB we will find an expression for R'(P.-) in
terms of the components of the 7 function; the final formula
we obtain was found earlier by Flaschka, Newell, and Ra-
tiu.® However, these authors introduce the = function in a
completely different context (see Sec. VI) and they—as they
stress themselves—do not have a Lie algebraic interpreta-
tion for it.

In Sec. V C we express the resolvent in terms of differen-
tial polynomials in certain fundamental fields. In terms of
these fields the zero curvature equations (4.9) and (4.18)
become a system of AKNS equations on a lattice coupled by
Toda equations.” This connection between Toda and AKNS
equations was discovered before (see Refs. 16 and 17) by
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considering certain Bécklund transformations for the
AKNS system. Our construction is less ad loc and shows
that it is natural to think of Toda and AKNS equations as
members of one family, the Toda—AKNS hierarchy.

B. The resolvent in terms of r functions

The simplest of the covariant derivatives (4.8) is the one
in the ¢, = : x direction. It has the form

el (0 q)
/1®2 (r’ o) (5.1)

We will now derive expressions for ¢’ and # in terms of 7
functions.

First consider ¢'; it is the coefficient of 4 ° ® ¢ in the root
space decomposition of R/ (p,) = (#'_ )~ 'Aeh /2¢/_ and
therefore it is also the coefficient of 4 ~' @ e in the decompo-
sition of (¥ )k /2)¢'_ . Since (¢'_ )~ '(h/2)¥'_ and
(¥'_ )~ "(h/2)¢"_ differ only by a central term we may
write

va:ax—ﬁl-f— (pl)=ax

g=H@A " @evo,(P_ ) (h/DF- -ny)
X[H(A  '®ev,d "'oev,)] !
= H(fy v (P )~ (h/2)9 -vy)

=H((h/2) ()" fo o0 v). (5.2)

Here t/l\le dagger ' means Hermitian conjugation as usual;
if (¢_)"' is an expression of the form
exp 7, (x,) " -exp 7, (x,), we have, using (2.5),

(B )" = expl — 7y, (@0(x,))} - -exp{ ~ 7 (wo(x))}.
(5.3)
Since @) belongs to (U_) »» its conjugate belongs
to (U.,), and we may write
W)~ =1+4,, (5.4)
where 4, is an operator, which raises the weight of a vector
it acts on. The vector f;* v, has weight A, — a, and the only
weight higher than this is A, itself. Therefore we have
(a’— )T forvo =Sforvo + [0,
where p is some complex number.
We now calculate

h /D@ )~ fyn,
=laj forvo + Juai ‘v,
=1 (Aq — ag @ ) fo v + Y Ao, @) Yvp = fr 0. (5.6)

Using the definition of the translation operator T and the
weight system P(A,) (3.7), we readily find

(5.5)

Tvo= —fovo (5.7)
and hence
¢'= — H(T-v,0'_ vp)
= —H(vo,T"@’(@(‘,,+ ) ). (5.8)
If 7{ 30 this becomes
g = —H(vo,T"’tz’vo)-e”I‘l’
= — Hupd'* vp)e *0= — {9, /7(®. (5.9)
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An analogous calculation yields
=9, /r®. (5.10)

Next we consider the complete resolvent R! (p;); we
write it as

h

ﬁ'(p1)=i®-2—+i/1—"®R§. (5.11)
i=0

We already know

w=(® =] )
o=\ o/ T\ /e o/

For the other matrices R | we write
R{=res(R'(p))=resR"_ (p,))
=res(($_) '3, 9), i=12...

Here we have usedA(4.7a).
The operator ¥/ may be written as a series

P =1+blr, (A'®e) +amy, (A "8h)

(5.12)

T (A e+ (5.13)

Hence after projection we obtain

a

: ! bI
and we find
d,a  3,b'
Ri={ " ! .
! (6,,_c’ —d,d )
Using (5.13) we calculate the coefficients a’, b', ¢';
b'=H(A " ee v, vo) =g’
¢ =HA '8 fvn ' v) = —7,
a'= HQA '@ h-vg, ' vo)
X[HA'ehvy,d "' @hy)] !
—HA "o (h/2) v "10)
= H(Uo,Pl/'/;l(aé, + )7 )
= H(vo, (39" (B, )~ "00) (5.18)
= Ho a9 + - 3.9, )@ )™ o)
= H(UOa(ax;/\’{),+ )(%,+ )" vg)
[see (4.22)]

(5.14)

(5.15)

(5.16)
(5.17)

= H(vp,C! "vp)

- (0)
=d, In7".

So we finally obtain
(6,, d.Inr{® 3.4
Ri={" ‘

=12,
a,r —3d,d,In T}O’) !
(5.19)

Note that, since 7{”> depends only on a finite number of
times, R | =0, Vi> N. This means that the resolvent R '(p,)
is an element of the polynomial loop algebra g.

For the sake of completeness we also give the expression
for the positive part of the lattice resolvent in terms of 7
functions;
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‘("]1+ — (Jlj.l)—lT—lal_
(/1 — 3, n(=/r%) - T}ﬂ’ﬁl/r,‘m)

7';0)/7';3-)1 0
A—d.ng ¢
=( =g 4 ) (5.20)
—1/q' 0

C. The resolvent as a differential polynomial

In the usual theory of resolvents (see, e.g., Dickey'®)
the matrix coefficients of resolvents are polynomials in some
set of fundamental fields and their derivatives with respect to
some variable; one may choose, e.g., ¢’ and 7 as fundamen-
tal fields and x as the special variable but other choices are
also possible, as we will see in this section. The explicit form
of the resolvent derived in Sec. V B does not look like this at
all, since all ¢; derivatives appear and the diagonal terms are
of the form d, 4, In 7{”. One knows however, that the 7
functions satisfy many equations and (implicitly) using
these, one finds that resolvents may indeed be expressed in
terms of differential polynomials, as stated above.

We start with a factorization for ' ea‘p. It may be
written as

V=144 44424 =1-4  (521)
where

A':= — ¥ 447G,

>

We can define the logarithm of _ by

n':=log¥ :=Y L ank (5.22)

k>1 k

and we have

¢ =expn' (5.23)

We stress that n' is, in general, not in any of the completions
(7_),, but ought to be considered as a formal power series
with traceless matrices as coefficients;

n'= > nA = trnl=0. (5.24)
i>1

The Lie algebra g may be decomposed as

g=heoht, (5.25)

where &' = @ ,., 8, is of course just a subspace, not a subal-
gebra. Associated with this decomposition we have a factori-
zation of ¢/'_ .

Lemma 5. 1: There exist unique formal power series

s'=Y sd 7, sieh,
i»1
and

k'=3 kA~ kleh,

i»1

such that
¥ =exps-expk’. (5.26)
Proof: We have
M. J. Bergvelt and A. P. E. ten Kroode 1314



exp s’-exp k' = exp S e, sk, (5.27)
n>1
where the ¢,,’s are the well-known Campbell-Baker—Haus-

dorf expressions
Cl(Sl,k I) =5 +k I’ Cz(sl;k 1) = % [sl’kl ]7
C3(s1,k l) = 1'12 {[SI: [slyk’ ]] + [kl’[kl ’sl ]]}’ etc.

(See, e.g., Varadarajan.'®)
According to (5.23) we should try to solve s’ and &’
from

(5.28)

z c, (shk) =n (5.29)
nx1

The A ~ ! coefficient of this equation reads
s+ ki+Co(sisimpkikio)=n,  (5.30)

where C,; is a complicated expression in commutators of the
arguments indicated. Using (5.25) we can, if
syvcsi_y, ki--k!_, are already determined, find s/eh
and k jeh ' in exactly one way. a

The formal power series s’ and k' are both important; in
this subsection we will use k' to express the resolvent in
terms of differential polynomials. The significance of s will
be discussed in Sec. VI.

The following lemma states that a gauge transformation
by exp k' “diagonalizes” the covariant derivatives D! (4.8).

Lemma 5.2:

9, —R' (p)e ¥ =3, —p;+9,5" (5.31)
Proof: By (4.2) and (4.7b) we have
=@ ¢ )P )
+ 9 (@ ¥, )W )T
=@V VP ) "+P_R' (P
(5.32)
Substituting the factorization (5.26) and using the fact that
exp s’ centralizes p, one easily obtains the lemma. O

The following proposition is due to Drinfeld and Soko-
lov.?
Proposition 5.3: Let D, be a covariant derivative of the
form
9, — a5
=d, — [ i— mvm ,
—_>

m=1

D, =43, — B, (5.33)
where the v,,,’s are functions of ¢ with values in g = s1(2,C).
Then there exists a unique formal series

k=S ki ', keh?,
i»1

such that

h .
dk)(D) =38, — A2 _ S pi-mp
exp(ad k)(D,) 5 >

m>1

(5.34)

where h,,€h. Moreover, the matrix coefficients of the k;’s
and A4,,’s are polynomials in the matrix coefficients of the
v,,’s and their ¢ derivatives.

Combining Lemma 5.2 and Proposition 5.3, we con-
clude that the matrix coefficients of the k !*s are polynomials
in the matrix coefficients of R .+ (p;)and thelr t; derivatives,
for arbitrary i. We will call such polynomials and, somewhat

1315 J. Math. Phys., Vol. 29, No. 6, June 1988

inaccurately, also matrices with these polynomials as coeffi-
cients ¢,-differential polynomials.

Since k' isa ¢, -differential polynomial for all ;, the same
holds for the resolvents R’ (p;) and the lattice resolvent U,
indeed we have

Rip) = @) 'pi. =e e peled'=e *pe

(5.35)
and
Ul= (Jz_ )“'T"J/_ =e—k'e—s’T—les’ek’=e—k’T—lek’,
(5.36)

where we have used that ¢* centralizes both p;and T.
Taking i = 1, e.g., we find that R’ (p;) and U are x-
differential polynomials, i.e., that their matrix coefficients
are polynomial expressions in the fields ¢’, # and their x-
derivatives. In terms of these fields the zero curvature equa-
tions (4.9) are by definition the AKNS family formulated
on a lattice, L ~Z. The first two members of this family are

[BL.5!] =0 |0nd =90 =20,
a.r'=—03i+24'(r)?
( nonhnear Schrodinger),

t‘ql__aS l_6qlrlaqu’
a,r=2air—e6qra.r
(modlﬁed KdVv).

The differential difference zero curvature equations
(4.18) tell us how the fields in different lattice points are
related. It turns out that all information is contained in the
case { = 1, which gives the Toda equations
q1+1 - (q’)2/+q’a§ Ing, F+'= — l/ql
(see Ref. 7 for a more detailed discussion).

As mentioned in the Introduction, we will refer to the
complete system of differential difference equations for ¢’
and 7 as the Toda—AKNS family.

We may summarize this section by the following simple
proposition.

Proposition 5.4: Let geG™ and

(5.37)
[D!,Dl]=0c %

(5.38)

=g, =Y 1% (x) 2"
=4

be its associated 7 function. Then ¢’ : = — 7{9,/7{” and
P =79, /79 are solutions of the Toda~AKNS family.

VI. CONSERVATION LAWS
A. Introduction

In this section we discuss conservation laws for the
Toda-AKNS system. For the AKNS family two different
constructions of conserved densities exist. The first one is
due to Drinfeld and Sokolov? and comes down to a diagona-
lization of the zero curvature equations by performing a
gauge transformation by exp k’. The second construction
expresses the conserved densities in terms of the resolvents.
This method may be found in Dickey.'® Flaschka, Newell,
and Ratiu® noted the connection with 7 functions. In Sec.
VI B we will compare the conserved densities obtained by
these different methods and we will see that they are essen-
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tially identical. For a discussion of various constructions of
conservation laws in the context of Lax equations we refer to
Wilson. '*

If one considers the AKNS system on a lattice, the con-
served densities will of course not only depend on the times
t;, i>1, but also on a discrete index /€Z. In Sec. VI C we will
investigate the discrete evolution, which will lead to the for-
mulation of discrete conservation laws. Finally we will see
that, taking a different point of view, one may also obtain
conserved quantities for the Toda lattice from these discrete
conservation laws.

B. AKNS conservation laws

Let f be a ¢, -differential polynomial for some fixed
choice of ¢;. The ¢; derivative of fcan be calculated from the
t; derivatives of the generators of ¢;-differential polynomials,
i.e., the coefficients of R, (p,); these follow from the zero
curvature equations [5 ﬁi,b ﬁl ] = 0, which can be rewritten
as

azjk L) = [23 :,-!R L ®)]-
Since R’ + (p;) is a t;-differential polynomial, we deduce
from (6.1) that the ¢; derivative of a 7;-differential polyno-
mial is again a 7, -differential polynomial.

We will call a ¢;-differential polynomial a ¢;-conserved

density if there exists for all j>>1 a ¢, -differential polynomial
g;, such that

atjfz al,-gj'

We will refer to (6.2) as a ¢;-conservation law.
It is easy to construct such ¢,-conservation laws; define

hj:=3,s, (6.3)
where §' is the formal power series defined in (5.26). Al-
though s' is not a #;-differential polynomial, it is easily seen

from (5.31) (with i replaced by j) that & | is a 1,-differential
polynomial. The obvious identity

d,h!=38,h]

tells us that 4 ! is a ¢, -conserved density. Expanding (6.4) in
powers of A ~', one finds an infinite sequence of ¢;-conserva-
tion laws. Using (5.31), the reader easily checks that (6.4) is
nothing else but the zero curvature condition [b f’_,T) ﬁj ] =0
after a gauge transformation by exp k'. This is the construc-
tion of Drinfeld and Sokolov.?

Now we will discuss the second derivation of conserva-
tion laws. Remember from Sec. IV that the central compo-
nent of the resolvent R (p,) is given by

¢l =m(Ad(P_ ) "'(p)) = (3, n ) c. (6.5)

For the adjoint action of the Kac—-Moody group ?;,, on the
Kac-Moody algebra (g), one has the following well-known
formula:

Ad 2(% + ac) = Ad g(x) + {trres(g ™' (3,8)%) + ale,
(6.6)

(6.1)

(6.2)

(6.4)

vge&,,, xe(@),, aeC
(see, e.g., Frenkel®®).
Here g denotes, of course, the image of £ under the pro-
jection G, »G,.
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Using this formula we can express the quantity
F;j:=4,d,In7®
in terms of resolvents:
Fy=4,tr res(¥'_ (3, (¥ ) Yp;)
= trres({(8, %" )(d, (¥_) ™)
+ 9 (8, 9,(¥- ) "))
=trres({#" R'_ (pD0: (¥ )7
— 9 (=R (p)F- ) ")
= —trres(¢_ 3,(R"_ (p)))(¥_ )~ 'p, )‘
= —trres(d,(R" (p))R'(p,))
=trres(R_ (p;)9; (R'(p))

=tr res(i{'(pj)a,l(ﬁ Loe)N. (6.8)

Here we have used (4.7a) and some obvious properties of the
trace and the residue.

From the final expression it is clear that F | is a ¢, -differ-
ential polynomial. Then the identity

3, Fi;=09F}

(6.7)

(6.9)

shows that F; is for all j a 7;-conserved density.

Remark: By studying the structure of the AKNS equa-
tions, Flaschka, Newell, and Ratiu are led to introduce the
quantities F; : =tr res(R (pj)c9,11~€ +(p;)}. They proceed to
prove that the F;’s are symmetric in / and j and that d, F; is
totally symmetric in , j, and k. This enables them to define
the 7 function as a potential, F; =: J, 9, In 7. From this
definition, however, it is not at all clear that 7 has anything to
do with the representation theory of the group G.

The relation of F'}; with the conserved densities obtained
from expanding 4 ! is as follows; substituting the factoriza-
tiony = ¢-¢*'in (6.5) we find

3, In7{% = trres({exp k' 9, (exp( — k")) — 35" }p;).

(6.10)
This gives, for F;,
F,=3,K]—trres((d,h})p;), (6.11)
where
K| =trres(expk'd,(exp( —k"))p;) (6.12)
is a #;-differential polynomial. If we substitute
1 0 .
Bl — ;,{..( ) i ‘
; j;),,o _1/1 (6.13)
in (6.11) we find
Fiy=jh}+9Kj. (6.14)

So the two constructions of ¢; -conserved densities differ
by a total ¢; derivative, which is not considered to be essen-
tial.

C. Discrete conservation laws

In the previous section we found that 4 | is constant in
all times modulo total ¢, -derivatives of ¢, -differential polyno-
mials. A natural question to ask is how 4 ! changes under the
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discrete evolution /- / + 1. For this purpose we introduce a
lattice derivative A by

+1_ 1

Ad:=a a. (6.15)

We then have
Arl=A(d,s) =4, (Ash). (6.16)
If we want to interpret (6.16) as a discrete conservation
law, we have to investigate whether As’ is a z,-differential
polynomial. From thf definition (4.15) of U . and the fac-
torization (5.26) of ¥ we obtain

exp( — As') =exp k' U expk'T=:1 -> 4.4 -

>1
(6.17)

Observing that K+ ! is a polynomialing’* !, # * ', and their
x derivatives and using the expressions (5.38) forg'+', /' 1,
and the explicit form (5.20) of U! + we find that the matrix
coefficients of 4:=3,,,4,4 ~' are polynomials in ¢/, 7,
their x derivatives, and 1/¢’. Since
k
ad=3 A (6.18)
o k

the matrix coefficients of As’ are of the same form. Using the
zero curvature equations, one can express the x derivatives
of ¢ and # in the generators of ¢,-differential polynomials
and their #; derivatives, so that the matrix coefficients of As’
may also be written as polynomials in these generators, their
t; derivatives, and 1/¢'. We conclude that As’ is not a ;-
differential polynomial and that if we want to read (6.16) as
a discrete conservation law we will have to adjust the defini-
tion of a conservation law somewhat to allow powers of 1/¢’
in the right-hand side.

One may, however, also take a different point of view
towards (6.16); reading it from the right to the left, it states
that As’ changes with a total lattice derivative of a ¢,-differ-
ential polynomial under the ¢, evolution. This opens the pos-
sibility of constructing conserved quantities for the Toda—
AKNS system by summation over the index /.

To perform this summation we have to study in some-
what more detail the solutions ¢’ and # and the 7 function
associated to an element &'y, of the orbit of G™ passing
through v, Since G ™ is an algebraic group, ¢', 7, and 7{®
depend only on a finite number of times ¢, and 7{? will be
identically zero for almost all /. The next lemma gives some
more precise information about this situation.

Lemma6.1: (a) If¢', ¥ donotdependont, , |, theyare
alsoindependent ofz, , ;, Vi> 1,i.e., theset of s such that ¢’
and # depend on ¢, is an interval 1<i<n.

(b) The set of I’s such that 7{° is not identically zero is
an interval NI<M.

(c) Attheboundary points Nand M determined by (b)
the conserved densities 4 ¥ and 4 M are identically zero.

Proof: For (a) let ¢’ and 7 be determined by (5.1) and
let them be independent of ¢, ;. We then have

[bi, . H] = [D —§’+ (P..1)] =0
Inotherwords R/, (p, ) is aresolvent for D .. Itiseasy to

see that all resolvents of D’ must be of the form
exp( —ad k') (p'), where p' is a constant element of the

(6.19)
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Heisenberg subalgebra §, and k' as in Proposition 5.3. Using
this we write

R', (p,,)=exp(—adk))(p,, )

—exp( —ad k') (z all _"h)

i>0
=ﬁ’(pn+l)
—exp(—ad k) (2 aldl ~'n ) (6.20)
i>0

Here the a!’s are constants. Expanding the resolvent R '(p,)
asin (5.11) and taking the residue of (6.20) we obtain

0=R',, —ah (6.21)

Using this, the zeroth-order term of the zero curvature equa-

tion [Dx, .. ] =0becomes
0 ¢ ) ( 0 2a! q’)
thy2 (r[ 0 - _ Za{rl 0 ’ (6-22)
solving this we find
I_ 200,00
g=e¢"""""q(t,, ,=0),
Phne (6.23)

I'I= e—z"‘(’"”-r’(t,,” — 0)
Now formulas (5.9) and (5.10) show that ¢’ and # are
rational functions of the times ;. So—provided that ¢’ and
are not identically zero—we must have a) =0 and
da, H 2q =0= (9 r’ As a side result the proof shows that

L Puyy) = (p,, +1),i.e., that the resolvent is algebra-
ic.

For (b) and (c) we consider a right boundary point of
the lattice, i.e., a point M such that 7{9’s£0,” 79", , =0. For-
mula (5.9) shows that g™ =0 and therefore the covariant x
derivative in / = M becomes

- h {0 0
DM=9, — ——( )
x=0i—4 2 ™0

This enables us to calculate k™ explicitly.
Remember from Proposition 5.3 that k™ is determined
by the condition

et"(DMye—*"es (6.25)
It is natural to look for a solution of (6.25) of the form

0 0
kMzbzol (f,-“ o)'

If such a solution exists, it is unique by Proposition 5.3. Us-
ing this ansatz, we calculate

(6.24)

(6.26)

exp(ad k™) (D™)
h 0 0
=0, —A——AkM -39 k”——( ) .
2 x ™ 0 (6.27)
Using (6.25) we find
0 0
AkM= —9 kM_— ( )
x Mo (6.28)
Equating the coefficients of A ~¢, />0, we find
==Y~ '(r"), Vil (6.29)

We can now compute the resolvent R *(p,):
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RM(p)=e *"pet" =p, — A k™
It has zeroth-order term

- 0 o . 00
Ré"(p,-)=—(fM 0)=(—c3’x)“‘(r"’)(1 0).

(6.31)
The AKNS equations [5 MDY ] now become very simple;
M= (—=)*1a)(), Vi>l (6.32)

Since 7 depends only on the times #,,Z,,...,2,,, we must have

(6.30)

(3.) (™M =0, Vipn+1. (6.33)
Using (6.26), (6.29), and (6.33) we finally find
n+1 X 0 0 . .
M __ —1i Y i—1
kM= Z A (l 0)( Y (@) (™). (6.34)

i=1
Remark that k* is algebraic and nilpotent, which implies
that exp k™ =1+ k™ belongs to the algebraic group
SL(C[4,4 ~']).
It is now easy to calculate c?,,sM = h M. with (5.33),
(6.26), (6.29), (6.30), and (6.32) we compute

95" =p; + "9, — R (p)e ™"
— 9, kM — (Aky) _

fI

= —z/{ ‘j((l) 8) {0,/ +f,,,}=0. (6.35)
j>1
Since we are working with an algebraic group this result
can be sharpened to s¥ =0; indeed since ¥ (0) is algebraic,
its factors %/, (0) and ¢ (0) = exp s™ (0)exp k™ (0) are
also algebraic. Above we saw that exp k™ is algebraic so the
same must hold for exp s™ (0), i.e., it is of the form
M ( l —1 ) 0 )
0 GV
where both p¥(A ~') and g™ (4 ~') = 1/pM(A ') are poly-
nomials in 4 ! starting with 1. This can only happen if
pY =1=¢™ and hence s* (0) = 0. Using (6.35) we find
s™ =0 as desired. (If we leave the algebraic group we may
still derive 8,‘sM =0 at a right boundary point M but not
sM=0.)
. Finally we consider the Birkhoff decomposition of
Y™+ for i > 0; we have

A . A A ~
PUTI=T T YM =T Yyl

=T 9" T'T-Y¥,

= (14T~ kMTHT -, .

exp sM(0) = (p (6.36)

(6.37)
Now
T (Aef )T =A'"Ysf (6.38)

and hence (T ~ 'Aﬂ T stabilizes v, Using this we obtain

Q)
for ryp), ;

9, ; = Hwe, T _’g//\f{,‘,’+ Vo) = H(e, T ~ )75 = 0.
(6.39)
The situation at a left boundary point N is similar and will be
left to the reader. This completes the proof of the lemma. ]
Now return to Eq. (6.16). Summation over
N<I<M — 1 yields, using the lemma,
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3,,_S=hf”—hfv=0, (6.40)
where we have defined
M1
S:= z As’ (6.41)
I=N

So S is a polynomial expression in the fields ¢’, 7, their x
derivatives, and 1/¢g', N<I<M — 1, which is conserved with
respect to the ¢, evolutions. Note that, in the case of the
algebraic group we are working with, the fields ¢’ and 7' are
such that S'is identically zero;

S=s—_s"=0
(see the proof of Lemma 6.1).
Let us now calculate the explicit form of the first two
conservation laws contained in (6.40) for ¢, = t, = x. Using
(5.31) one finds
hi=—gr A '"h+1(g'd,r—ra.qgyi>h+-
(6.43)

and with (5.38) one determines the first two terms in the
expansion of (6.16),

(6.42)

A(—¢7)=0.In¢g'=3,(3,Ing"), (6.44)
Ai(q'd.r'—rd.q"
=d,((3, Ing")’ —¢'Y)+13,(d2Ing"). (6.45)
Summation over NI<M — 1 yields
3. (Mz_' 3, In q’) -0, (6.46)
):I:—A; 1 M-
d, ( ; 7(6& In ¢")? — I;N q’r’):O. (6.47)

If we substitute ¥’ : =In ¢', p': =3 u', (6.46) and (6.47)
are just the conservation of the total linear momentum and
the total energy of the Toda lattice;

M—1

a, ( > p’)=0, (6.48)
I=N
M—1 1 M1 , I

5x(2 — Y+ T e )=0. (6.49)
=N 2 I=N

VIl. THE TODA-AKNS SYSTEM AS DEFINING
EQUATIONS FOR P(0,_)
A. Introduction

_In the preceding sections we have seen how an element
geG™ gives rise to a solution ¢'= — 79, /%,
r=7{2/7{” of the Toda-AKNS system. Since we are
working with the algebraic group G, the solution satisfies
the following:

there exist integers N,M such that
q',r's£0, for N<I<M,

g0, V=0, ¢"=0, rMs£0. (7.1a)
for N<I<M q' and ' are rational functions

of a finite number of variables,

Say £,lzee0l, . (7.1b)

In this section we want to follow the reverse way; starting
from a solution ¢’,# of the Toda—AKNS equations, which is
of the form (7.1a) and (7.1b), we will construct a group
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element @ea"", which gives rise to this solution.

Such a group element is obviously not unique, since
multiplication on the right with an arbitrary element of the
stabilizer P, of the highest weight vector v, will not change
the 7 function. Moreover, since ¢’ and ¥ are quotients of
components of 7 functions, g and A8, AcC* will yield the
same solution.

The explicit construction of g in this section shows that
the freedom mentioned above is the only one. This means
that any solution of the Toda—AKNS equations of type
(7.1a) and (7.1b) corresponds to precisely one element of
the projectivized group orbit P(G **/P,) = P(0,) and vice
versa. We may also say that the Toda—AKNS equations are
defining equations for P(0, ) as a subset of P(L(A,)).

B. Outline of the construction

The strategy to construct a group element g starting
from a solution ¢', 7 of the form (7.1a) and (7.1b) is as
follows: suppose for a moment that we have found an ele-
ment g giving rise to this solution. The factors ¢ ¢0 +
from the Birkhoff decomposition (3.8) of

@' =T~ chp( Z piti)g

i=1
then satisfy the linear equations (4.7a) and (4.7b). Project-
ing these equations on the loop group and rewriting them
slightly, we find

3,,1716,+ =R I+ (Pi)%,+ ’
¥ =p¥_ —9_R', (b)), I<i<n.
Remember that R’, (p;) is an x-differential polyno-
mial, so that it is completely determined by the solution ¢,

7. This suggests that, given such a solution, we should try to
solve the linear equations. Having done this, we define

1<ign, (7.2a)

(7.2b)

V= U, o
and we derive from (7.2a) and (7.2b),
3, ¥ =pd, 1<i<n. (7.4)

The solution of (7.4) is simply

¥ = CXP(Z pit ):ﬁ’(O) = CXP(E Pi

i=1 i=1

,)¢'_ O, . (0).

(7.5)
It is now evident that we should take for § an arbitrary
lift of

g:=T'Y_ (0, (0) (7.6)
to G . This determines £ up to a nonzero complex constant
AeC*. The remaining freedom in g consists of the possible
choices of the initial conditions %5, , (0) and ¢'_ (0) for the
linear equations (7.2a) and (7.2b).

In Sec. VII C we will see that (7.2a) has a local solution
¥, ()eSL,(4,F) for any  initial  condition
%, + (0)eSL,(C[A 1) = Py, so that g can indeed be multiplied
on the right by an arbitrary element of P,. The linear equa-
tions (7.2b) will be studied in Sec. VII D. It will turn out
that (7.2b) is only solvable in S1,(4 ;) for a special class of
initial conditions #'_ (0) and that th1s class contains only
one element of the algebraic loop group G.
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C. The linear system (7.2a)

We start to remark that the integrability conditions of
(7.2a) are, of course, satisfied, because ¢',# is a solution of
the AKNS equations;

3,08, —8,0,3, =[D\,B! 1%,
=0, I<i,j<n, (7.7
therefore any initial condition
¥, (0)=By+BA+ " +BA*gl,(C[1])  (7.8)

determines a local solution ¢0 .+ (1), t= (1, 05l,), L <€
[Sinceq’, #havesingularities, % + (1) willin general not be
globally defined.] Because R’ . (p;) is traceless,
det % + () is constant in ¢ Hence choosing
¥ . (0)eSL,(C[A 1), we will have det 9}, , (r) = 1.

We now investigate the A dependence of the solution
JO‘ 4 (#). Because of the integrability of (7.2a) we may per-
form the integration of this system in n successive steps,
where in the ith step all times except #; remain constant. The
resulting ordinary differential equations (ODE’s) can be
solved iteratively and it is not too difficult to derive the fol-
lowing lemma.

Lemma 7.1: Let p be an arbitrary symmetric weight,
1//0 + () a solution of (7 2a) with initial condition
%6, . (0)eS1,(C[A 1), then l/’o + (DSl (4 ,5).

D. The linear system (7.2b)

The linear system (7.2b) is fundamentally different
from (7.2a). One may of course, just as in Sec. VII C, check
that the integrability conditions are satisfied and conclude
that any initial condition determines a local solution of
(7.2b). However, because of the presence of positive powers
of A in the right-hand side of (7.2b), this solution will, even if
itsinitial value is prescribed to be in S,(C[4 ~']), in general
not remain in this group [or in one of its completions
S1,(4 ,7)]. This can only be achieved for a special class of
initial conditions.

In order to find these initial conditions, let us try to
construct a formal solution ¢'_ of the form

=Y A4, 4y=1I. (7.9)
i»0
Using Lemma (5.1) we can write
P =elek, (7.10)

where
s'=Y AT, sich

and

k'=3 2

iz1

—kl, k,’-e{r L
are formal power series. Substitution of (7.10) in (7.2b)
yields, of course (see 5.31),

ek'(a,i—§’+ (p,-))e_"'=8,is’—p,.. (7.11)

According to Proposition 5.3 such a k' is uniquely deter-
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mined in terms of the solution ¢’, 7. Furthermore, s should
satisfy

3,5'=p, +eDle*. (7.12)
These equations are again integrable because
3,0,5'~3,d,s'=e'[D|,D!]e~*'=0.  (7.13)

Note that the integrability conditions (7.13) are just the
conservation laws (6.4). So any initial condition s’(O)eg_
determines a local solution s'(#), ¢, <€; of (7.12).

Thus we have determined all solutions of (7.2b), which
contain only negative powers of A. The possible initial condi-
tions are

¢(0)-e<'(0), (7.14)

wheres’ (0)s_ isarbitrary and k' (0) is determined by ¢’ and
¥ .The problem with (7.10) and (7.14) is of course that they
are just formal power series and that we do not know at all if
they belong to the algebraic group S1,(C[4 ~']) or one of its
completions.

To solve this problem, we use condition (7.1a). Let M
be the right boundary point determined by this condition.
Using the proof of Lemma 6.1 (b) and 6.1(c) one shows that
exp k™ (0)eS1,(C[A ~']). Therefore the set of possible ini-
tial conditions (7.14) contains for / = M only one algebraic
initial condition, namely s¥(0)=0 and ¥ (0)

= exp k M(0). Using again the proof of Lemma 6.1(b) and

6.1(c) one shows that 5,lsM =0, Vi. Hence the unique alge-
braic solution of the linear system (7.2b) for / = M is given
by

M (1) = "0, (7.15)

E. Conclusion

We now combine the results of the previous sections to
define, as was outlined in Sec. VII B, an element of the alge-
braic loop group by

g:=TMPM (), (0) (7.16)

and take for g an arbitrary lift of § to G™ . It remains to check
that the solutiong’, # of the Toda~AKNS system associated
to this element g coincides with our original solution ¢', r/
for all N<I<M. For this we remark that

07 [e et
12+@,0_<w> 2¢%+
_ kM MY i (0 qM)
=[e=*"A(h/2)e ]—/12+ T

(7.17)
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by the results of Secs. IV and V. So we have
M=q"=0, M=r"=72 /79 #£0. (7.18)

Moreover, both §’, 7 and ¢’, # satisfy the differential differ-
ence equations (5.38), which may be rewritten as

g '= —1/r, N+ I<IKM,
(7.19)
P l= —¢'("?++FadZinr.

From this we conclude that§’, #and ¢/, ' areindeed identi-
cal.

We may summarize this section with the following
proposition.

Proposition 7.2: Let ¢', ¥ be a solution of the Toda—
AKNS system that satisfies (7.1a) and (7.1b). Then there
exists an element 7 = 2+ v, of the group orbit of G* through
vy, wWhich has, in the homogeneous realization of L(A,),
components 7{%, such that

N<IKM.

I 0 0) 0 [}
g'=—7/n” r=n2/1, (7.20)
(0)

The 7 function, and hence its components 7, is unique up
to a multiplicative constant.

Note added in proof: After completing the manuscript
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The generalized Sturm-Liouville problem for a system with a Dirac-type spectrum was
converted to that of a linear integral operator with a symmetrical kernel by Yang [ Commun.
Math. Phys. 112, 205 (1987)]. A supplementary case is discussed in this paper.

I. INTRODUCTION

Recently, the Sturm-Liouville theorem was general-
ized' to 2N coupled first-order linear ordinary differential
equations with a Dirac-type spectrum. The elegant Sturm—
Liouville theorem is a powerful tool for obtaining informa-
tion on the number of eigenvalues, on the nodes of the wave
functions, and on the meaning of Levinson’s theorem.?
However, the relativistic equation of motion, the Dirac
equation, is a first-order differential one, and there are differ-
ent characters between the first-order and the second-order
differential equations. For instance, the energy spectrum for
the Dirac equation is unbounded from below.

Consider the radial Dirac equation

—g(r)+ (x/r)g(r) =[E—-V(r) — M1Ar),
')+ (k/n)fr) =[E—V(r) + Mg(r),

where the potential ¥(r) is a real continuous function of »
satisfying

(L.1)

0, at rxa,

1.2
at r~0, (12)

Vir) = [
const,

and k= T (j+1). For definiteness, we discuss the case
with « > 0. Changing Eq. (1.1) into the matrix form, we have

f(r) )

H = Eo(r),
(ny((r) Y(r) P

U(r) = (1.3)
. d

H(r)= —io,—+ U(r),

or (1.4)
U(r) = («/r)o, + Mo, + V(r)1,,

where U(r) is a 2 X2 symmetric matrix and o; is the Pauli

matrix. Near the origin, one solution is divergent and the

other is vanishing. From the indicial equation of (1.1), two

solutions satisfy the different boundary conditions at the ori-

gin. The latter solution satisfies

f/8l,—0 =K;=0. (1.5)
In the region [a, « ) the solutions of Eq. (1.1) can be ob-
tained exactly. For |E | < M, there is only one solution van-
ishing in infinity, the ratio f/g of which at » =a + can be
calculated as

[/8las =K, (16)

If in the region [0,a] there is a solution satisfying Eq. (1.3)
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and both boundary conditions (1.5) and (1.6), this solution
is the physically admissible one, called the bound state.

In some physical problems, for example, fermions mov-
ing in the background monopole field** or in the back-
ground Skyrmion field,® and the fuilly relativistical treat-
ment for two particles,’ the radial equations appear to be
four coupled first-order linear ordinary differential equa-
tions which are the general forms of Eq. (1.3) with the gen-
eral forms of boundary conditions (1.5) and (1.6). Yang’s
generalized form of the Sturm—Liouville theorem provides a
powerful method to deal with those physical problems.

Furthermore, by converting the Sturm~Liouville prob-
lem to that of an integral operator with a symmetrical ker-
nel,>® one has powerful control over the properties of the
eigenfunctions and eigenvalues. The generalization has been
made by Yang to the first-order differential equation

[e— H(x)]®(x) =f(x), 0<x«a,

where € is not equal to the eigenvalue of the Hamiltonian. In
this paper we will generalize this method to the case where €
is an eigenvalue of the Hamiltonian. Some properties of the
solutions will also be discussed in this paper.

We use the same notations as used in Ref. 1.

1. PROBLEM

We consider the first-order ordinary differential equa-
tions in the matrix form

[e — H(x)]®(x) =f(x), 0<x<a, (2.1)
where ®(x) and f(x) are 2N X 1 column matrices, f(x) is
piecewise continuous in the region [0,a], and

H(x)=wd, + V(x),

(0 —1N)
=\, o )

where V(x) is a real symmetrical 2NV X 2N matrix and con-
tinuous in the region [0,a], 1, is an N X N unit matrix, and
all quantities are real. When f(x) = 0, we have the eigen-
equation of H(x),

(2.2)

2.3)

Hx)¥(x) = EY(x), ¢= (f’), (2.4)

where £ and 7 are N X 1 column matrices. We shall discuss
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the solutions ¥ satisfying the boundary conditions at x =0
and x = a:

&=Kyy, (2.5)

&E=K,, (2.6)
where K and K, are real symmetrical N X N matrices.

There are N linearly independent solutions of Eq. (2.4)

satisfying the boundary condition (2.5). Arranging them in
columns we obtain the matrix solution :

at x=0,

at x = a,

H(x)(x,E) = EY(x,E), 2.7)
)
= , (2.8)
v=;
where § and m are N X N matrices, and, at x =0,
n(0,E) =1y, E(0,E) =K, (2.9)

Similarly, arranging NV linearly independent solutions of Eq.
(2.4) satisfying boundary condition (2.6), we obtain the
matrix solution ¢,:

El)
= , (2.10)
n=(
and, at x = a,

n(aE)=1,, §&,(aE)=K,. (2.11)
Define

W(x,E) =00 = (§ — K)o (2.12)
then

d

— W(x,E) =0. (2.13)

dx

As shown in Ref. 1, the necessary and sufficient condition
that there is a nonvanishing solution of Eq. (2.4) satisfying
both boundary conditions (2.5) and (2.6) is

det W(x,E) =0. (2.14)

Such a solution is called an eigenfunction and corresponding
E is an eigenvalue:

(x)
H(x)$,(x) = E,¢,(x), ¢,(x)=(#' )

v (x)

#:(0) = Kov(0), (2.15)

u(a) =K, v, (a),

For any real number € that is not an eigenvalue of Egs.
(2.4)—-(2.6), the only solution of Eq. (2.1) satisfying both
boundary conditions (2.5) and (2.6) for ¢ at x =0 and
x = a can be expressed as'

at x =0,

at x =a.

D(x) =J (x|Q|y)f(»)dy
0
= ¥y (x€) W“(x,af I )dy
0

+ P(x,€) W“(x,e)f ¥, (3,€) () dy. (2.16)

If € is an eigenvalue of H(x), € = E,, W(x,E,) is singular,
and W ~!(x,E,) cannot be defined. In the following, we as-
sume, first, that E, is nondegenerate, and the only eigen-
function is
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_ _ [~ (x))

P (x) =Y(x,E)f = (Vs(x) , (2.17)
where ¢ is a real normalized N X 1 matrix and

VS(O) =§1 'LLS(O) =KO§: (2.18)

1,() = §(a.E)¢ = K,n(a.E)¢ = K,v,(a).

Iil. NECESSARY CONDITION

If the piecewise differentiable solution ®(x) of Eq.
(2.1) satisfying both boundary conditions (2.5) and (2.6)
exists when € is an eigenvaue E; of H(x), we multiply the
eigenfunction ¢, (x) on the both sides of Eq. (2.1) and inte-
grateitin [O,a]:

J &, (xX)f(x)dx = f . (x) [ E, — H(x) ] ®(x)dx
0 0

=f {[E, — H(x)]4,(x)} ®(x)dx
0

—$,(Ded(x) |32 =0,

where the superscript T’ denotes the transpose of the matrix.
Therefore, the necessary condition for the existence of such a
solution ®(x) is

fa[\b(x,Es)g’]Tf(x)dx=0. (3.1)
0

IV. GENERAL SOLUTIONS
If @, (x) and ®,(x) are the solutions of Eq. (2.1) satis-
fying the boundary conditions (2.5) and (2.6), the differ-

ence ®,(x) — P, (x) satisfies Eq. (2.4) with the eigenvalues
E = E_. Since the eigenvalue E_ is nondegenerate,

P,(x) — D,(x) =cV(x,E,), = cd,(x). (4.1)

The general solutions of Egs. (2.1), (2.5), and (2.6) can be
expressed as

P(x) +co, (x), (4.2)
where ®(x) is a particular solution which we will discuss.

V. PARTICULAR SOLUTION

Define X asan NV X N real orthogonal matrix with { as its
first column and Y as such a matrix whose first column is
proportional to n(a,E;){ = v,(a), which is not vanishing
because the eigenfunction @, is not a trivial one. Now, the
necessary condition (3.1) becomes

fo [HEIX ) fnds = (D),

where D is an (N — 1) X 1 matrix.
It is easy to see that the first column and row of the
following matrix vanish:

(5.1)

- _ 0
YWLEH)X=Y(En ' —K, X |,_, = (o 21’)
1

(5.2)

where W, (x,E;) is an (N — 1) X (N — 1) real nonsingular
constant matrix because the eigenvalue E, is nondegenerate.
The first column of the matrix in Eq. (5.2) vanishes because
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the first column of n.X is the lower part v, (a) of the eigen-
function ¢,; and the first column of the transposed matrix of
(5.2) vanishes because the first columns of WX and Y are
proportional to each other.

Define an N X N real symmetrical matrix K ":

, 1 0\

K'=K. -Y (o 0) Y.
We get the solution ¥’ (x,E,) of Eq. (2.7) with E = E_, satis-
fying the boundary condition at x = a:

v-()

"]'(a,Es) = ]-Ny

(5.3)

E'(a,E)=K', at x=a. (54)

Instead of W(x,E,) we introduce W'(x,E,):
W'(xE,) =V (x,E,)ob(x,E,)

= (§ﬂ_l - Kl)“lx:a'
In fact, W'(x,E,) is independent of x. Now,

(5.5)

YW'X = "Y[gn-‘ ~-K, + Y((I) g)if]nx

=6 W)+ (o o

_(b bS)
N0 w)/

where S is a 1 X (N — 1) matrix, and b is a nonvanishing
constant. Therefore, W’ is nonsingular,

det W’'#0,

and W'~ ! can be defined.
Defining ®(x) as in Eq. (2.16):

d(x) =J x| Q' |p)fy)dy
0

x=a

x=a

(5.6)

(5.7)

— V(xE,) W'-‘(x,Es)f IOAE,)f(»)dy
0

+U(XE) W' (xE,) f VOENfdy, (5.8)

and following the proof of Lemma 9 in Ref. 1, we find that
®(x) is a piecewise differentiable solution of Eq. (2.1) with
€ = E_, and satisfies the boundary conditions

_ u(x))
P (x) —(V(x) ,

u(0) =Kwv(0), p(a)=K'v(a).

However, at x = a we have from Eq. (5.8)

(5.9)

®(a) =V (a,E,) YYW'~Y(a,E)X

xj [W,E)X |Tf»)dy

(4]

— U(aE Y( b~! 0 )(0)
=V@EIY| -z w1 )\p

0
= \P (a:Es)Y(Wl_ ]D)y
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rw = 2() Dy
pla) =K'v(a) =K, v(a) — 0 o/\w-p

=K, v(a). (5.10)

Therefore, ®(x) in Eq. (5.8) is the particular solution of
Eqgs. (2.1), (2.5), and (2.6).

VI. DEGENERATE CASE

If E, is n-fold degenerate, there are n linearly indepen-
dent eigenfunctions ¢, = ¥§;, i = 1,2,...,n, where §; can be
chosen as orthogonal and normalized. The necessary condi-
tion for the existence of the solution of Eqs. (2.1), (2.5), and
(2.6) is that f(x) satisfies Eq. (3.1) for each of ¥¢&,. The
general solutions now can be expressed as

@) + 3 ch(xE )L

i=1

where ®(x) is the particular solution. In the degenerate
case, X is defined as an N X NV real orthogonal matrix whose
first n columns are §;. The n(a,E;){; are linearly indepen-
dent because there are 7 linearly independent eigenfunctions
with the degenerate eigenvalues E,. Orthogonalizing and
normalizing them, we define an N X N real orthogonal ma-
trix y whose first #» columns are

Y=Y [n(a.E)E](B N,

Jj=1

&M(a,E)M(a.E)S, = B},
Lj=12,..,n,

(6.1)

(6.2)
det B #0.

Now, W,(x,E,) in Eq. (52) becomes an (N —n)
X (N — n) real constant matrix with a nonvanishing deter-
minant. Defining an N X N real symmetrical matrix X' as

1, 0\.
K'=K,—-Y Y,
0 0
and substituting it into Egs. (5.4) and (5.5), we get

(6.3)

sy [0 0) (1,, 0)~ _(B BS)
YWX_(O w,) o o). w)
(6.4)

where S'is an n X (N — n) matrix. Thus
det W'#0, (6.5)

and W'™! is defined. Finally, substituting ¢'(x,E,) and
W'(x,E;) into Eq. (5.8), we can also prove Eq. (5.10),
namely, ®(x) is the particular solution of Egs. (2.1), (2.5),
and (2.6), where € = E_ is an n-fold degenerate eigenvalue
of H(x).

VIl INTEGRAL TRANSFORMATION ONTO THE
EIGENFUNCTION OF H(x)

Choose the source function f(x) as

f(x) = (E;, —H)$, = (E, — E)¢,, 7.1
where ¢, is an eigenfunction of H(x) with the eigenvalue
E,#E,, and f(x) satisfies the necessary condition (3.1).
The solution ®(x) in Eq. (5.8) now satisfies the same equa-
tion and boundary conditions as ¢,, so
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B(x) — 6, (x) = ¥ e, (). (7.2)

From Eq. (5.10), the lower component v(x) of ®(x) satis-
fies

K, v(a) =K'v(a), (7.3)
ie.,
['q(a,ES)g‘,-]Tv(a) =0. (7.4)

Since the lower component of ¢ (a) is just 5(a,E;){;, the
coefficients ¢; in Eq. (7.2) can be determined uniquely from
Egs. (7.2) and (7.4). Therefore,

“ d(x)
Q' dy =
L (x|Q'[y)¢, (»)dy E_E

= [0 + Sedu o] & - £
l (7.5)
where the ¢,’s have been determined. Equation (7.5) is the

generalized form of Lemma 10 in Ref. 1.

Viil. APPLICATION

Courant and Hilbert® pointed out that every continuous
function ® (x) that, asin Eq. (2.16), is an integral transform
with a symmetric kernel {x|€|y) of a piecewise continuous
function f(y) can be expanded in a series in the eigenfunc-
tions g, () of (x|Q2[y):

J; (x|Qp)g (yrdy = p.8:(»), (8.1)

D(x) =3 c8(x), (8.2)
i
¢ = fg,(xmx)dx _ f f & (0) (x| QUY))dx dy

=#1J§1 WSy (8.3)

Now, when e#E,, from Lemma 11 in Ref. 1,
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H(x)g;(x) =Eg/(x), E,=€e—p " (8.4)

Therefore, (x) in Eq. (2.16), which is the solution of Egs.
(2.1), (2.5), and (2.6), can be expanded in a series in the
eigenfunctions ¢,(x) of H(x). When e=E, and f(x)
=Z,., d,¢,(x), the solution P (x) can be expressed as

P(x) = J(:(xlﬂly)f(y)dy

-3 4 fo " (x|

1#s

d
- 1;: Es —IEI [¢I(X) + ; Ck¢Sk (X)]’

where Eq. (7.5) has been used and ¢, can be determined
uniquely by Eqgs. (7.2) and (7.4).
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In a previous paper [J. Math. Phys. 28, 964 (1987) ], the author showed that the internal
motion of a molecule, a many-body system in the Born—-Oppenheimer approximation, can be
well described in terms of the gauge theory or of the connection theory in differential
geometry. However, the scope of that paper centers on the planar triatomic molecule in order
to put forward the gauge theory in an explicit manner. This paper is a continuation of the
previous one and gives the generalization to the planar muitiatomic molecule. The internal
space of the n-atomic molecule proves to be diffeomorphic to R* X CP "~ 2, the product of the
positive real numbers and the complex projective space. The internal states of the molecule are
described as cross sections in complex line bundles over the internal space. Introduction of the
complex line bundles is a geometric consequence of the angular momentum conservation law,
because cross sections in each complex line bundle are in one-to-one correspondence with
eigenstates that have a fixed total angular momentum eigenvalue. The internal Hamiltonian
operator is obtained, which acts on the cross sections in the complex line bundle. Further,
boson calculus is performed to obtain a complete basis of internal states of the molecule, using
the harmonic oscillator annihilation and creation operators. As a result, carrier spaces of
unitary irreducible representations of the unitary group U(n — 1), which are characterized by
two integers, are realized as finite-dimensional subspaces of the space of the square integrable

cross sections in the complex line bundle.

I. INTRODUCTION

A “molecule” in this and previous papers of the author
means a system of several particles or atomic nuclei in the
Born-Oppenheimer approximation. In quantum chemistry,
theoretical treatment of nonrigid molecules has been related
more or less with the Eckart frame.' However, the Eckart
Hamiltonian is interpreted as valid in the vicinity of the equi-
librium nuclear position. If one wishes to study motions of
nonrigid molecules far from the equilibrium position, one
must become involved with the difficulty in separating rota-
tion and vibration. It is Guichardet’ who showed that the
vibration motion cannot, in general, be separated from the
rotation motion.

On the basis of Guichardet’s work, the author demon-
strated in previous papers™* that the internal motion of the
nonrigid molecule can be well described in terms of the
gauge theory or the connection theory in differential geome-
try: The center-of-mass system is made into a principal fiber
bundle with the rotation group as the structure group. The
base manifold of this fiber bundle is called the internal space,
which is thought of as the set of all the molecule forms inde-
pendent of the position. With this principal fiber bundle are
associated the complex vector bundles assigned by the total
angular momentum eigenvalues, the cross sections of which
are understood as internal states of the molecule. The associ-
ation of the complex vector bundle is a geometric conse-
quence of the conservation of the total angular momentum.
Hence the internal Hamiltonian operator is derived from the
standard one on the center-of-mass system by using the con-
servation law of the total angular momentum.

Introductory remarks on the present geometric setting
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for the n-body system are here worth making to show that
this setting could provide a profound view of #-body sys-
tems. If the molecule is regarded as a system of nucleons, i.e.,
as a nucleus, the geometric setting in this paper becomes
related to the collective models of nuclei. In the microscopic
collective model, one discusses the problem of effecting a
change of coordinates on the n-body center-of-mass system
(R9)"~ ! from Cartesian to collective plus intrinsic coordi-
nates. The essential idea made clear by Rowe and Rosen-
steel® is this; consider a Lie group G acting on (R¢)" ' and
decompose (R?)"~ ! into orbits of G. The collective coordi-
nates are taken to be a chart for the generic orbits, while the
intrinsic variables are a set of coordinates for the transversal
to those orbits. This idea has the same origin as the present
geometric setting with G = SO(d), and may be developed
further to fit into the principal fiber bundle theory; the cen-
ter-of-mass system is indeed made into a principal fiber bun-
dle. The collective coordinates are represented as the Euler
angles for SO(d), and the intrinsic coordinates should be a
chart for the internal space, the base manifold of the princi-
pal fiber bundle. The transversality is then taken to be the
distinction between rotational and vibrational vectors, and
eventually leads up to the connection on the principal fiber
bundle.

In the collective models, one is interested in G = SO(d),
SL(d,R), or GL* (d,R), and in the collective part of the
kinetic energy operator. However, in the present setting for
G = SO(d), the whole (i.e., collective plus intrinsic) kinetic
energy operator is discussed. The intrinsic (or “vibrational”
in this paper’s nomenclature) part is of interest from the
chemical and geometric points of view, because this part is
characteristic of nonrigid molecules and associated with the
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linear connection induced on the complex vector bundles.

Though the previous papers®* presented the general
method for treating the internal motion of the molecule, as
stated above, applications were restricted to the triatomic
molecule; in Refs. 3 and 4, triatomic molecules were dealt
with in two and three dimensions, respectively. This paper is
a continuation of Ref. 3, and gives an application of that
method to the planar multiatomic molecule.

The organization of this article is as follows: Section I1 is
concerned with the center-of-mass system for the planar n-
atomic molecule. It is shown that the center-of-mass system
is made into a principal fiber bundle C"~'->R* X CP"~?2
with the structure group U(1) =SO(2), where the overdot
means that the origin is deleted, and R* and CP "~ 2 denote
the positive real numbers and the complex projective space,®
respectively. The connection defined by the Eckart condi-
tion is constructed and its curvature is shown to be the
Kahler form associated with the Fubini-Study metric on
CP"~? (Ref. 6). The induced metric on the internal space
R*XxCP"~? is also obtained, which turns out to be a
warped product of the standard metric on R* and the Fu-
bini-Study metric on CP" "2,

Section III contains the associated complex line bundles
over the internal space R* X CP"~ % These complex line
bundles L,, are assigned by the eigenvalues m of the total
angular momentum operator, i.e., all the integers. Thus
cross sections in L,, are understood as internal states of the
molecule with the total angular momentum eigenvalue m.
The linear connection in L,,, which are induced from the
connection defined on the center-of-mass system, is dis-
cussed together with its curvature.

Since R™ is contractible, complex line bundles over
R* X CP"~? are in one-to-one correspondence with com-
plex line bundles over CP"~2, so that the contents of this
section run in paralliel with the theory of complex line bun-
dles over CP" 2 (see Ref. 7, for example). The curvature
two-form of the induced linear connection in L, defines,
independently of R*, the first Chern class on CP" =2, and
hence the first Chern class numbers prove to be nothing but
the eigenvalues m of the total angular momentum operator.

The curvature form is interpreted as a ‘““magnetic” field
or a gauge field caused by the rotation of the molecule. Writ-
ten in local coordinates, the linear connection in L, is

thought of as a minimal coupling of the internal motion with .

the gauge field.

Section IV deals with the internal Hamiltonian operator
that acts on cross sections in the complex line bundle L,,.
This operator turns out to be quadratic in the covariant deri-
vation operator and to contain a centrifugal potential. This
implies that the internal Hamiltonian operator satisfies the
principle of minimal coupling with the gauge field.

Section V is devoted to boson calculus using the har-
monic oscillator annihilation and creation operators in order
to obtain a complete basis of internal states with the assigned
angular momentum eigenvalue. In conclusion, unitary
group actions on the cross sections in L, are considered. In
the space of cross sections in L,,, a series of carrier spaces of
unitary irreducible representations of U(n — 1) XU(n — 1)
and of U(n — 1) are found, which are characterized by two

1326 J. Math. Phys., Vol. 29, No. 6, June 1988

integers. Thus the internal states of the n-atomic molecule
are classified in terms of a U(n — 1) basis.

Though this paper concentrates on the planar multiato-
mic molecules, the same idea of the geometric setting can run
for d-dimensional multiatomic molecules. In fact, for d = 3,
triatomic molecules were discussed in the same geometric
setting, using explicit coordinates such as Euler angles, prin-
cipal moments of inertia, etc. For three-dimensional multia-
tomic molecules, complex vector bundles V,, I = 0,1,..., are
used, instead of the complex line bundles L,, for the planar
molecules, to describe the internal states of the molecule.
The standard fiber of V, is C¥*+, the carrier space for the
unitary irreducible representation of SO(3). The internal
Hamiltonian operator can be obtained in the same manner as
developed in Ref. 4.

While the two-dimensional molecule is of mathematical
interest, its simplicity admits a complete analysis, so that the
geometric setting becomes tractable. Indeed, the internal
space, diffeomorphic with R* X CP"~ ', and the complex
line bundles L,, over it are topologically easy to understand.
In this respect, together with the introductory remarks al-
ready made, Sec. V will give new insight into the microscopic
collective models, but in two dimensions.

Il. THE PRINCIPAL FIBER BUNDLE

In this section we make the center-of-mass system into a
principal fiber bundle with the structure group U(1)
=S0(2), and discuss the connection and curvature due to
Guichardet.? To carry out this program in an explicit man-
ner, it is of great use to introduce an orthogonal system in the
center-of-mass system, which is closely related with the so-
called Jacobi vectors.

A. Settings on the center-of-mass system

Lety;, j = 1,...,n, be position vectors of n particles in R?
with masses m ;, J = 1,...,n, respectively. The configuration
space Q, of the planar n-atomic molecule is then the linear
space of all the n-tuples ( y,,....y,);

Qo:={y=(py.yn); yER?}. (2.1)

This is clearly isomorphic with the vector space R*". The Q,
is endowed with the inner product by

K(xy) = z m;(x;|y;)
j=1
where the parentheses denote the standard inner product in
R>
The center-of-mass system Qs defined as the linear sub-
space of @, by

Q:= [erO; i mx; =0] .

Jj=1

(2.2)

(2.3)

The inner product induced on @ will be also denoted by K.
The rotation group SO(2) acting on R? acts on @, in a
natural manner; for geSO(2) one has

Y= (Yp-¥n) =8V = (V1,8V} - (2.4)

It is clear that the center-of-mass system Q also admits the
SO(2) action.
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The following proposition, easy to prove, is basic for the
discussion below.

Proposition 2. 1: Let e, and e, be the standard basis in R%.
Then the following n-tuples constitute an orthonormal sys-
tem in Q, with respect to the inner product X:
¢, = Ny(eys....eq) ,

(2.5)
¢, = Ny(ey..8;)

J
frjo1= NJ( — M e, — M, ,e,,( ¥ mk) e,,O,...,O) ,
1

k=

J
Sy = Nj( — M, 1€y — mj+1e2,( Y mk) ez,O,...,O) ,
N\ jterms\/ k=1
j=12n—1, (2.6)

where N, j =0,1,...,n, are normalization constants given by

n —1/2
N():(E mk> ’
1

k=

N, = [m,+,( s m,()(’i1 mk)] = ten—1,

=g
(2.8)

2.7)

respectively.

The vectors f;, k=1,..,2(n—1), and ¢,, 2= 1,2,
form an orthonormal basis in @Qand Q*, the orthogonal com-
plement of Q, respectively. Thus Q becomes isomorphic to
the vector space (R?)" .

The decomposition @, = Q@ Q"' is a restatement of an
elementary fact of mechanics. Let B denote the center-of-
mass vector:

n n ~1 2
B=S my(Sm) =3 Be.

j=1

(2.9)

Then any n-tuple y = ( yy,...,y,, ) in Q, is, as usual, broken
up into -

(Prseosdn) = (XppesXy) + (ByonsB) (2.10)

wherex = (x,,...,x, ) isin Q. The right-hand side of (2.10) is
expressed in terms of f, and ¢, as

2(n—1) 2 B,
0

y=3 ¢+ 3 ¥
k=1 h=1

Thus one has the following.

Corollary 2.2: The 2n variables (B"/N,q¢*), h = 1,2,
k = 1,...,2(n — 1), serve as the Cartesian coordinates in Q,,.
In particular (g*) are the Cartesian coordinates in Q.

It is of practical importance to note that the (¢*) has a
realization in R? as a system of Jacobi vectors. In fact, after a
calculation with (2.6), we can get

. ¢F=K(x/f). (2.11)

2j 1 2
g7 e, + g%,

j V27541 —12
=(mj+1 z mk) (z mk)
=

k=1

i $ men($ m) .

k=1 k=1

(2.12)

The vectors in the right-hand side are known as Jacobi vec-
tors and used frequently in several-particle systems. The vec-
tors in the left-hand side lead us to the introduction of the
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complex vector space structure in Q= (R?)" ~'. We set

=g "4ig?, i=y—-1, j=1.,n—1. (2.13)
In what follows, the complex coordinates (z’) will be exten-
sively used.
We return to the SO(2) action defined in (2.4).
Proposition 2.3: Let g(1)eSO(2);

(1) = ( — sin t)
gl = cost /-’
Then the action of SO(2) on Q is expressed with respect to

the basis { £, } in the block diagonal form
g(1)

t
cos (2.14)
sin ¢

, (2.15)
8(1)

where missing matrix entries are all zero. The action on Q' is
expressed in the same form as (2.14) with respect to the basis
{c,}.

Proof: Computing K (g(¢) f;, f; ) to get the coefficients of
g(8)f; = 2 a,; f; results in (2.15). This ends the proof.

Corollary 2.4: The SO(2) =U(1) actionon @=C""'is
also expressed with respect to the complex variables (2.13)
as

(2.2~ N o (2.6 2" 1) . (2.16)

B. The principal fiber bundle

From (2.15) or (2.16) it follows that the SO(2) action
[or U(1) action] on Q@ is free if the origin of Q is removed.
Further, we see from (2.12) that the origin corresponds to
the collision of all the particles at the center of mass. By Q we
mean the Q whose origin is removed. The Q becomes diffeo-
morphic to C"~': = C*~ ! — {0}. We now show the follow-
ing theorem.

Theorem 2.5: For the planar n-atomic molecule, the
center-of-mass system Q without the origin is made into a
principal fiber bundle with structure group U(1). The base
manifold M: = Q /U(1), called the internal space, is diffeo-
morphic to R* X CP"~2, where R* and CP "~ 2 denote the
positive real numbers and the complex projective space, re-
spectively. Let the natural projection be denoted by 7. Then
one has

mQ=C""'"sM=0/U(1)=R*XCP"" 2. (2.17)

Proof: Note that C"~'=R* x.§2"~3, It is proved in
Refs. 6 and 8 that $ >+ ! is a principal fiber bundle over CP ™
with structure group U(1); S?"+!-CP"™, called the Hopf
fibering. The action of the U(1) is expressed in the form
(2.16) withm = n — 2 and 2|Z|* = 1. Thus we have (2.17).
This ends the proof.

Remark: For n =23, we recover a result in Ref. 3
(Theorem 4). Note that the base manifold, diffeomorphic
with R* X CP, is then diffeomorphic with R* X §2=R>.

We now define a local coordinate system that gives a
local picture of the principal fiber bundie (2.17). Let U, _,
denote the open subset of C* ~ ! such that z" ~ ' #0. Then we
can introduce the local coordinates in U, _, by

2 =ré%w*, a=1.,n-2, 2" '=rp,
with
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n—1 n—2
ri=3 27, p7P =14+ 3 [w.
ji=1 a=1
The 6 and r are the coordinates of S, the fiber, and R™,
respectively, and (w?), a = 1,...,n — 2, serve as local coordi-
nates in CP" ~ 2. The internal space, which is, so to speak, the
space of all molecule forms independent of the position in R?,
has then the local coordinate system (r,w®). Note also that
r 2 is the moment of inertia of the molecule;

(2.18)

n—1

2(n—1)
ri=3 2= ¥ (¢
j k=1

j=1

=K(x,x) = Z m;i(x;|x;), x€Q. (2.19)

ji=1
When restricted to » = 1, the coordinate system (2.18)
becomes the one used by Trautman® for discussing the
Yang-Mills equation associated with the Hopf fibering
S§2m+1_,CP"™ Another choice of local coordinate system is,
of course, possible for the open subset U; of C”~ ' such that

z1#0, 1gj<n — 1.

C. The connection and curvature

In this section we apply the connection theory due to
Guichardet® to our principal fiber  bundle
C"~'SR* XCP"~ 2 Rotational vector fields are defined as
the infinitesimal generators of the rotation group. In our
case, since that group action is given by (2.16), the rota-
tional vector field is found to be

n—1 . a . P

jg'l( 7 dg” ! 7 g%

—i"f(zfi —zfi> i=y—1 (2.20)
=N\ 9zd zi)’ '

where

3 _1( 8 .93
a7 2 anj“—lanj ’

Jd 1 ( d . d )

— = — +1—].

dz/ 2 \gg¥-! og¥
In Ref. 6, the generators of the structure group action are
called fundamental or vertical as long as there is a connec-
tion. The vector field Fis interpreted also as the total angular
momentum.

The vector fields ¥ orthogonal to F are called vibration-
al? (or horizontal®);

K. (Y. ,F)=0, xeQ, (2.21)

where K, is the inner product naturally induced in the tan-
gent space T, (Q). For convenience, we extend the definition
of K, to complex vectors so that K, may be a symmetric
bilinear form on T, (Q)€, the complexified tangent space.
Then, for a vector field

3 9
Y= f— j——f)
2 (§ PTRIFY
to be vibrational, it is necessary and sufficient that

2 (z'p/ —Z%)=0. (2.22)
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To see this, we have only to note that from Corollary 2.2 X,
can be expressed as the standard flat metric on C"~;

n—1

Y dz/dz’.
j=1

In the following, differential forms on Q will be tacitly as-
sumed to be extended in order to be defined for complex
vector fields on Q.

Let W, .., denote the linear subspace of T, (Q) spanned
by all the vibrational tangent vectors at x. The connection
due to Guichardet” is the assignment: x— W, ;.. The con-
nection is given, in a dual manner, in terms of differential
forms as follows.

Theorem 2.6: The connection form « defined on the cen-
ter-of-mass system is expressed as

2(n—1) —1ln—-1
wz( Z (qk)Z) 2 (q2j—ldq2j_q2jdq2j—l)

K=1 i=1

K, = (2.23)

n—1 —1ln—-1

=i(2 D |zj|2) > (z/dz/—Z/dz’)y. (2.24)
i=1 j=1

Proof- We identify u(1), the Lie algebra of U(1), with

R. For the rotational vector field F and vibrational vector

fields Y, we obtain, from (2.20), (2.22), and (2.24),

w(F)=1, o(Y)=0. (2.25)
Thus, by definition,® @ proves to be the connection form.

Note that the connection form  is associated only with
the inertia moment and the angular momentum. This is ob-
served from (2.19) and (2.20).

The curvature form (Q is given by the structure equa-
tion® Q = dw — w A w. Applied to (2.24), this formula gives
the following.

Theorem 2.7: The curvature form () is expressed as

Q=i (f |zf|2) ) ("j"l|zf|2 'S dtnd P
i=1 i =1

J=1

n—1

-3 E"zfdz"/\dff) , (2.26)
k=1

and defines a two-form on CP" 2,

Proof: When applied to (2.24), the formula Q) = dw in
our case results in (2.26) after a calculation. The curvature
form is known to vanish for any vertical vector fields. For
(2.26), we can verify this fact by a simple calculation with
(2.20). Further, as is easily seen, § is invariant under the
U(1) action, so that ) defines a two-form on the internal
space R X CP "~ 2, Moreover, since {} vanishes for the radi-
al vector field = (z* 3 /9z* + zX 9 /8 Z%), it comes to define a
two-form on CP "~ %, This ends the proof.

We proceed to express the connection and curvature
forms in the local coordinates introduced by (2.18). A
straightforward calculation with (2.18) yields

i S (wd B — " dw?)
2 14 3w

o=d0+ ) (2.27)

_; (14 2w )3 du*ANdw° — 2 w° w’ dw* Nd B°

Q
(1 + ElwaIZ)Z

]

(2.28)

where a and b run over 1,2,...,n — 2. In view of this expres-
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sion, (2 becomes equal to the fundamental form associated
with the Fubini-Study metric®'® on CP" ~2.

D. Rotation and vibration

In this section we return to the rotational and vibration-
al vectors defined in Sec. IT C in connection with the Eckart
condition of rotationless constraint. As is observed from
(2.25), the Eckart condition is described as the differential
equation @ = 0. However, this equation is not completely
integrable, ! because of ) £0. Alternatively, the assignment
x— W, is not completely integrable.!' Accordingly, there
are no submanifolds of the center-of-mass system on which
every motion is vibrational. Here a curve or a motion is
called vibrational if its tangent vectors at every point of the
curve are vibrational. This nonintegrability is worth reinves-
tigation. To this end, we wish to work with the coordinates
introduced by (2.18).

The rotational vector field F given by (2.20) is written
as

-9

30
Any rotational vector field is a multiple of F. We turn to
vibrational vector fields. Let X be a vector field on the inter-
nal space M. The horizontal (or vibpational) lift X * of X is
defined as a unique vector field on Q which projects to X;
TX¥=X 01y x€Q, where 7, is the tangent map of m:
'Q—»M‘ For local vector fields d /dr, d /dw®, and 3 /3 w° on
the open set U,_,, we obtain, using the condition
w((3/dw)*) = 0, etc.,

&) -
ar ar’

(2.29)

I . @
—pw—, a=1.,n—-2,
( ) 2” 50
ad
w'—, a=1,..n—2,
( ) p 30

(2.30)

where p* was defined in (2.18). We notice that every local
vibrational vector field on U,,_, isexpressed as a linear com-
bination of these horizontal vectors.

The Jacobi brackets among these vectors are calculated
to give

ENER RENEE Y
[EXNERHIES YEE I

( 3 )* ( 3 )*] 0w — (14 Zw|»)6,, 4
—, = —.
\ow') "\ow A+zwP)? a0

These equations show that the assignment x— W, ;, is not
completely integrable (Frobenius’ theorem''), and are ca-
pable of the following interpretation: The infinitesimal vi-
brations (d /dw?)* and (3 /3 W")* are coupled to give rise to
the rotational vector field, the right-hand side of the last
equation in (2.31). This is a reason why the rotation and
vibration cannot be separated to each other. We note also

1329 J. Math. Phys., Vol. 29, No. 6, June 1988

that the right-hand sides of (2.31) give the components of
the curvature tensor (2.28);

() 62))
([ () =

This is why the nonintegrability is measured by the curva-
ture.

E. The induced metric on the internal space

Recall that we have the standard flat metric (2.23) on
the center-of-mass system Q. This metric is, of course, invar-
iant under the U(1) action and induces a Riemannian met-
ric B on the internal space M as follows: Let X and Y be
vector fields on M, and X * and Y * their horizontal lifts,
respectively. Then the induced metric B is well defined by

B,y (X,V) =K, (X*,Y*), xeQ. (2.32)
Theorem 2.8: The induced metric B on the internal
space R* X CP"~?is expressed as
dr+*do?,
where do ? is the Fubini-Study metric on CP" 2,

Proof: To get (2.33), we use the local coordinates
(2.18). Inserting (2.18) into (2.23) results in

(2.33)

K, =P +dP +Pdo?, (2.34)

where o is the curvature form given by (2.27) and
(1 + Z|w**) 2 dw’ d w° — 2 ww® dw’ d @°
(1+ 2|wai2)2 :

do’=

(2.35)

This is known as the Fubini-Study metric on the complex
projective space.® The expression (2.34) was also obtained
by Warner,'? and reduces, when restricted to r = 1, to the
one used by Trautman.® Recalling that for horizontal vector
fields the connection form vanishes, we come to the desired
conclusion (2.33).

Remark: For complex-valued vector fields X and ¥, we
can get a “Hermitian” metric on G on M by setting

Gy (X, 1) =K, (X*,Y*). (2.36)

For later use, we discusss below the inner product K *
defined in the cotangent space T*(Q). Let K be the iso-
morphism of T, (Q) to T*(Q)

K2(u) - v=K, (up), uvel, (Q), (2.37)

and set (K ;)~' =K ¥. Then the inner product K ¥ is de-
fined for p,geT *(Q) by

Kt(pg) =K KFP)LKE (). (2.38)
Like K., K* .is extended so as to be a symmetric bilinear
form on T*(Q)°.

Let the components of the metric do 2 be denoted by

(g.5), and set g, = g;z. By (%) and (g“T’) we mean the
inverse matrices of (g,; ) and (g5, ), respectively;

do? =—;—2(8q5 dw dw® + g, d w° duw®) ,
ab
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Y808k =00 Yelg =00
Then one has, from (2.34), (2.36), and (2.38),
K*(ww) =1/,
K*(drdr)=1=G*(drdr),
K*(duw’,d W) = 28°° /P = G*(d wd B°) ,
K *(d w*,dw®) = 2¢°° /P = G*(dw*,duw®) ,
and the other vanishing.

Let f be a complex-valued function on Q. Then its dif-
ferential df'is written as

df_iaﬂr r+z( )fdw

(2.39)

a0
+z( ) fdw. (2.40)
Using this together with (2.39), we obtain
—F 1 df af af of
K¥dfdf)=————— 4 —+——=
Cdf.df) P 90 80+8r or
=20() TG5)
+r22g" du* fawb 4
L3I s
+t52 o) f\5) £+ 4D

This is nothing but a kinetic energy density. The first term of
the right-hand side gives the rotational energy density, and
the rest the vibrational energy density.

lil. THE ASSOCIATED COMPLEX LINE BUNDLES

The internal space M may be viewed as the space re-
duced from the center-of-mass system Q by separating off
the rotation angle variable. Accordingly, the conservation of
the total angular momentum is brought into effect for de-
scribing the internal states of the molecule. Take up the open
subset U,,_, considered in (2.18). Since U, _, is broken up
into a direct product S' X 7(U, _ ), any local function on
U, _, may be expanded into a Fourier series in the rotation
angle, an expansion in the eigenfunctions of the total angular
momentum operator. Then the internal state of an assigned
momentum eigenvalue will be singled out as a Fourier coeffi-
cient of this series. However, this idea can be carried out only
locally, because the total space @ is not broken up into a
product space of S ! and M. Therefore, for the global descrip-
tion of the internal states, we must pass to complex line bun-
dles over the internal space. We will soon see that the intro-
duction of the complex line bundles is a geometric
consequence of the conservation of the total angular mo-
mentum.

A. The associated complex line bundies

Fix an integer m and let p,, denote the representation of
U(1) given by

pm(€h): Emem™E, EeC. (3.1)
Define a left action of U(1) on @ X C by
(z,£) - (e"2,e™5) , (3.2)
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where z = (2,...,z" ~ ') is used instead of x. This action de-
fines an equivalence relation in @ X C. Then the quotient
manifold, denoted by Q X, C, is made into a complex line

bundle L,, = (Q X G, ,M) via the commutative dia-
gram
Q X C——L Q X ,,C
pr { ‘ T s (3.3)

. M

where pr and g denote the projection onto the first factor and
the natural projection, respectively. The L,, is called the
complex line bundle associated with the principal fiber bun-
dle Q- M. A maps: M- Q X,,Cis called a cross section in
L, if ros = id,,, id,, being the identity of M. The space of
square integrable cross sections in L,, will serve as the space
of internal states of the molecule.

A complex-valued function f on @ is called Pm €qui-
variant if it satisfies

fle'ze="Z) =™ flz,Z) . (3.4)
The p,,-equivariant functions are in one-to-one correspon-

dence with the cross sections in L, .° This correspondence is
denoted by ¢g*. For a cross section s in L,, one then has

(g¥5)(x) = g5 '(s(m(x))), xeQ, (3.5)

where ¢, : C—,, '(m(x)) denotes the isomorphism restrict-
ed from g on fibers; ¢,($) = [(x,$)], [ 1 denoting the
equivalence class.

We now take up investigation into what the g* means in
quantum mechanics. The total angular momentum operator
is defined by F= — iF, where F is the rotational vector giv-
en by (2.20). If we differentiate Eq. (3.4) with respect to ¢,
we get

Ef = mf. (3.6)

This means that the equivariant function f is an eigenfunc-
tion of F. Thus picking up the p,,-equivariant functions out
of wave functions and, therefore, introducing the complex
line bundles L,, amount to making geometric use of the con-
servation of the total angular momentum.

We turn to the local description of cross sections and to
gauge transformations, in order to understand that cross sec-
tions in L,, are closely related with coefficients of the eigen-
function expansion for the total angular momentum opera-
tor. Define a local p,,-equivariant function ¢, on an open
subset U, as follows:

b = (Z/)Z)™, 1<k<n—1,
(3.7)
={",...2" 7 Y); 24 #0}.
On the nonempty intersection U, N U, one has
b = (2*|21/27|2))"; . (3.8)

Let s, denote the corresponding local cross section in L ,;
q¥s, = ¢,. Suppose a cross section s in L, is expressed as
JSise =[5, on w(U, NU;). Then, put together with (3.8),
this expression gives rise to the gauge transformation

fi = 22/ 2D f, on w(U;,NU,) . (3.9)

Toshihiro Iwai 1330



im@

We note that, for k = n — 1, ¢, becomes ¢, an eigen-
function of F [see (2.29)], in the coordinates (2.18). For
any k, alocal cross section f;s, corresponds to an eigenstate
Siy of F Thus the f,, an internal state defined on 7(U, ),
is thought of as a Fourier coefficient of the Fourier series for
a local wave function on U,. The gauge transformation
(3.9) thus gives the law of piecing together locally defined
internal states f;. In the literature the coefficients in (3.9)
are called transition functions (see Refs. 7 and 8, for exam-
ple).

B. The linear connection and curvature

The connection defined on the principal fiber bundle
Q— M can be carried over into the associated complex line
bundle L,,. Let X be a vector field on M, and X * its horizon-
tal lift. Then for a cross section s in L, its covariant deriva-
tive with respect to X is defined by

Vys=q% " 'X*(q%s) . (3.10)
The operator V is called the linear connection, which is lin-

ear in X and s, and satisfies for arbitrary functions f the
conditions

Vexs=fVxs, Vy(fs)=(Xf)s+[fVys. (3.11)
The curvature of V is defined for vector fields X and Yon M
by

RX,Y)s=[Vy,Vy]s—Vixys. (3.12)

Theorem 3.1: The curvature of the linear connection on
L, is expressed as

R(X,)Y) = —imQ(X,)Y), meZ, (3.13)

where X and Y are vector fields on M, and is the curvature
form on the principal fiber bundle Q- M.
Proof: By combining Eqgs. (3.10) and (3.12),

R Y)s=gf  "([X*Y*] - [X,Y1")(gks). (3.14)

We use the local coordinates (2.18) for the right-hand side
of (3.14). We notice here that for a p,,, -equivariant function
q7s one has, from (2.29) and (3.6),

—(?—qms—lmqms (3.15)

a0

We now apply (3.14) together with (2.28), (2.31), and
(3.15) to obtain

R( 9 , 9 )=—im().( 9 , 9 ),etc.
dw® 3wt duw® v’

This completes the proof, because Eq. (3.13) is a tensor
equation.

As was stated in Theorem 2.7, the two-form (} defines a
two-form on CP” ~2; so does the curvature R. Hence we can
show that [ R]/2#i is an integral cohomology class, follow-
ing Wells, Jr.,” for example; taking up CP'CCP"~2 as a

two-cycle, to be definedin U,_, by 2/ =+ =2""%=0
and r = 1, we have, along with w" ~? = w,
R|cp =mdwAd ) /(1 + [w]?)?,
which yields, after integration,
L[ r=—m. (3.16)
298 Jep
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This equation may also be viewed as giving the quantized
strength of the magnetic field R. For n = 3, we have proved
the same equation in Ref. 3, in which we interpreted the
curvature as a magnetic monopole field of the quantized
strength on the internal space R* X CP'=R>.

The internal motion of the molecule is coupled with the
magnetic field R through a locally defined gauge potential.
This is observed when we express the connection V in local
coordinates (2.18). Take up the horizontal vector fields
(2.30) defined on U, _,. Then by definition (3.10) along
with (3.15) we obtain

g ot (3.17)
(5w )
Vas = —im—p'w’)s,
aw’ 2
whereV,,V,,V; standforV;,,, Y, . ., V, . ., respective-

ly. These equations prove the above assertion, because

m—;—pZZ(w“dw"—iE“dw") (3.18)

" is a locally defined gauge potential for mR [see (2.27) and

(2.28)].

C. The inner product for cross sections

The inner product for cross sections in L,, should be
derived from that for functions on Q. The volume element on
M for integration must be reduced as well from the standard
one on Q. The configuration space Q, has the standard vol-
ume element

dQy=dy, A ==~ Ndy,,

where dy, =dy. A dy:, k= 1,...,n. The volume element
dV, defined by the inner product X is related to dQ, by

dVo=m, - m, dQ,.
According to (2.11), the dV, is expressed also as
dVy=Ny*dB' A dB? A\ dV,

where N, is the normalization constant and
dV=dq' A --- N dg?"— "V (3.19)

is the volume element on Q defined by the inner product X.
Thus, separating off the center-of-mass coordinates from
dQ,, we obtain the volume element dQ on Q in the form

k=n k=n —1
dQ=pdV, p=3 m, H mk] .

k=1 k=1

(3.20)

To bring out the volume element dM on M, we refer to the
expression (2.34) of the standard flat metric K, on Q. In
view of (2.34), we obtain d¥ (up to sign) in the form

dV=ro ANdr A P"-2dS

=o ANP"*dr AdS, (3.21)

where dS is the volume element defined on CP"~? by the
Kahler metric do?. We may take dS in the coordinates

(2.18) as
ds = (i/2)"‘21gdwl ANdT' A Adw" 2 ANdw" 2,

(3.22)
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where J, denotes the determinant of the Hermitian matrix
(g.5), a,b=1,..,n — 2, and is calculated as

—n+1
ngdet(ga,-,)=(l—+—2|w“|2) omsy. (323

A straightforward but long calculation brings about the rela-
tion
[1/(n =212 ="~ 2 det(g,;)dw' N d W'
A ANdw 2 ANdw"— 2.
(3.24)
Hence, one has
dS={[{(n—2)2"-2]-'qQ" 2. (3.25)
In the coordinates (2.18), the volume element dQ becomes
dQ=udd AN P"*dr AdS. (3.26)

Now we turn to the inner product for cross sections. For
the cross section s;, k = 1,2, in L,,, the Hermitian metric on
L, is given by

(s1]s)(m(x)) = gFs,(x) gis,(x), (3.27)

where the overbar indicates the complex conjugate. The
right-hand side of (3.27) is clearly invariant under the U(1)
action, so that it depends on 7(x) only.

Theorem 3.2: The inner product for cross sections s,
k = 1,2, is given by

j (s,]s,)dM = f qmsl qms2

where dM is the volume element on M defined, together with
(3.25), by
dM = 2qur"3dr A dS. (3.29)

Proof> For p, -equivariant functions g¢Zs, =4,,
k = 1,2, one has the inner product, using (3.20) and (3.21),

J.QE@dQ =”LJM b, b0 AN P"3dr A\ dS

(3.28)

ZZ"“J ¢, ¢,7"3dr AN dS. (3.30)
M

Here we have used the fact that ¢,¢, is constant on each
fiber 7~ '(p) =S, peM. Then Eqs. (3.27) and (3.30) are
put together to prove Eq. (3.28). We note in conclusion that
the volume element dM on M is not equal to that defined by
the induced Riemannian metric (2.33) on M. The latter is
written as "~ *dr A dS = 2mur) ' dM.

IV. QUANTUM MECHANICS FOR INTERNAL STATES

We are now in a position to set up quantum mechanics
for internal states of the planar molecule. What we have to
do is to bring out the internal Hamiltonian operator acting
on cross sections from the standard Hamiltonian operator
on the center-of-mass system.

A. The Laplacian

We start with the kinetic energy operator. The standard
one on the configuration space Q, is, of course, given by
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1 & 1 a \?
- — — {1, 4.1
2 kz:ll m (aJ’k) @

where d /dy,, k = 1,...,n, denote the gradient operators. The
operator (4.1) is thought of as — } times the Laplacian A,
with respect to the inner product K on Q,,. By Corollary 2.2,

A, turns out to have the form
a 2 2(n—1) a 2
8= 3 (o) + 3 ()
? E JB*" jgl aq’

Separating off the center-of-mass coordinates, we have the
Laplacian on the center-of-mass system Q in the form

A 2(n—1) a 2 4n—1 a2
B ,-; (@) =42 e

We should here note that the A can be derived from the
energy functional by integration by parts. Let f be a wave
function on Q. Then its energy density is given by

n=t af af 57 8f)
KT df) =2 A AN
(df.af) kZl( k gz* 27 ' az* 9z* @4

(4.2)

(4.3)

where K ¥ was defined in (2.38). Thus one obtains, by inte-
gration by parts,

LK:(W,dndQ: —L}’AfdQ-

We now wish to express A in the coordinates (2.18). Let
f have its support in U, _,. Then, from the expressions
(2.41) and (3.26) of K *( df ,df ) and dQ, respectively, we
obtain, after integration of the left-hand side of (4.5) by
parts,

(4.5)

1 2 1 4 d
it r?.n—3 )
r”a +ﬂ”‘3c9r( dr

55156 4 Ga))
* i( aia >*( Ejg(aawb)*) ] ’

where J, = det(g,;). The first term of the right-hand side
represents the rotational energy operator, and the rest of the
terms the vibrational energy operator.

(4.6)

B. The internal Hamiltonian operator

The internal Hamiltonian operator acting on the cross
sections should be derived from the standard one on Q,

H=-1A+V,
where V is a potential function depending on the internal

coordinates only. Let s be a cross section in L,,. Then the
internal Hamiltonian operator H,, is defined through

[ it av = | oF Heats) do. (47)
M Q

A local expression of H,, is easy to obtain.
Proposition 4. 1: In the local coordinates (2.18), the in-

ternal Hamiltonian H,, takes the form
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o=~ L (s 2)
21223 0r ar

2 1 3
= — V. (g%, V
+r2;(.]g a(ga g b)

+ Ly, s V-))] +
J, 7 e 27

Proof: Let s be a local section with compact support in
U, _,. We operate a local p,, -equivariant function g¥s with
the Hamiltonian and use the formulas (3.15) and (4.6) to-
gether with (3.17) to find (4.8). This ends the proof.

We observe that the Hamiltonian H,, indeed satisfies
the principle of minimal coupling, which requires that when
the magnetic field mR is turned on, the operator d /dw” and
d /3 W’ should be replaced by the covariant operators V, and
V., respectively [see (3.17)]. This coupling is the very influ-
ence that the rotation of the molecule produces on the inter-
nal motion. The term m?2/27” represents the other influence,
which shows that a centrifugal potential for the internal mo-
tion should be added. We remark further that the same
expression as (4.8) is available in the open subset U,,
1<k<n — 1.

To get a global idea of the internal Hamiltonian in a
differential geometric setting, we return to the kinetic energy
density K *( df ,df ). For our present purpose, f hastobe a
P m-equivariant function. Let /= gs. Weare to have a close
look at df = dg¥s. The question that arises is whether one
can interchange d and ¢¥. To answer this question, we get
back to the definition of the connection. An alternative in-
troduction of the connection is made as follows: Let
T* (M) be the complexified cotangent bundle. A connec-
tion, denoted by d ¥, is a C-linear mapping from the space of
cross sections in L,, to the space of cross sections in the
tensor product bundle T*(M)®9 L, , which satisfies the
Leibnitz formula

d¥(f5) =dfes+fd’s, (4.9)

where fand s are a function on M and a cross sectionin L,,,,
respectively. If we apply the formula (4.9) to a vector field X
on M and set d s(X) = Vs, we again find the second of
Egs. (3.11). The first equation of (3.11) is clear, because
d ¥s is required to be an L,,-valued differential form.

We proceed to the next stage to ask if one can extend g
to the cross sections in T*(M)®& L,,. In other words, how
can we define g7 d ¥s? From definition (3.10), we obtain the
equation ¢ (d "s(X)) = (dg¥s)(X*). The right-hand side
of this equation implies that the horizontal part of the differ-
ential dg*s is picked up. Hence we define d * as the horizon-
tal part of d; for a function fon Q, one has

d'f=df— (Ff)w,

where Fand w are the rotational vector field and the connec-
tion form, respectively. For F, d *f vanishes, as seen from
(2.25). For vibrational (or horizontal) vector fields Y, one
has d’f(Y) = df(Y).

We now come to the final equation
g¥d s=d"q%s or d¥s=gqf 'd"(qls).

m

(4.8)

(4.10)

(4.11)
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This equation solves our question. That is, d and g7 do not
commute, but the connection leads us to the desirable con-
clusion (4.11). In the coordinates (2.18), we obtain from
(2.40)

d's=dreV,s+ 3 (duw'eV,s+dw'eV,s). (4.12)
Our third task is to define a Hermitian metric on the
tensor product bundle 7*(M)“ ® L,,, which is induced nat-
urally from both the Hermitian metric in 7 * (M )€ given by
the Riemannian metric on M and the already defined Hermi-
tian metric (3.27) in L,,. In view of (4.11), we define the
Hermitian metric on T*(M)€® L,, ford s, and d's, by
(d%s,|d"s,) = K*(d"q¥s,, d"qEs,) . (4.13)
Note that for horizontal vectors, K, indeed defines a Rie-
mannian metric on M (Theorem 2.8); so does X * for hori-
zontal covectors. Using the orthogonal decomposition
df = d"f+ (Ff)w, one obtains the kinetic energy density
for a p,,-equivariant function ¢7s in the following form:
K*( dg¥s,dg¥s) = (m*/P)(s|s) + (d¥s|ds) .  (4.14)

The first term of the right-hand side is the rotational energy
density possessed by the molecule of the total angular mo-
mentum eigenvalue m, and the last term is the internal ener-
gy density coupled with the gauge field mR. In the local
coordinates (2.18), definition (4.13) gets easier to under-
stand. From (2.39) and (2.41) we obtain

K*(d’qEs, d"qls)
= (VslV,) + 2 3 [£5(VoslV35) + 82(Vas{ V)]
= G *(drdr)(V,s|V,s)
+3 [G*d T d W) (Vy5]V35)

+ G *(dw’,dw®) (V,s|V,s)] .
On the other hand, (d Vs|d Vs) is written out, from (4.12), as
(d%s|d"s) = (dreV,s|dreV,s)

+(Zdw“®vas|2dwb®v,-,s) 4o

(4.15)
Accordingly, definition (4.13) implies that
(d W’ ® V,s|d W’ ® Vss)
= G*(dw',dw’)(V,s|Vzs), etc., (4.16)

which serve as a local definition of the inner product for
cross sections in T*(M)¢® L,,.

Using (4.14), we obtain the kinetic energy functional
for ¢¥s in the form

f K*( dgFs,dgts)dQ
Q
2
=,uf f (ln—(s|s) + (dvs|dvs))
s Im\ PP
X o ArP'~3dr AdS

2
- f (’”7 (sls) + (dvsld"s)) M . (4.17)
M
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Here we have used (3.21), (3.29), and the fact that kinetic
energy density is constant on each fiber 77 '(p) over peM.

The last step toward a global definition of the internal
Hamiltonian is to define a covariant codifferential §7, which
is dual to d¥ and maps the space of cross sections in
T*(M)®e® L, to the space of cross sections in L,,. The de-
finition depends on the Riemannian metric B and the volume
element dM on M. Let s and u be cross sections in L,, and in
T*(M)®e®L,,, respectively. Then the covariant codifferen-
tial operator 6" is defined through

J (ds|u) dM:J- (s|6u) dM . (4.18)
M M

Using 6" and d¥, one has the Laplacian operator’ A,, for
sectionsin L,,,:

A, = —8%d". (4.19)
(The minus sign is for our convenience. In the literature, the
Laplace operator is defined to be A = §"0d ¥ + d V08" for
bundle-valued p-forms.)

We are in a final position to derive H,,. From definition
(4.7), one obtains

f grs H(g%s) dQ
Q
=f gis (—iA + V)(qms) do
0 2
=f [—;—K *( dgfsdgiis) + qfs ti‘fS] dQ
Q

=f [—l—(dvs|dvs) + _r_ni (s|s) + (s] Vs)] aM
AW 277

_ JM(S

Thus we have the following.

Theorem 4.2;: The internal Hamiltonian operator H,,,
acting on the cross sections in the complex line bundle L,,,, is
expressed as

H,=—1A, +m/2r +V, (4.21)
where A, is the Laplacian operator defined on L, and given
by (4.19).

We remark in conclusion that according to the product
structure M=R* x CP "~ and Proposition 4.1, H,, can be
expressed as

(4.20)

——A — 4V .
(=323 v)s) o

1 1 2 ad 1
H, = —— Ofppn=3 ) A+ L,
™ 2 r“‘%?r( ar]  2° +2r2+

(4.22)

where A,, is the Laplacian operator defined on the restric-
tion of L,, to the submanifold r = 1. This A,, is called the
Bochner-Laplacian operator, and is studied by Kuwabara. "’

V. A COMPLETE ORTHONORMAL BASIS

In this section we discuss how one can pick up p,, -equi-
variant functions out of a complete orthonormal system in
L2(Q). To carry out this purpose, we make use of boson
calculus for the harmonic oscillator.
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A. Picking up p,,-equivariant functions

Suppose we have the harmonic oscillator potential
T3m
2.£

Though this potential is not realistic for the molecule, it
helps in explaining the complete orthonormal bases in
L?(Q). Let a, and a denote the annihilation and creation
operators, respectively, defined by

d
_y—1/2f ok
a, =2 (q +¢9_q"-)’

a
t =12 ok
aj =2 (q _511_")’

Then, as is well-known, the functions
[k' 2(,, ])|]—l/2(af)k. e (a;(n—l))kZ("*l)'())
(5.3)

form a complete orthonormal system in L *(Q), where |0) is
the normalized ground state.

In keeping with (2.13), we introduce the annihilation
and creation operators

AJ. =2""*(a,_, +iay),

n—1

— '3 I =

i=1

k(X 1x) (5.1)

k=1.2n—-1). (52)

), =2""2(ay,_, —iay),
A}— 272%(af,_, —ia})), (5.4)
B;-r= _l/z(aZj—l + ia;j) )
(j=1l.,n—1),
which satisfy the commutation relations
[AJ’AH =6jk’ [AJ’B“ =0, (5.5)
[BJ’B“ =6y, [BJ’AH =0,

and the others all vanishing. Since the transformation (5.4)
is canonical, the complete orthonormal system (5.3) may be
written in the form

Ny (4 7‘)I((BT)Il(» » (5.6)
where we have used the following abbreviations:

Ny = [k k,_ 1) ln“l!]—l/z’

(AN =Dk i, (5.7)

(BYY = (BD" - (BI_",

We proceed to picking up p,,-equivariant functions out
of system (5.6). The U(1) action on Q defines a unitary
operator U, in L 2(Q) as usual:

(U, f)(22) =fle” "ze"Z (5.8)
Thus, from (3.4), a function f in L 2(Q) is p,,-equivariant if
and only if

U, f=e ™f. (5.9)

Differentiating Eq. (5.8) with respect to #, we have the gen-
erator — iF of U,, where Fis the total angular momentum
operator. Note here that the F was defined as a differential
operator, but we have used the same letter for the self-adjoint
extension of F. Thus one has

U, =exp( — itF) . (5.10)
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The total angular momentum operator can be expressed
in terms of the operators (5.4) in the form

A n—1
F= (—4;4]+B,B}).
i=1
To verify this is a matter of calculation. Further, by this
expression, one obtains

[FAl]=—4], [FB}]=B].
Using these equations together with (5.10), we can show

that the unitary operator U, induces the transformations of
A} and B} in the form

UALU '=é"4},

UBLU '=e "B},
It is easy to check that both sides of (5.12) satisfy the same
differential equations in ¢. The domain of 4} and B} are
supposed, for example, to be the space of such functions as
the products of |0) and polynomials in z and Z.

We are now in a position to pick up p,,, -equivariant func-
tions.

(5.11)

k=1..,n—1. (5.12)

Theorem 5.1; Let
E,, =span{N,,(4H*(B")'|0); |k|—|l|= —m},
(5.13)
with |k|=k,+ - +k,_, |I|=L+ - +1,_,, be-

ing the closed linear subspace of the p,,-equivariant func-
tions on Q. Then the Hilbert space L 2(Q) is broken up into
the orthogonal direct sum

L Q)= o E,.

m= — oo

Proof: Equation (5.12) and the fact that U,|0) = |0)
imply that

(5.14)

U,(A T)"(BT)I|0) ___e——it(—lkl+lll)(A T)k(BT)l[()) .
(5.15)

Therefore, from (5.9), one verifies that (4 7)*(B")!|0) is
the p,, -equivariant if and only if — |k| 4 |/| = m. As the
system (5.6) forms a complete orthogonal system, we get
Eq. (5.14), as desired.

Remark: In view of (3.28), we observe that E, is iso-
morphic with the space of square integrable cross sections in
L,., which is denoted by ¢* —'E,.

m

B. Unitary group actions

The planar n-body harmonic oscillator was treated in
Ref. 14, using Lie algebraic methods. In this section we wish
to study the harmonic oscillator in order to show that
¥ 'E, carries unitary representations of
U(n—1)XU(n —1) and of U(n — 1), on the analogy of
harmonic polynomials in z and z. We notice first that the
harmonic oscillator Hamiltonian is expressed as

n—1
H=3% (44, +BlB;)) +n—1.
i=1
The eigenspaces of H are clearly spanned by functions (5.6)
under conditions |k | 4+ |/ | = N, where Nis non-negative in-
tegers. As is well known, each of the eigenspaces is the repre-

(5.16)

1335 J. Math. Phys., Vol. 29, No. 6, June 1988

sentation space of a unitary irreducible representation of
U(2(n — 1)).

We restrict the group U(2(n — 1)) to the subgroups
U(n—1)xXU(n—1) and U(n — 1). For non-negative in-
tegers p and g, set

E,, =span{(4H“(B"|0); |k|=p, |I|=4q}.
(5.17)

The subspace E,, we have discussed is the direct sum of E, ,
withp —g=m.
Theorem 5.2: The product groupU(n — 1) X U(n — 1)
has a unitary irreducible representation in the space E, .
Proof: For (g,h)eU(n — 1) XU(N — 1), we define the
actions U,(g) and U,(A) as follows:

U, ()4, U, (g™ h =Z &_-kAj »

U (@4[U (g™ =3 gud],
L (5.18)
Uz(h)BkUZ(h _l) == Z hjk Bj ’

U,(WBLU,(h~") =3 hyB],

where g = (g; ) and A = (A, ). The tensor product U, ® U,
is then defined to act on E,  in the form

(S8u41)" - (Shal) 100

As is easily verified, the transformations (5.18) are canoni-
cal in the sense that the commutation relations are left invar-
iant, so that the norm of (4 *)*(B*)’|0) is preserved, and
hence U, ® U, becomes unitary on E, . Further, since U,
and U, are viewed as unitary irreducible representations'> in
the space of polynomials in A}~ and in B}‘, respectively, the
tensor product representation U, ® U, is also irreducible.'®
This ends the proof.

We now proceed to representations of U(n — 1). If we
replace g for 4 in Eq. (5.18), then we have a Kronecker
product representation of U(n — 1) in E,, which is not
irreducible. In order to find out invariant subspaces, we con-
sider following two operators invariant under the U(n — 1)
action,

n—1

n-1
AB= Y 4;B;, A'B'= Y 4]B]. (5.19)
j=1 j=1
Let
G,, ={f€E, ; (4B)f=0}, (5.20)

thekernel of AB: E, , —E, , _,.Since ABis invariant un-
der the action of U(n — 1), G, , is an invariant subspace of
E,,. The G, , is an analog to the space of harmonic polyno-
mials in z and Z. The following is a key formula to dividing
the space E, , into U(n — 1)-invariant subspaces.
Proposition 5.3: For integers m, p, and ¢ satisfying
1<m<p,g, and for a function fof E, m» ONe has

AB((A4'B")™f)
=mn—24+p+q—m)(AB)Y""'f
+ (4'BTY™(4B)f.

— m,q—

(5.21)
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Proof: We prove this proposition by mathematical in-
ductionin m. Form = land f€E, _, ,_, using the commu-
tation relations and the fact that 4,|0) = B;|0) = 0, we can
show that

(A f=(p—1f, BB)f=(g—1)f.
Using these equations, we obtain, after calculation,
AB((4'BY)Y)

= (A'BNY(AB)f+ (n+p+q—3)f.
Thus the proposition holds for m = 1. Now, assuming that
(5.21) holds for m, we prove it for m + 1 with m + 1<p,q.
For a function f€E, (... 1), (m+1,» the function
fi=(A"B")f belongs to E,_,,,_,,, so that the assump-
tion of induction can be applied for the f,. Thus one has
AB((A'B")"f))

=mn—2+p+q—m)ABHY" ",

+ (A'BNY™(AB)f, . (5.22)

To dispose of the last term in the right-hand side, we can
apply the formula (5.21) with m = 1. In fact, as f is looked
upon as belonging to E,_,,, _, _m _1, We can apply

(5.21) with m = 1 and with p and ¢ replaced by p — m and
q — m, respectively, so that we obtain

(4B)f, = AB((4'B") f)

+(n+p+g—2m—3)f+ (4'BH(UB)f.
(5.23)
Equations (5.22) and (5.23) are put together to yield the
formula (5.21) for m + 1. This completes the proof.
Theorem S.4: The space E, , is decomposed into the di-
rect sum

Go=E,, G,=E,,

EM = Gp,q ® (4 fBT)Ep— -1 (pg>l).

Proof: The first two equalities are clear. We start by
proving

G,,N(4"BYE,_,,_, ={0}. (5.25)
What we have to do is to show that for any nonzero function
fofE, ,,_,,AB((4'B") f) never vanishes. Let

(A'BY)f= (4B, (5.26)
where m is a maximal number such that f; no longer has the
factor A B . Noting that f,cE,_,, . _ ., we apply the for-
mula (5.21) to (5.26) to get
AB((A'B") f)

=mn—2+p+q—m)(A'BHY"f,

+ (ATBYY"(AB)f,. (5.27)

If we had AB((4'B")f) =0, then the right-hand side of
(5.27) would vanish, so that £, would have the factor 4 'B ¥,
contradicting the assumption. The last part of the above rea-
soning is trivial if m = 1. For m > 1, we can come to the same
conclusion. In fact, by applying the formula (5.21) induc-
tively, we can write out (48)™(A4 B T)f in a similar form to
(5.27). This ends the proof of (5.25).

The decomposition (5.24) now becomes easy to prove.
Indeed, the dimensions of the both sides of (5.24) are equal,

(5.24)
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because of (5.25) and of the fact that G, is the kernel of the
linear map 4B: E,, ~E, ,, . Thus we have proved the
theorem.

A successive application of (5.24) results in the follow-
ing.

Corollary 5.5: The space E, , is broken up into
E, =G, eA4BHYG,_,,_,
® " ®(4'B")G,
where r = min( p,g).

Here we remark that the direct sum decomposition
(5.24) has great resemblance to a decomposition of the
space of polynomials in complex variables z and z. Thinking
of G,, as the space of harmonic polynomials, one finds in
Ref. 17 an analog to (5.24). The representation of U(n — 1)
induced in G, , is then irreducible and belongs to the repre-
sentation of highest weight ( p,0,...,0, — q). (See Refs. 18
and 19, for example.) The dimensionality of G, , is comput-
ed by (5.24) to give

dimG,, =dimE,, —dimE,_,, ,

_(n=24+p+q)(p+n—3)(g+n—3)!
(n—2)((n—3)1)%plg! '

(5.28)

—rg—r>

(5.29)

Further, the decomposition (5.28) reminds us of the
Clebsch-Gordan series'* for a Kronecker product represen-
tation. Thus the Kronecker product representation of
U(n — 1) in E, , is reduced to its irreducible components.

We now return to the harmonic oscillator to carry out
our purpose of showing that the groups
U(n—1)XU(n—1) and U(n — 1) act on the cross sec-
tions in L,,. The space of p,,-equivariant eigenstates of the
harmonic oscillator is assigned by the conditions p + ¢ =N
and p — ¢ = — m, and hence by

p=(N—m)/2, g=(N+m)/2 (Nzim|). (5.30)
Thus from Theorem 5.2 and Corollary 5.5, we have the fol-
lowing.

Theorem 5.6: The product group U(n — 1) XU(n — 1)
has a unitary irreducible representation in the space
g%~ 'E,, of cross sections in the complex line bundle L,,,
where p and ¢ are assigned by (5.30).

Theorem 5.7: The unitary representation of U(n — 1) in
thespace g% —'E, , of cross sectionsin L,,, which is induced
from that in the above theorem, is reducible to its irreducible
components according to the decomposition (5.28), where p
and ¢ are assigned by (5.30).
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The Hamiltonian system given by H =} P’ + V(q) with VeC = (R") is considered. A method
for integrating such a system is that of separating the variables in the Hamilton-Jacobi

equation. It is known that if such a separation is possible, then it can take place only when the
equation is expressed in terms of generalized elliptic coordinates or in a degeneration of these.
A criterion is proposed for deciding if separation is possible, and if it is, in which degeneration

of elliptic coordinates it takes place.

I. INTRODUCTION

We consider the problem of integrating a Hamiltonian
system by separating the variables in the Hamilton-Jacobi
equation.

Proving integrability by separating the variables in—
and so solving—the Hamilton-Jacobi equation has the ad-
vantage (over just the application of Liouville’s theorem)
that it allows one to directly find a transformation to cyclic
variables for the system, and so to solve the equations of
motion explicitly. The so-called property of separability (we
speak of a “‘separable Hamiltonian system” or of a “‘separa-
ble potential”) was the principal object of inquiry in the late
nineteenth and early twentieth centuries for the study of
Hamiltonian systems. A review of some important results of
the period can be found in Ref. 1. Recently, more results on
separability have been found; see Ref. 2-5. The last word, it
seems, remains to be said.

Our work can be seen as the conclusion of a program
initiated by Stickel® in 1891, that of classifying Hamiltonian
systems according to their separability or nonseparability. It
is often thought that the question posed in the title of this
paper is answered by Stickel’s theorem; in fact this is not the
case. Stdckel’s theorem gives us no indication of what the
variables for separation are, if they exist, or even if indeed
such variables do exist. It only tells us if a given coordinate
system has this property with respect to whichever Hamilto-
nian system we are considering. A natural Hamiltonian is
typically expressed in Cartesian coordinates; our criterion is
implemented in Cartesian coordinates.

We present the means for the classification by separabil-
ity of “natural” Hamiltonian systems (a natural Hamilto-
nian is one having the form H=7T+V, where
T =3} _, p; and Visafunction of the position variables g,
only), which describe the motion of particles in a space of
zero curvature. In other words, one can take any natural
Hamiltonian system and subject it to certain tests enabling
oneto answer the question, is the system separable? Andifso,
in which coordinates is it separable?

For a system with two degrees of freedom the answer to
this question was provided by Whittaker in his book.” From
his account of results of Bertrand and Darboux we are led to
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formulate a theorem which we call the Bertrand—-Darboux
theorem. Essentially this tells us that a necessary and suffi-
cient condition for a given natural Hamiltonian H = }(p2
+ pﬁ) + V(x, y) to be separable in elliptic, polar, parabolic,
or Cartesian coordinates is that the expression

(Vy, = V)(—2axy—b'y —bx+c))
+2V (@ —ax* + by —b'x + )
+ V. (6ay +3b) + V,( — 6ax — 3b") (1.1)

vanishes for some constants (a,b,b,¢,¢',¢c,) # (0,0,0,¢,¢,0).
In addition, this theorem tells us in which particular coordi-
nate system [the characteristic coordinates of (1.1)] the
Hamilton—Jacobi equation for H separates, depending on
the values of the constants (a,b,b",c,c',c,).

The second integrable case of the Henon~Heiles system
was shown to be separable using this criterion.?

As an illustration of the use of this theorem as an effec-
tive criterion of separability, let us prove that the three-di-
mensional nonperiodic Toda lattice Hamiltonian is nonsep-
arable:

H=1(p} +p3 +p5) + &9~ 4 2@~ (1.2)

If wesetx = 1/{2(q, — ¢,), y = 1//6(q, + 9> — 2q3), and
z=1/\3(q, + ¢, + ¢3), we have

H=(p2 +p2 +p2) + e¥2x _ glor—ix (1.3)

and the problem of the separability of the Hamilton-Jacobi
equation is reduced to the problem with two degrees of free-
dom, with

H(x,p,p.s p,) =32 +p2) + V(x,¥)
and

V(x,p) = 2% — ol = 2%, (1.4)

Now if we form the expression given in (1.1) for V given by
(1.4), we find that in order to make the expression vanish we
are forced to choose (a,b,b",c,c’,c,) = (0,0,0,¢,c,0). Hence,
applying the theorem, the Hamilton-Jacobi equation for H
given by (1.4) is nonseparable; this in turn implies the non-
separability of (1.2).

We will formulate a similar condition for a system with
arbitrary degrees of freedom.
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Iarov-Iarovoi® proved, using the zero curvature condi-
tion, that if a given natural Hamiltonian system is separable,
then it is separable in generalized elliptic coordinates or in
some degeneration of elliptic coordinates—for example, in
parabolic coordinates.’ Because of the large number of such
degenerations for n>3, we are unable to provide a straight-
forward formulation of the criterion of separability in gen-
eral. We adopt instead the approach of treating elliptic co-
ordinates (nondegenerate case), followed by a discussion of
the effect of degenerations.

In the case n = 2 the Bertrand-Darboux theorem does
constitute the most general criterion of separability, in that it
accounts for all degenerations.

For n = 3 there are already 11 degenerations, instead of
four for n = 2 (see Refs. 2 and 10). We are preparing a paper
that gives the form of the criterion in each case, and we ex-
pect this to largely supersede Eisenhart'® in its application
directly to the solving of problems.

In Sec. IT we recall the n = 2 case. We then go on to
consider separability for arbitrary n. In Sec. II1 we confine
ourselves to the case of separability in generalized elliptic
coordinates, and then in Sec. IV we look at what happens in
the degenerate cases. Finally, the Appendix contains calcu-
lations which, either because they are already available in the
literature, or because they are not central to the main argu-
ments, have been relegated to the end.

Il. THE BERTRAND-DARBOUX THEOREM

For the Hamiltonian function in R*XR? H=(p?
+ pﬁ) + V(x, y), where (p,, p,) is the momentum conju-
gate to (x,y), for some constants (a,b,b',c,c',cy)
# (0,0,0,¢,¢,0), the following conditions are equivalent.

(1) H has an independent integral of the form

K=(ay’ +by+c)pl + (ax’ + b'x + ¢)p}

+ (—2axy—b'y — bx +c,)p.p, + k(x,p),

where k is some differentiable function: RXR-R.

(2) V satisfies the differential equation
(V,y, =V )(—2axy—b'y—bx +c)

+2V (@’ —ax’* + by —b'x +c— )

+ V. (6ay + 3b) + V,(—6ax —3b") =0,
where subscripts on ¥ mean “differentiate,” e.g., ¥V,
= dV /ox.

(3) The system is separable in one of the following or-
thogonal coordinate systems in the plane:

Cartesian, polar, parabolic, elliptic.

A complete account of the content of this theorem can
be found in Ref. 7. See also Ref. 8 or Ref. 11 for the parabolic
case.

lll. SEPARABILITY IN GENERALIZED ELLIPTIC
COORDINATES

The Bertrand-Darboux theorem has an extension to
higher dimensions establishing a condition for the separabil-
ity, in each degeneration of elliptic coordinates, of the Ham-
ilton—Jacobi equation for a natural Hamitonian system. The
respective degenerations prove too messy to be incorporated
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explicitly, and all at once, into a single expression; so we
prefer to formulate the theorem as it applies just to separabil-
ity in undegenerated elliptic coordinates, and to follow this
by a breakdown of all the possibilities for the (slightly) dif-
ferent forms the theorem takes in the degenerate cases.
Theorem: Given a natural Hamiltonian system with

H=— 3 i+ Vo, (3.1)

k=1

the following three conditions are equivalent.

(a) H has n global, independent, involutive integrals of
motion having, in some Cartesian frame, the form

3
K=y ———IL——J,-p,? +k(q), i=1,.,n,
A @ —q;

where a,,...,a, are n distinct constants. What is important is
the differences a; — a;; we can suppose that 0 =, <a,
<+ <a,.l; =q; p; — q; p; and k; are functions of g only.

(b) The potential ¥ satisfies the set of in(n — 1)? equa-
tions,
(ai - ar)—l(q%Vrs — 4.9, I/IS)

= (ai —as)_l(q?Vrs —qiqsllir)’

3.2)

i,r,s all different,

(ai —ar)—lqiqr(llii - Vrr) - z (ai _aj)_lqiqjlljr

JFEiLr
+ Vsr[ Z (a; “‘aj)_lq} + (@, —a;) " '(gF — ﬁ)]
J#ir
+V,+3a; —a,) gV, —qV,)=0 i#r
(3.3)

Subscripts on ¥ mean “differentiate,” e.g., V;, = d¥ /dq,.

(c) The Hamilton—Jacobi equation for H,
H(g,p)|,— ss,a, = E, is separable in generalized elliptic co-
ordinates (u,,...,u, ) given by

n qi n
I+ 3 =1II (z—up

k=lz—ak Jj=1

n -1 U(Z)
X - =21 (34
(kI=Il (z—a, )) e (3.4)

Remark: For n = 2 this theorem is the same as the Ber-
trand-Darboux theorem with a =i(a, —a,)”"', b=5'
=¢=0c—-c=1
Proof: The condition {H,K,;} = 0 yields
z k,p; = —22 (@, —a;) "
= JEi
X(;(q:V; —q; Vi) — 20 V.

We construct 27,_,(z—a;) 'k, ;p; and take the coeffi-
cient of p, to get

i (z—a;) 'k,

i=1
= —2z—a,)” 'V, -2 z (z—a;) (z—a,)!
i#tr
X(q?V, —q,q,V;), Vr. (3.5)
By differentiating (3.5) we have an expression for
27, (z—a;) " 'k,,,. Setting

2 (z—a;) (ki

i=1

as of course it should, we obtain

- ki,sr) = 0’
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a

i (z——a,-)_'q,?((Z—a,)—l—(Z—as)_l)Vrs‘i'(z"as)_lqs i (Z_ai)_lqi—Vr

i=1

= dq;

- (z—ar)_lqr z (Z_a‘,)_lq’,i Vt + (Z_ar)_lVrs - (z_as)_lVrs

i=1 aq,
+3z—a,) Yz—a,) gV, —qV,) =0, Vg

rs=1,..,n.

(3.6)

[Note that from (3.5) we can obtain ,,, and this enables us to check that {K,,K;} =0, V,.]

The residues of (3.6) at z = q,, for i,r,s all different and for i = s7#r, respectively, give the equations in (b). That (3.6)
can itself be recovered from (b) is also easy to show. Thus (a) = (3.6)<>(b).

We now show that (3.6) = (c), and hence (b) = (c). We make use of the following identities:

.. a Au,) q; a
(i) —=2 ,
dg; = U'(u) a; —u, du,
. d U((2) A(u,) ., @
(i1) (z—a)g, —=2 - (z—uy) ,
,-;1 e aq; A(2) =) U'(uy) , Ju,
_ - _ ad LU= o
(iii) (z—a,)7'¢, ¥ z—a) lgg—=(—0a,) ' ———
! ";1 7 Iq; A(z) dq,
A
_2 U(Z) I(uk) (Z_uk)—l(ar_uk)—l a ,
A(z) =) U'(uy) du,
da. .
(iv) ql =_1— ql .
du, 2 u,—aq;
—
To get (i), differentiate the equation v a Vo4 6(z—a) (z—a )~
1+ C i:ﬂz.)_ auk
& z—a, A(2) o Aluy) q, v

with respect to g, :

24, 1 " _, 9y
= —a TS U(z)jg:1 (z—u) e
Now keeping « and g fixed, let z—u;:
- 2g, _ U'(u;) du; ‘
U —a A(u;) Jdq,
Hence
du, 2q,  Ayy)

g, ar—u U'y)’
and (i) follows. Identity (ii) comes from (i) together with
the equations

(z—a) "a;,—u)™!
=(z—u) z—a) '+ (e, —u,) ")
and
n g
i=1 0 — Uy

=1, Vk

Identity (iii) follows easily from (ii).
At length we obtain that (3.6) is equivalent to

U(z) A(u;) —1 —1

-2 — - —V,
A(2) g kz=:1 U'(a) (a, —u,)” (z—uy) au,
+2 Y@ AW ) u) !

10 ¥ & T
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X145
[q k;l U,(uk) (a,—uk) auk
n 4
_qr z I(uk) qs 3V]=O
k=1 U (uk) (as _uk) auk

(where, remember, V, = JdV /dq, ). For r+#s, keeping g and
u fixed, let z—u; in (3.7). Using the identities (i)—(iv) we
get
i A(uy)
= U'(uy)

3.7

(a, —uk)_'(as —uk)_‘

2
ol —uy 22 8V]=0'

du,du, + du,
Now make use of the fact [see (A10) in Appendix A]

that
ro Pluy)
E T )
when P(z) is any polynomial of degree less than n — 1, and
we get

no AQuy)
k=1 Ul(uk )

(ar ——uk)_l(as -uk)_l

2
oV _ (ﬂ_ ‘”’)] 0. (38)
Ju,du, du, Jdu,

We read (3.8) in this way: for fixed / and r it is an
(n — 1)-dimensional linear equation of the form
o7 "0x D = 0, where .« %" is the (n — 1) X (n — 1) matrix
with components

X[(ui—uk)
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) A(uy) _
LD = a, —u,) e, —u)",
k U'(up) ( k k
s#r, k #i, (3.9)
and x*” is the (n — 1) X 1 column vector,

; 4 4

O = u, —u)Vy. 3.10)
X = G L wIV] (

Unless det .7 " =0 this equation has the solution x'” =0
for all i. Now

i
-1 —1
(a, —uy) V (a, —u,)

det o P = :
U'(u,) U'(u,)
A
Xdet[ (#) ]
a, —u,

(!, means omit the ith term). As u, »a, for k #vr,

hLr

A A v
det[ () ]-» + AW a4 (e, )0,
a, —u, a;, —u,
Hence det .« ("0, and therefore x*°, = 0, Vi,k. In other
words,
d a
< u,—u)V1=0, Vik. 311
du; du, [¢ V] ( )
The general solution of (3.11) is
i) (3.12)
j=1 U (u )

and the Hamilton-Jacobi equation is separable (see Appen-
dix A).
In elliptic coordinates the Hamilton—Jacobi equation

takes the form
(‘95 ) +V=E

i A(u;)
ji=1 U (u )
and is separable whenever V has the form given by (3.12).
(¢) = (a): V(q) separable in generalized elliptic co-
ordinates <> ¥ takes the form

. f}(uj)
Vigu))= E _
(q ) j=1 U’(uj)

The Hamilton—Jacobi equation takes the form

(3.13)

n

ZU(

ji=1

)[ 44(u )( )+2f(u) P(u,)
Y (3.14)

where P(z) =9 2" '+ 92" "2+ +1,, 2E=1,, and
can be simultaneously separated by posing

S= ZS(u)

ji=1

(3.15)

to give
A)
— 44(u;) ( u) +2f,(4,) — P(u,) =0
J

or

— 44(up)v; + 2f,(u;) — P(uw;) =0, j=1,.,n.
(3.16)
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The 3,,...,77, are constants of integration that would be fixed
by initial conditions in the complete solution. If we set

x; = —44(u)v} — u}
and
Y =2 (u) + uj,
we can write (3.16) as
Yn=x+Yy,

with % the nX n matrix, % ; = u} ~/. Now det % is the van
der Monde determinant, II,_;(#; — u;); this is nowhere
identically zero, and hence (3.17) defines the constants
717, Uniquely in terms of # and v, and so in terms of g and

p-

(3.17)

We write

M=% "'x and wW=%""y so that n=m"+1v".
(3.18)

We will show that (3.18) together with the mapping

(G2, 0rg’ Y (U yye.n,1t, ) implies

E": 2"~ (u(g),v(g, p))

k=1

—A(z)[] + z

i=1 z—a

] —z" Vz, (3.19)

where

R; =2 (a; —q; )—112 +pi+ ¢
iEi
A polynomial of degree v is uniquely defined by its val-
ues at v + 1 distinct points. It is enough then to check (3.19)
for the points z = u,,...,u,:

n

1+,-;|z~a-

O+—Z(z—au")0+-2(2—au PJ

k=1 k=1

n 2
_(Z (Z“ak)_lqkpk)

k=1

U(z) ( - -1 2)
= 1 —
A U T2 Em A
NErivEll
2 dt\A(z)
asp=g;
n R ’ ) 2
1+ i =—i£jL’)2a}=—4v}.
SV u—a 4 A(u;)
(3.20)
Hence

(rhs of (3.19))]

Z—ll

~|1@(1+ 3 2) 7]

= — 4A(uj)vj —u; =x,

z=uj

but from (3.18) this is just Zn*. In turn
n" = (lhs of (3.19)})]

z—u’
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so (3.19) is proved.
We know that 9™, + 77, is a constant of motion for
k=1,...,n, hence
27
k=1
is a constant of motion for all z. Taking the limit as z— &, and

using (3.19) which we just proved, we obtain » constants of
motion

K,' = R,' + k,(q),

where

k,-=1im ( "k )
~a, A(2) ,2, g

and is easily seen to be independent of p.
Moreover, as

{Ez" s iZQ_k"Ik]

k=1 k=1

O +1%%)

(3.21)

is clearly zero for all choices of z, and z, we find
{K.,K;} =0, Vij.

IV. DEGENERATIONS

We now discuss the possible degenerations of elliptic
coordinates on R". The systematic description in Ref. 2 is
very useful here.

There are four types of degeneration:

U(z)
A(z)

n 2
1+ 3 L

k—lz_ak

(i) i —qzl:[ (z—w,;)/A(2)

k=12 — Q, j=1

= ¢’ W(z)/A(z)

(@=¢+ " +¢);

(i) [1+ 2 % _ U

“=irz—a, A,(2) ’

2

< qx

k=v—+—lz_‘ak

_ Uz(z)
Az(z)

1+

where

f[ (z—u), A(2)= ﬁ (z—a)),

j=1 i=1

U,(Z) =

H (z—w), A@2)= ][] (z—a);
j——v+l i=v+1
n—1 _U(Z)

) +z-2g, =2
(ul kzl z—ak ¢ A(Z)

U,(z) =

n—1

A =][ G—av
=1

(this is the case a, — = );
& 2

(iv) 1+ 3 + £

hiz—a, z—a,

- /(}(z)
A(z2)

and
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=pcosb, gq,

H (Z_uj)
jo=2

(this is the c;se a, — a,—0).

The degenerations in (ii) and (iv) can take place as
many times as we like—up to (7 — 1) of course—the other
two only once. Also (i) and (iii) cannot be combined with
each other whereas both (ii) and (iv) can be combined in
various ways with any of the other degenerations. We will
examine (i)—(iv) in detail.

(1) Suppose we have

l+§": —H(Z—u)

Kk=1Z2—Q, ;=1

_ _ U(z))
(H (z—a;) e

k=1

=psin 6,
f](z) =

Then
g U(z) —A(2)
“hiz—a, A
U(z) — A(z) is a polynomial of degree n — 1, with leading
term
77N (e —w)=2""" Y qi,

k=1 k=1
as can be seen by multiplying both sides by 4(z).
Thus U(z) — 4(z) = ¢°W(z), where W(z) is a polyno-
mial of degree n — 1 with leading term z” ~'. By the funda-
mental theorem of algebra W(z) can be written

W(z) = 4.1)
It is immediately apparent that in fact all w; are real for
q:,a,;€R; we have

n 2
% —0, Yu,

(z—w)) " (z—w,_,;), for weC.

k=1wi—ak

Suppose w; = £ + in for some i with 75£0. Then we have
i (€ —a)* +7) '€ —a,—in) =
The I;;l;ginary part of (4.2) is
7 kﬁ‘,l ((E—a)’+7)"'gi =0

—and we have a contradiction. We have then

5:: % 4C)
<1z —a A(2) ’

The theorem cannot be directly translated into the ap-
propriate form for this case, but needs to be developed from
the beginning. It is straightforward to do this. We leave it to
Appendix B.

(ii) This case is obvious. We have essentially two nonin-
teracting systems.

(iii) Suppose

1+ ¥ =]II —up

k=12 —Qy  j=1

—~1
(kI_Il (z—a) = A(z)) ’

Letg, =¢./Va,, k#n,andq, = (¢, + a,)/V a,. Mul-
tiply both sides by z - «,, and let a, —» . We obtain

(4.2)

with w,eR.
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n B U(z)
_z+ p = T, (43)
;Z’lz—ak A(z)
wherejl(z) =(z—a) (z—a,_,).

In this case the theorem is not affected by taking the
limit. That is,

lim (a)= lim (b)= lim (¢)= lim (a)
when the limit is taken according to the above prescription.
(This has been checked!) We only need to see what happens
to (a), (b), and (c) in this limit. We get the following re-

sults.

(a) For i#n,
2 n—1 £ —d.EDN?
P B TR
a, a, j*i a; —q;
—_ ., — . 2
+L2 (¢i§n ¢n§l angl) +k,(q)
a;, a;, —a,
(where & =p,/Vea,, i=1l,..n)
=L2"i‘ ($:& — ¢,6)° + L ($:&, — $.8)°
a, j#i a; —q; a,, a, —-a,
(@ —ap + 1)
a, —a, \a,
26.(d.E — )
_ §I(¢l§n ¢"§l) +kl(q).
a,(a, —a,)

Multiply by @? and let @, — co. Writing
J

n-1

¢i(l/ii—— Vnn) +3Vv1 + (2¢n +a1)
J#Fi

_as)_l(¢?Vrs _¢

(ai - ar)_l(¢r?Vr: - ¢i¢r I/u) = (ai

Vi + z (a; _aj)_l(¢i¢j;/jn

Vi.) =0,

§ wr

k. (¢) = lim a2k, ( ¢ yeves il +a,,) ,
@y~ o ‘/a” Van
we get
- n—1 -
= z (a; — aj)—%?j + 264, — a7 + ki (9),
i (4.4)
2 n—1 — D, ; 2
K, =try LIS @b bt ah) Ly
a, a, j=t a, — aj

2 n—1 22 n—1 2
=§n +L22 nj +2 §j

a, a, j=1a, —a;

i=1a, —a;

L2y S £ty
a, =1a,—a;

+k,(q).

Multiply by a,, and let a,, — 0:

K.=3 &2+k),

( & ¢..+an)
Ve va, )

K, must be the Hamiltonian of the theorem as it has a natu-
ral form:

0=1{K, H}={T,V - ik,} = 0=k, =2V,
to within a constant.

(b) Applying the limit @, — « in the same way to the
equations in part (b) of the theorem, we obtain

(4.5)

where

k,(¢) =

lim o,k

a,— o

— ¢_/2’/m) = 0, i= 1,...,” - 1,

irs=1,.,n —1 all different,

(ai _ar)_l¢i¢r(Vrr - I/u) + (ai _a’)_l(¢12_¢%)l/” +¢l nr
n—1 n—1
+(2¢,, +a; — Z (a; _aj)_l¢}) Vi + z (ai"aj)_l¢i¢jer
JELr JFLr
+3a, —a,) BV, —¢,V,) =0, ip=1l..n—1, i#r. (4.6)
I

(¢) This translates to the following: “The Hamilton—

Jacobi equation is separable in parabolic coordinates given
by

L U@
+ _— 2 N "
kgl z—a, 22 = A(z)

(iv) In this case the limit is &, — a, 0.
Consider the #n integrals of the theorem,

2
K=Y

——+pi + ki),
iFi O —Q;

As in Ref. 5 we take instead the integrals

K=K +K, (a,—a)(K,—K;), K, i>3
and then let @, — a,—0. This gives us, respectively, K, /,,,
K, (i>3)—n integrals in involution.

We have an obvious symmetry in the system: invariance

i=1,..,n
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with respect to rotations in the (g,,4,) plane. This means we
can reduce the system in the usual way by one degree of
freedom before applying the theorem. In the framework of
the Hamilton—Jacobi equation the reduction procedure is
just precisely that of separating off one variable. We illus-
trate the procedure.

Let

q,=pcosd, q,=psinb,
P =@, =pcos @ —p?Bsin b,
P> =g, =psin 6 — p*fcos 6.

Then
_0 (1,
adp dp

L,,)
22
a<1 12) .
v y?] ,
Y p+2p =p
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aH by;
_—= 6.
Er
Let the momentum conjugate to p be £ and the momentum
conjugate to 8 be 7; then & = p, 7 = p?6. In (p,6,£,77) vari-
ables /,, is just 7. Hence 8 is a cyclic variable and 7 is a
constant of motion.
So we have
=Y A+
=X+ + 45 + V(pgsdn)-
Look at the constant K = K, + K
Iy + 15 = (op; — £9)° + w’q;/p’
in the new variables, so

Kzi ((12

=3

+Pi) + V(P,%,m,q,.) + n/pz
4.7)

—a;) " (pp;, — &q;)°

2
+§2+/%+kl(q)+kz(q)

+= 7’ z (2, —a))~'q.
=
Note that as @ is cyclic all k; must be independent of 8
(i=3,...,n) as must k, + k.
Set ¢, =p, 6, = q;,j>3, £, =&, §; = pj» j>3; then we
haven — lintegralsin involution K; (i = 2,...,n) of the form

K =3 (e —a) (& — £+ £+ xi(9),

J#i
(4.8)

all commuting with the Hamiltonian
H=}(E3+ - +£0) + V(8ptn). (4.9)

We are now able to immediately apply the theorem.

APPENDIX A: ELLIPTIC COORDINATES ON R” AND
SEPARABILITY

The coordinates (q,,...,¢,) are Euclidean (or Carte-
sian) coordinates on R".

Ordinary generalized elliptic coordinates are defined by
the transformation*

l+i -—]'”[(Z—u,-)

k=12 — Q,; j=1

n U(Z) )_
X — pu—
(kl;Il(z A(Z)

a,) =
(A1)

This transformation is defined with respect to the constants
(ay,....a, )eR"”. We must assume in (Al) that all a’s are
different.

The metric on R" is given by ds*> = 3"_ ,dq?. Let us see
how we write this metric in terms of u variables.

We have

. Uz) U(a,)
2 = lim(z — a,) =
@ = 10 “ U@ A'(e)
Ulay) & .
=2q,dgq, = — (@, —u;)” du,
4 a9 A'(a,) Iz a,

SO
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g =—
“T 4 4 P
X Y (e —u;) " Nay, —u;) ' du; du;
Lj=1
=_1"qi z ( _ui)_l(ak-u) du; du
4 Lj=1
Now use

(ap —u) " ay —u;)~
= (u, —uj)—][(ak - u,‘)_1 —
for i#j,

(ak —uj)_l])

and

2
“ ‘P

k=1U; —a,

= _1,

which comes directly from (A1), so that

kz dqi——zdu 2 qi (a, —u;) 2
=1

i=1

Now observe that

" 7 d & P
e P

& (e —u;)? dz = z—a ) |-,
O U)
YT
Thus
1 & UlG)
ds = — — . dut. A2
§ 2 A (A2

We use (A2) to transform a Hamiltonian function of
the form H =} P’ + V(q) to (u,v) variables. We must find
the canonical momentum v. We have

pel g (4

k=1

) + V(q).

YVe assume that ¥ can be written in terms of u so that
V(u) = V(q) when u and q are, respectively, the elliptic and
Cartesian coordinates of the same point in R”. Then

A= -L13 U(”)( )+V<u)
8 &1 A(w;) \dt
Now v = dH /3du, so
U'(u. U'(u. Alu.
v, = 1 U i, () w=16 () vk
4 A(u;) A(u;) U'(u;)
Thus
o A(u;) ~
H= -2 — v} + V(u). A3
i=1 U'(u;) ( )

The Hamilton—Jacobi equation for H expressed in terms of
the coordinates u is
t A(u;) (SN o
-2 — ] +V(u)=E
i;l U'(u,) (au,») )
If we apply Stickel’s theorem to (A3) we see that ¥ must
have the form

(A4)
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n filwy)

Viu) = . (A5)
@ igl U'(u,)
If we use the identity
5 P(u;)
= (A6)
igl U'(ui) n

for any polynomial P of the form P(z)=7,z"""'

+ 12"~ 4 --+ + 7, thenif V hastheformin (AS5), (A4)
can be separated by posing S(x) = Z7_, S, (u,) to give

—24(u;) (as) +f(u) = P(u)) =0,

A7
I, (AT)

where 7, = E.
To prove (A6), consider the contour integral (with the
same U as above)

1 z dz dz, for fixed (u,,...,u,). (A8)
27 J. U(z2)

If C encloses all the u; this is just

n u;

j; U'(y)

The integral is also equal to minus the residue at infinity of
z%/U(z); this residue is equal to the coefficient of z~! in the
expansion

(A9)

1 z°dz _[0, for s<n—1,

Py 1, for s=n—1,

L (A10)
27mi Jo. U(2)

and so on.

APPENDIX B: CASE (i) OF SEC. IV

The conditions (a), (b), (c) become the following, re-
spectively.
(4) The following are n global (nonindependent), invo-
lutive integrals:
2

L
K-= +k(q)9 j—ly »h,
! kg'/a — a

for some functions k,...,k, of g only; a,,...,a, are n distinct
constalnts.

(b) The potential V satisfies the set of {n{n — 1 )% equa-
tions,

(aj - ar)_l(quVrs - qjqurls)
= (aj - as)_l(q}Vrs - qqu V;’)’
(@ —a)7'q,q.(V,, — V) + (@, —a) (@~ gV,

+ z (ar_aj)_lq}Vrs—qr z (ar_aj)—lqjl/js

J#ns J#ns
+ 3(ar _as)_](qur _qus) =0.

(&) The Hamilton-Jacobi equation for H is separable in
spherical-elliptic coordinates (¢*w,,...,w, _,) given by
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2

n n—1 n -1
3 9k =q2H(z—wj)(H (z—ak)

k=12 —Qy j=1

2 W(Z)
TR
Proof, (@)= (b): In the same way as before, we construct
3" (z—a;) 'k, and put 27, (z—a;) " (k;,s — ki)
= 0. We get

z—a,) Nz—a,) (g,

Vr _qus) - (z—ar)_lq

XY (z—a) gV +(z—a)7'q,

i=1

XYy (z—e) gV, +V, Y (z—a)”'q
i=1 i=1
X{(z—a,) ' —(z—a,)"")=0.
As before we _let z-a;, i#rs, and then z—a, to get the
equations in (b).
To go now to (C) we use

a a n—1

34, = 24, aqz+2qkq_2 i; (@ —w)™!
W'(w,) dw,
%, _ _1 4
dw; 2 a, —w,
X d
(z—a)™!
§=:1 U k 4,
n—1 )
2 W@ 9, W) s A(w;)
A(z) o¢* A(z) < Wi (w)
d
X _w,' —l—'—’
(z ) Jw;
-1 - a
(z—a,)”! (z—a)"!
q kZI P k 34,
—Pz—ay W2 W(z) d_ ] W(z)
A(2) 3q, A(z)
n-1 A(w,) —1 —1 a
z—w; —w;) " —.
i; W'(w,-)( w;)” (a, —w;) w,
In the same way as before, using now
n-—-1 Q(w') _
= W (wy)
for any polynomial Q of degree n — 2, we get this time
n—1 A(wj)
(@, —w;)  a, —w;) ™!
j;i Wl(wj) J J
2
[ (w; = w,) v v v
ow,dw;, Jdw, Jdw
av , 0%
=0. B1
tow T w ap (B

Now V(g% w) is separable in (¢°,w) coordinates <>V
has the form

V=" +q F(w),
where
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= n= b fi(w;)
Viw) = i; _—W‘(w,.) )

The way to read (B1), fixing r and §, is

107 \(x®) (0
0 #/\x®)"\o)"

where # " is the (n — 2) X (n — 2) matrix with compo-
nents

) A(w;)
B =—L (a, —w;) a, —w,)”",
g W) ( ;)" ( )
s, j=1,..,n—1, s#r, j#i,
; d av
x “’=—(V 2——),
° ow, +a oq”
and x'” is the (» — 2) component column vector,
; J
x“’.———-—— w; — w;)V
Y dw, ow, (¢ W)
j=1,...,n-—1, j#i.

It is easy to check that det % (*”=£0. Therefore, for any
i, X" =0 and x*; =0, j=1,..,n — 1. We find that the
general solution to (Bl) is V= V(q ) + q_ZV(w), where
V(w) has the form
-~ n—1 f; (w‘)
Viw) = —
) 2 W' (w;)

i=1
Proof, (¢)=>(a): This time the separated equations are
¥ m =x+Yy, where

1

x; = —44(w,)y? — »w}

v =f(w) +xw! L
¥ ; =wj~ ' 7/, xis as yet unspecified, and  is the momen-
tum conjugate to w. We find det #75£0. Set W* = ¥~ 'x,

n>=%#"""y. Let

n—1

y - "=y, = A(2)L(z) — xz" .

j=1
The rhs of (B2) must be a polynomial of degree n — 2, so x
will be chosen to be the coefficient of z" ~! in 4(z)L(2),
which we suppose to be a polynomial of degree n — 1. Claim
that

(B2)
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L= (z—a)7'3 (a
i=1 J#1
Then A(z)L(z) — »z"~ ' is a polynomial of degree n — 2,
and so is uniquely determined by giving its value at n — 1
different points. Thus to prove the validity of (B2) = (B3)
we can prove (B3) = (B2).
We find that the rhs of (B3) is

—a) '3, (B3)

2 W(Z) —1,2 [ 1 i( 2 W(Z))]Z
A(2) ,Z.( =z a\?" 2/l
and if we evaluate this function at z = w; we get
1 4 W’(wi)z -2 2
—— gt — W= — 4y~
47 A(w,)? i X

If then L(z) is given by (B3), 4(w;)L(w,) = — 44(w;)x?
as required, so that (B3) => (B2). x = coefficient of 2" ~ ' in
A(z)L(z). Thisis

S (e, —e) 7,

iZ
which is zero by the antisymmetry of (a;, — a;) ~'/].
We have

Z zn—l——j

J=1
with L(z) given by (B3). As before we recover the constants

J —A(Z)L(Z), VZ,

Ki=3% (a;,— a) 12+ ki(q), i=1,..,n
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An infinite number of ways are developed for representing a function in terms of the
{generalized) eigenfunctions of a three-dimensional scattering problem and simple known
auxiliary functions. The freedom represented by this variety of expansions arises from the
causal nature of the wave equations considered. The new expansions are shown to generalize
both the Fourier and Radon transforms. An application of the new expansions to the inverse
scattering problem is given. It is shown (under some restrictions) that the scattering amplitude
and potential are related via one of the generalized transforms.

i. INTRODUCTION

The expansion of a function in terms of (generalized)
eigenfunctions is very useful in scattering theory."? In this
paper, we will exhibit an infinite number of related ways a
function can be expanded in terms of the eigenfunctions and
simple known auxiliary functions. These results hold for
scattering solutions of a three-dimensional generalization of
the Stiirm—Liouville equation.>* In particular our results are
valid for the variable-velocity wave equation, Schrodinger’s
equation, and the acoustic wave equation with variable ve-
locity and density.

Eigenfunction expansions for these equations are not
new. For Schrédinger’s equation and the wave equation, ei-
genfunction expansions were first found by Ikebe.” His
methods were used by Schulenberger and Wilcox® to obtain
eigenfunction expansions for a number of wave equations
occurring in classical physics.

Our work differs from this previous work in a number of
ways. First, we use completely different techniques. We ex-
tend Ikebe’s result by using methods that do not depend on
self-adjointness. We are thus able to avoid the vector formu-
lation used by Schulenberger and Wilcox. Second, our re-
sults differ from previous ones in that we obtain eigenfunc-
tion expansions that contain arbitrary parameters. We show
that a certain choice of these parameters yields expansions
that are particularly useful in inverse scattering. Finally, we
obtain generalizations of the Radon transform’ as well.

The usefulness of the eigenfunction expansions for in-
verse scattering can be illustrated by considering the Schro-
dinger equation. For this equation it is well-known that the
potential and the Born (weak scattering) approximation to
the scattering amplitude are related by a Fourier trans-
form.' That is, they are related by an expansion in free-
space solutions of the wave equation. The new eigenfunction
expansions allow us to generalize this relation. In particular
it will be shown that the exact scattering amplitude and the
potential are a generalized transform pair. A convenient rep-
resentation of the potential in terms of the data (the scatter-

# On leave of absence from Department of Mathematics, Duke University,
Durham, North Carolina 27706.
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ing amplitude) and the eigenfunctions results.

The structure of this paper is as follows. It has two main
parts. The first part (Secs. II-V) considers a fairly general
form of the wave equation, which is assumed to have no
bound states. The second part (Sec. VI), which deals with
the Schrédinger equation, allows bound states. In Sec. IT we
introduce the wave equation, establish notation, and give a
brief review of some needed elements of scattering theory. In
Sec. III we prove our basic result, a representation of the
delta function in terms of the eigenfunctions and simple
known auxiliary functions. This provides us with an infinite
variety of ways of expanding a known function. Reductions
to known expansions are shown. Next, in Sec. IV, we discuss
the sense in which our results generalize the Fourier and
Radon transforms. In Sec. V a transform particularly suited
to inverse scattering theory is developed. Section VI derives
the generalized eigenfunction expansions for Schrodinger’s
equation when bound states are possible.

Il. THE WAVE EQUATION, NOTATION, AND REVIEW OF
SCATTERING THEORY

The wave equation treated in Secs. II-V of this paper
has the form '

(V2 — V(x)0® — q(x) + 0*)Y(w,x) = 0. Q.1

Here x is a coordinate in R *; o, which denotes an angular
frequency, is a real scalar; and V? is the Laplacian with re-
spect to x. The solution #(w,x) is called the wave field. The
scatterer is described by the two real functions ¥(x) and
g(x). Precise conditions on V(x) and g(x) will be given
later. Suffice it to say here that (1) V(x) and ¢(x) decay
sufficiently rapidly to zero for large x = |x|; (2) 1 — Vand ¢
are non-negative and 1 — V'is bounded away from zero; (3)
Eq. (2.1) has no bound states (i.e., solutions with rapid spa-
tial falloff). We note that V(x) is related to the local velocity
of wave propagation, c(x), by ¥(x) = 1 — ¢~ *(x). Since V
and g go to O for large x, one can think of the scatterer as a
relatively localized disturbance in an otherwise uniform me-
dium, This background medium has velocity 1.

Equation (2.1) can be brought into a form which is a
three-dimensional generalization of the Sturm-Liouville
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equation. In particular we make the formal substitution
Y(w,x) =p~"*(x)p(w,x) in (2.1). The following wave
equation is obtained:

V:[(1/p)1Vp] + k(x)w*p — Q(x)p = 0.
Here k(x) = ¢~ *(x)p~'(x), while
Q(x) = [3|Vp|>/p — § (VPp/p) — q(x)1/p(x). (2.3)

If one assumes that p(x) is twice differentiable, positive, and
bounded, then «(x) and ¢(x) are defined. Finally we note
that Eq. (2.2) has just the form of the Sturm-Liouville equa-
tion except that V and V- have replaced the derivatives with
respect to distance in that equation.

A variety of physical problems can be modeled by Eq.
(2.1). First, if one sets ¢ = 0 and uses V(x) = 1 — ¢~ ?(x),
the wave equation

(V2 + 0P 2(x))p =0 (2.4)

is obtained. This equation is commonly used as a scalar wave
approximation to a large number of physical problems. Simi-
larly if one sets V(x) = 0in Eq. (2.1), the Schrédinger equa-
tion is obtained. Finally the acoustic wave equation® can be
obtained by rewriting (2.1) as (2.2) and choosing g(x) such
that @(x) = 0. For the acoustic wave equation, p is inter-
preted as the excess pressure, k(x) as the compressibility,
and p(x) as the density. Both p(x) and «(x) are assumed to
approach constants p, and x, = 1/p, for sufficiently large x.

In order to define scattering solutions of (2.1), we will
need the Green’s functions

G (w,z) = — (47)z|) ~'exp( + iw|z|). (2.5)

Here + and — refer to radiation and incoming boundary
conditions, respectively.

We will be interested in scattering solutions that corre-
spond to an incident plane wave exp (iwé-x ), where & is a unit
vector denoting the direction of incidence. We define these
solutions of (2.1) by the Lippman—Schwinger equation’

(2.2)

¥* (0,8,x) = exp(iweéx) + f Gi(wx—y)

X[g(y) + *V(Y)1¢* (0,8y)d’y.  (2.6)

It has been shown by Agmon®'° that Eq. (2.6) always has a
unique solution provided that the following conditions hold:

(a) g and V are real,

(b) ¢+ @*Vislocally L?in x,

(c) g(x) + @’V(x) = O (x~>*~¢) at infinity for some
€>0,

(d) g(x) has no zero-energy bound or half-bound states.

Condition (d) is relevant only in solving (2.6) with w = 0.
We will refer to hypotheses (a)—(c) together as hypothesis
A. Finally we note that
¢_(a)9é’x) - ¢+( —a, "'-é’x)' (2~6’)
We will also need the fully interacting Green’s functions
which are solutions of
(V2 — 0*V(x) — q(x) + &*)G * (0,x,y) =5 (x —y).
2.7)
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These are related to the G ;& by®
G * (oxy) =G (oxy) + J.d 2G ¢ (0,x,2) [0’V (2)

+4(2)]1G * (o,y,2). (2.8)
Equation (2.8), which is similar to (2.6), also has a unique
solution under hypothesis A. This uniqueness of solutions
implies that
G+( —‘w,X,)’) = G_(w,X,Y)- (29)
We will also need the fact that G (w=0,x,y)
= G ~ (@ = 0,x,y). This is obtained by substituting (2.5) in
(2.8) and setting v = 0:

G *(0xy) = — (4rjx —y|) !

_ f d*z(47x — 2]) ~'g(2)G * (0,y,2).
(2.10)
Since (2.10) has a unique solution, it follows that
G (0xy) =G (0,x,y).

The causal properties of the Green’s functions are an
essential feature of our derivation. These are most easily seen
by taking the “time-domain” Fourier transform'! and defin-
ing

G t(,x,y) =2LJ- dow e G * (w,x,y). (2.11)
77 — 00

(Note that we use the caret to denote both unit vectors and
time-domain Fourier transforms. The meaning is always
clear from the context.) It can be shown'? under hypothesis
B, below, that G satisfies a certain Cauchy problem with
initial data supported at x = y at time ¢ = 0. The domain of
dependence properties (causality) for the wave equation
then implies that for ¢,, = sup ¢(x), .

G (txy) =0, for t<|x—yl/c,. (2.12a)
Therefore, since G ( — ,x,y) = G ~(¢,x,y), we also have

G (txy) =0, for t> — |x —y|/c,,. (2.12b)

Hypothesis B is

(a) g(x) is non-negative and bounded;

(b) ¢~ %(x) =1 — V(x) is positive, bounded, and

bounded away from zero (by c,, *);

(c) V(x) has two continuous derivatives.

Finally we note that if ¥ and ¢ have compact support,
Eq. (2.6) can be expanded as®

¥(0,8,x) = exp(ivex) + A(w,&,8)expivx)x~"

 4o(x7h. (2.13)

The symbol & is defined by &' = x/x and denotes the direc-
tion of scattering. The function A is called the scattering
amplitude. It is given by

Aw,ee) = — (41r)_'J exp( — iwé'sy)
X [@*V(y) + N Y (wey)d’y.  (2.14)
We note that 4 obeys reciprocity?; that is,
A(w,8'2) = A(w, — &, — &'). (2.15)

The scattering amplitude can also be obtained from “near-
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field” measurements of ¢ as follows.'* Suppose ¥ and ¢ have
compact support, and let ) be a surface enclosing this sup-
port. Then

A(w,¥,8) = — (417)"'J‘ exp( — iwé'*x)
()

X VYT (0,8,x) + ikeAy™ (w,8,x) |d x,
(2.16)

where # denotes the outward unit normal to (2.

lil. THE ORTHOGONALITY RELATIONS

This section contains the main results and their proofs.
It is shown that a function ¢(x) can be expanded in terms of
the eigenfunctions and simple known auxiliary functions.
Our strategy is as follows. We start with Eq. (3.1), which is
known for Schrodinger’s equation, and show that it applies
to our more general wave equation (2.1). Then we show that
Eq. (3.1) together with causality yields a representation of
G * (@ = 0,x,y) in terms of an integral over exp[iwT(X,y)]
and a product of two eigenfunctions. Here 7(x,y) is, within
certain constraints, at the disposal of the reader. This is the
origin of the infinite number of expansions, one for each
choice of 7(x,y). The auxiliary functions mentioned above
are determined by the choice of 7. Next we obtain §°(x — y)
by operating on G * (@ = 0,x,y) with [V*> — ¢g(x)]. Finally
we integrate §°(x — y) with the test function ¢(x). The re-
sult is the expansion of @ in terms of the eigenfunctions and
the auxiliary functions. These basic results are given by Cor-
ollary 3.3 in the frequency domain and by Corollary 3.4 in
the time domain.

Proposition 3.1: Suppose hypotheses A and B are satis-
fied. Then the following equation holds in the distribution
sense:

— 877 (iw) " '[G T (0,x,¥) — G~ (0,X,y)]

=f ¥E (0,e,x)E " (w,8,y)d . (3.1)
S?

(The asterisk denotes complex conjugate. ) In other words, if

@<C & (infinitely differentiable functions with compact sup-

port ) »
— 877

iw

f [G " (0,%y) — G~ (o,xy)]@(y)d’y

=f b* (0,8) f b (0ey)e(yndy de.
K

Proof: Equation (3.1) holds for the Schrodinger equa-
tion.'* We consider a Schrodinger equation with a parameter
I

[V24+&® —1?V(x) —q(x)]¢¥=0.

The corresponding ¥ and G now depend on /. For each / and
@, (3.1) holds. Upon choosing / = @, we obtain (3.1) where
¥ and G corresond to Egs. (2.6) and (2.8). Q.E.D.
Theorem 3.2: Suppose hypotheses 4 and B are satisfied.
Then for any 7 satisfying |7|<|x — y|/c,, and for x#y,

G*Oxy) = — (1677 [ e
XJ vt (0,6,x)¥* " (0,8,y)d%edo. (3.2)
SZ
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Equation (3.2) should be interpreted as a function of y in the
distribution sense by

JG““(O,x,y):p(y)d%'
- _ (16n3)—‘f°° ¥ (0,8,x)
— o JS2

xf:ﬁt (@EY)E gy dydedo,  (3.3)

where geC 7.
Proof: We consider the following distribution in 7:

o(rx,y) = — (16ﬂ3)“J°° e

Xf vE (0,6,X)0% " (0,8,y)d % do.
2
It operates on a test function 7 in C§ by

f o(rx,y)n(7r)dr

— (1617})—1.].00 on eimf

Xf v* (0,8,X)Y*"(0,8,y)d*2 dw n(r)dr. (3.4)
52

In the right-hand side of (3.4), we use (3.1):

f o(r,x,y)n(r)dr

=(21r)_'jw fw e (iw) !

X[G* (0,x,y) — G~ (0xy)]do n(7)d7.  (3.5)
In the right-hand side of (3.5), we write
G(o,x,y) = f et 6( tx,y)d:. (3.6)

We also interchange the order of integration in (3.5) by us-
ing the distributional definition of the Fourier trans-
form.'>'¢ The right-hand side of (3.5) is then

(%r)"fw (i)~

Xf e [G*(txy) — G~ (t,x,y) 1dt H(w)do,
- 3.7

where

1(w) =J- e“q(r)dr. (3.8)

Again we use the distributional definition of the Fourier
transform in (3.7) to interchange the order of integration:

(27)_1f [a+(t’x)y) - a—(tax’Y)]

Xf J- e+ (iw) " 'g(7)dr dw dt. (3.9)

In (3.9) we must choose a regularization of (iw) ~!, but the
choice we make does not matter in the end. For convenience,
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choose the principal value. We then do the o integral first
(again using the distributional definition of the Fourier
transform). The o integral is equal’® to 7 sgn(¢ 4 7). Thus
(3.9) is equal to

%f j [G+(txy) — G~ (tx,y)]
xXsgn(t+ 7)np(r)drdt

=%f [G*(txy) — G~ (tx,y) ]dt n(r)dr

_%f J‘_ [a+(t,x,)’) —a_(t,X’Y)]dt

Xn(r)dr. (3.10)

Next we use causality (2.12), which implies

G-(txyydt=0, for —*=¥ . G

- Cm

and

f_ & (xy)dt=0, for — r<u. (3.12)

—w Crm

These facts imply that
f [G*(txy) — G~ (tx,y)1dt

=f G+ (txy)dt =G * (Oxy) (3.13)
and
J [a+(t,XyY) —a—(t,XaY)]dt

= f G~ (tx,y)dt = G ~(0,x,y). (3.14)

We use these facts in (3.10) and (3.5), noting that
G+ (0Oxy) =G (0xy):

Jw Q(T,x,y)ﬂ(f)df=fw G T (0xy)n(r)dr, (3.15)

where we have restricted the test function 7 to have support
in[ — |x—y|/c,.,|x—y|/c.. ] Q.E.D.

The following corollaries are our basic results; they give
an infinite number of ways of expanding ¢(x). We note that
the new freedom represented by these expansions arises be-
cause causality was satisfied in deriving (3.2) for any 7(x,y)
such that — |x — y|/c,, <7<|x — ¥|/c,,. As we will see in
the next section, the ordinary eigenfunction expansion is ob-
tained by setting 7 = 0.

Corollary 3.3: Suppose Hypotheses A and B are satis-
fied. Then for |7|<|x — y|/C»

S(x—y)= — (16773)"Jm J. (V2 — g)eomoon
— SZ

XYE (@0,6X)0% (0,6,y)d % do.  (3.16)

The operator V2 — ¢ may operate in either the x variable or
the y variable. In terms of its action on a test function geC §,
(3.16) is
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@(x) = — (16ﬂ")“fw f (V2 — @)y (0,8,x)
— wJS?

><J'/fi (08y)e" P p(y)d’yd edo.  (3.17)

Proof: Applying V2 — ¥(y) to both sides of (3.2), we
have

S(x—y)
= — (167°) (V2 — gq(y))

XJ J eTENYE (,2,x) 0 E " (0,8,y)d % dw.
— wJS?

This must be interpreted by integrating against a test func-
tion geC

P(x) = —(16n")"'fw J vt (0,8,x)
— wJS?

XJ TN YE (0,8,y) (V2 — @)@ (y)dy d % dw
=_(16ﬂ—’)-‘r f U (@,8,%)
— wJS?

><f(V2 — @) [e“™ VY= (w,8,y) ]

X@(y)d’y d?*edo.
This proves (3.16) when V2 — g operates in the y variable.
To show that (3.16) holds when V? — g operates in X,
we first note that the reciprocity relation G(w,x,y)
= G(w,y,x) implies that

[V2 —q(x)]G(0x,y)

=8(x—y)=[V2—q(y)]G(Oxy).

We can, therefore, apply V2 — ¢(x) to both sides of (3.2).
We let the resulting distribution operate on test functions of
the form ¢, (x)@,(y) (¢,,9,€C ). Thus we obtain

J¢](x)¢2(x)d3x = ffé(x — Y)¢’1(X)¢’2(Y)d3x d’y

= oyt [ [
— wdS2

XYt (0,8,x) (V2 — @)@, (x)d *x

><J-¢i “(@,8,y)@,(y)d 3y d?% do.
(3.18)

In the right-hand side of (3.18), we let V> — g operate on
T NY*E (»,8,x). We then apply the resulting formula to
test functions @, which approximate a delta function.
Q.E.D.
Corollary 3.4: Suppose hypotheses A and B are satisfied.
Then for |7|<|x — y|/c..»

S(x—y) = —(8#)*‘] f (V2 —g)
— 0JS?
Xu*(t—7(x,y),ex)u* (18,y)d*edt, (3.19)

where V? — ¢ may operate in either x or y. Acting on a test
function geC g, (3.19) is
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p(x) = — (8#)“f f (VP = @Qu=*(t - 7(x,y),e,X)
— wdS?

><J‘u=t (tey)@(y)d3ydiead: (3.20)

Proof: In (3.2), we substitute
vE (w,8x) = f e“'ut (1,8,x)dt.
This results in

G+ (0xy) = —(16n3)—'f°° f o
— 0dS?

X f e“ut (1 x)dt Y+ (w,y)d’e do

= — 8ﬂ2)_'J on u¥(1,8,x)
S — o

Xu*(t+ rey)dtd?e,

where |7|<|x — y|/c,,. We obtain (3.19) as in the proof of
Corollary 3.3. Q.E.D.

IV. EIGENFUNCTION EXPANSIONS

Functions will be expanded in terms of eigenfunctions of
the scattering problem and auxiliary functions determined
from exp[iw7(x,y)]. The representation of the delta func-
tion given in Eq. (3.16) is our starting point. Results will
first be given for the frequency domain and then for the time
domain. In the course of Sec. IV A, we will show that the
frequency-domain expansions generalize the idea of the
Fourier transform. Similarly Sec. IV B discusses the general-
ization of the Radon transform.

A. Frequency domain expansions
Equation (3.16) can be rewritten as
P(x) = — (167°) (V> — g(x))

XJ do| d%¢* (0,2x)§ * (0,8X),
— o 52
(4.1a)

where

@ *(0,8,x) = Jd y £ (0,8,y)p(y)e“ ™. (4.1b)

We remind the reader that it is essential that 7(x,y) be cho-
sen so that — |x — y|/c,, <7(X,¥) <|x — ¥|/¢c,,. Equations
(4.1a) and (4.1b) represent a rather general expansion.
However, its utility in this form is not immediately clear
since the expansion coefficients @ * depend in general on x.
The nature of this difficulty can be seen by considering
the Fourier transform, which, as we will see later, is a special
case of (4.1a) and (4.1b). One great virtue of the Fourier
transform is that it allows one to express a function f(x)
either in the x variable, or in its conjugate variable q, f(q). As
we have just noted Eqs. (4.1a) and (4.1b) lack this property
for a general choice of 7(x,y). However, we will show that if
7(x,y) is chosen to have the following separable form:

7(x,y) = —a(x) +a(y), (4.2)
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then this virtue of the Fourier transform is retained in our
expansions. Here a(x) is a real-valued function that has
two bounded derivatives and is such that
— |x —yl/c,, <T(X,¥) < |X —¥|/C,p-

Substitution of (4.2) in (4.1) yields

@(x) = — (167°) " (V? *q(X))fw dw

xf d% y* (,2,x)expl — iva(x) 1@ * (0,8)
2

(4.3a)
and

@ * (w,8) =fd3y ¥t (w,8y)expliwa(y)lp(y).
(4.3b)

Thus Egs. (4.3a) and (4.3b) allow us to express @ in terms of
X Or w,e.

Particular choices of a(x) lead to interesting results. We
will consider three cases: (1) a=0; (2) a(x) =e&'x/c,,;
and (3) a(x) = x/c,,. The first case allows us to connect our
results (1) to the well-known eigenfunction expansion
method for Schrodinger’s equation and (2) to the Fourier
transform. The second case generates an expansion, which,
as we will show in the next section, is of interest in inverse
scattering. The third case was included because of its simple
and beautiful form.

Case (1):a=0
Equations (4.3a) and (4.3b) become

p(x) = (l67r’)"'c'“2(x)f°° w* dow

Xf d?e ¢+ (0,x)p * (0,8), (4.4a)
SZ

and

P (08 = [@y p* @an)p(). (4.4b)
Here we have rewritten Eq. (4.1) with 7 = 0 and used the
wave equation (2.1) to evaluate ( — A + ¢)¢¥*. Equations
(4.4a) and (4.4b) can be specialized to the Schrodinger
equation case by setting ¢(x) = 1. With this assumption,
Egs. (4.4a) and (4.4b) become the standard eigenfunction
expansion’? used in quantum theory. If we further set
g(x) = 0, then the solutions ¥ * (w,8,x) become the free-
space plane-wave solutions ¢+ = exp(iwé-x). Substitution
of this result in (4.4a) and (4.4b) yields the usual Fourier
transform. Thus we have shown that the Fourier transform
is a special case of Eqs. (4.4a) and (4.4b), and consequently
of Egs. (4.1).

Returning to Egs. (4.4a) and (4.4b), we note that if the
velocity is variable, then a weighting factor of ¢~%(x) ap-
pears. This factor appears in an unsymmetrical fashion in
(4.4a). However, like the (277) ~' that appears in the Four-
ier transform, this weighting factor can be arbitrarily written
in either Eq. (4.4a) or (4.4b). For example, the following
are equivalent to (4.4):
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p(x) = (16ﬂ3)_'c“(x)JW @* dw

XJ d%¢* (0,6,x)§ * (0,8) (4.53)
s

and

@ *(w,8) = fd e\ (WYE(wey)ely). (4.5b)

Similarly ¢~2(y) could have appeared in Eq. (4.5b) while
no powers of ¢(x) appeared in Eq. (4.5a).

The acoustic wave equation was obtained from (2.1) by
setting ¢ * =p~'/’p* and using px = ¢~ 2 Here « is com-
pressibility, p is the excess pressure, and p is the density.
With these substitutions, Eqgs. (4.4a) and (4.4b) become

P(x) = (161r3)"x(x)J‘w do

XJ d%p* (0,6,x)@ * (w,8) (4.6a)
s

and

@ *(@,8) =fd3ypi'(w,é,y)¢(y). (4.6b)

Equations (4.4)—(4.6) are new so far as we know.

Case (2): a(x)=€"x/c,,

Here &' is a unit vector. This choice is, as we will see,
interesting for the inverse scattering problem. Equation
(4.3a) becomes

p(x) = — (167°) (V2 —q(x))fw do

X f d%y* (a),é,x)exp( - imé'-—"—)a * (0,,8'),
52 Co
(4.7a)
and (4.3b) becomes

Pt (0,82) = fd ‘yy* '(w,é,y)eXP(iwé’by—)wy)-
cm
(4.7b)
Equation (4.7b) transforms a function of three variables,

A Ay

@(y), into a function of five variables, @(w,é,8'). However,
as we see in the next section, this is precisely what is needed
for the inverse problem.

Case (3): a(x)=x/c,,
Equation (4.3a) becomes

@(x) = — (167°) (V2 —q(x))Jw do

XL2 d%y* (a),é,x)exp( - ﬂ)&? * (w,8),
" (4.82)
and (4.3b) becomes
* (@08 = fd y gt '(w,@,Y)exP(Lﬁ}i)MY)- (4.8b)

m
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The utility of (4.8a) and (4.8b) is not immediately clear.
However, their simplicity commend them to our attention.

B. Time-domain expansions

The expansions given above can also be usefully ex-
pressed in the time domain. One simply Fourier transforms
the appropriate equations with respect to frequency. The
time-domain formulation is a generalization of the Radon
transform.

We start with the transform of Eqgs. (4.3a) and (4.3b)
where 7(x,y) = — a(x) + a(y). The result is

p(x) = — (167°) " (V? -q(x))f d%
s2
ij dru*{r +a(x),ex)®* (re) (4.9a)
and

d*(1,8) =J-d3y e(Y)ut(r+a(y),ey). (4.9b)

Particular choices of a lead to useful results.

Case(1):a=0
Equations (4.9a) and (4.9b) become

Px) = — (16ﬂ"‘)"c'2(x)J d%
SZ

a 2 "y ) .
and

O+ (1) = fd 'y o(y)u* (r,8y). (4.10b)

Here we have used the time-domain form of the wave equa-

tion [Eq. (2.1)],
2
Vu(tx) —c %(x) 531—5 u(tx) —q(x)u(t,x) =0, (4.11)

in obtaining (4.10a) from (4.9a).

Equations (4.10a) and (4.10b) can now be shown to
reduce to the Radon transform as a special case. Let us con-
sider Egs. (4.10a) and (4.10b) with ¥(x) and g(x) set equal
to 0. The solutions of the Lippmann-Schwinger equation are
then plane waves; in the time domain they are given by
6(t — &x). Substitution of these delta-function plane waves
in (4.10a) and (4.10b) yields"!

P(x) = —(1617—")"J d
s?

Xfw dr 9% (r—ex)d* (1,8 (4.12a)
N
and

DE(1,e) = Jd3y P(¥)8(1 — &y). (4.12b)

Case (2): a(x)=€"x/c,,

Equations (4.7a) and (4.7b) become, after a time-do-
main transform,
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P(x) = — (16n~‘*)—‘[v2-q(x)]f d%
52

% f dru* (T yo X ,é,x)<1> £ (r,8,2)
— C
(4.13a)

m

and

&t (r,32) = fd Sy ut (r +eo L ,é,y)cp(y). (4.13b)
cm

Case (3): a=(x)x/c,

Time-domain equations are easily obtained by inserting
this form of a in Egs. (4.9a) and (4.9b).

V. APPLICATIONS TO INVERSE SCATTERING

Formulas representing the properties of a scatterer in
terms of the scattering amplitude and the wave field are im-
portant in inverse scattering theory. Such formulas have re-
cently been emphasized by Newton'”'® and by Rose and
Cheney.' In this section we will derive representations of
the potential for two special cases of (2.1): (1) the variable
velocity wave equation [¢ =0, ¢(x)<1]; and (2) Schro-
dinger’s equation [ ¥ =0, c(x) = 1]. Then it will be shown
that the scattering amplitude and the potential are, for these
special cases, transform pairs as in Egs. (4.7a) and (4.7b).

We start with the variable velocity wave equation
(g =0) with the further constraints that the velocity is
everywhere less than or equal to 1 (¢, = 1), and that
VeC & . Equations (4.7a) and (4.7b) become, after replacing
@(x) by V(x),

V(x) = — (161;"‘)“V2Jw do| d%y(w,ex)
— 5?2

Xexp( — iwe"x)V ~ (,8,8") (5.1a)

and
V= (w,e8) = fd3y ¥~ " (w,8,y)exp(iwéy) V(y).

(5.1b)

We then use Eq. (2.6') and the fact that " (w) = ¢( — @) to
obtain

V- (022) = fd YU (0, - 8y)e MV (y).  (5.2)
]

— (472 do fs. d? YT (0, — &,x)exp( — iwe'x)A(,6,¢')

We now note, by comparing Egs. (2.14) and (5.2), that

V- (022) = —dno A(0, — &, — 2). (5.3)
Next, using reciprocity [Eq. (2.15)], Eq. (5.3) becomes
V- (0,62) = — dmo~24(0,6,2'). (5.4)

Thus the transform of V(x) can be written immediately in
terms of the scattering amplitude. A representation of the
potential in terms of the scattering amplitude and wavefield
can be obtained by substituting (5.4) in (5.1a). One finds

Vix) = — (4172)_’V2J°° dw

xf d2% P+ (w, — &x)e— “¥x -Aﬂjl’e—) . (5.5)
52 w
Equations (5.4) and (5.5) show that ¥(x) and — 474 (w)/
o’ are transform pairs. We note that Eq. (5.5) is an essential
part of the self-consistent equation approach to inverse scat-
tering recently proposed by Rose and Cheney.'®

A representation of the potential can also be found for
Schrodinger’s equation [ V' =0 = ¢(x) = 1]. Again we as-
sume that geC§. This representation follows from Eqgs.
(4.7a) and (4.7b) by taking ¢(x) to be g(x):

g(x) = — (167°) " '[V? —q(X)]fw do

xf dé ¥~ (0,8,x)exp( — it x)§~ (@,8,8)
s2

(5.6a)
and

A Ay

7 (w,8,e') = —4mA(w,8,8"). (5.6b)

In obtaining (5.6b) we followed the line of reasoning from
(5.1) to (5.4) but replaced w?V by g. Substitution of (5.6b)
in (5.6a) yields

q(x) = — (47%) " |(V? —q(x))f do

XJ d? ¢y (w,8,x)exp( — iwe''x)A(w,6,&').
SZ

g(x) =

Alternatively one can use Eq  (5.7) and

(V2 —¢)¥ = — &y to obtain
g(x) = (272)—1§"VJ. dwio| d%¢v* (0, — &x)
— 52

Xexp( — iwé'x)A(w,e,&"). (5.9)

Here we have used
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1—(4r) 752, do fs- d?e (0, — &x)exp( — iwd"x)A(0,8,2')

(5.7
Solving (5.7) for g(x) yields
(5.8)
(
(A — g(x))exp( — iwe'x)¢¥ + " (w, — &X)
= — 2iweV{exp( — iwdx)¢¥+ (0w, — &x)]. (5.10)

Equation (5.9) is Newton’s representation'” ' of the poten-
tial for Schrodinger’s equation.

VL. SCHRODINGER EQUATION WITH BOUND STATES
In this section we treat the Schrédinger equation

[V + & — ¢(x) 1¢(w,x) =0, (6.1)
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where V2 — g is now allowed to have negative eigenvalues.
We assume that the eigenvalues are — &2, n=1,....N; we
will denote the corresponding eigenfunctions (bound states)
by ¥2(x), n=1,.,N, b=1,2,..,m,. Here m, denotes the
multiplicity of the nth bound state. When there are bound
states, the usual eigenfunction expansion” can be written in
the form

S(x—y) = (1617'3)"1J‘°o f ¥* (0,8,x)
— S’2
XYE (w,y)d?% o’ do

+ 3 Y (O (Y); (6.2)
nb

this implies that the Green’s function can be written®

G % (ox,y)

—(161r’)—'f J 1VL(C‘)"??x)lﬁzi'(w’é,y) 4%
o'+ 0

P2 ()Y (y)
X /2d ’ RAGRESSLAS
@ +% o’ + K

(6.3)

Equations (6.2) and (6.3) hold under the following condi-
tions:

(a) gisreal,
(b) gislocally L2,

(¢) g(x) = & (x~*?~¢) at infinity for some € > 0.
We will refer to hypotheses (a), (b), and (c) together as
hypothesis C.

We will also need the assumption that for @ =0, Eq.
(6.1) has no solutions that decay at infinity in x; that is, there
are no @ = 0 bound or half-bound states. As in our earlier
arguments, we will need causality. This is more complicated
in the presence of bound states, as we see from the following
proposition.

Proposition 6.1: Suppose hypothesis C holds and ¢ has
10 & = 0’ bound or half-bound states. Then the time-domain
Green’s functions G *, which are defined by (2.11), satisfy

G (hxy) — 3 (26,) " Y (OYE (Vexp(x, 1) =0,
nb
for r<|x—y)| (6.4)
and
a‘(t,x,y)

= > (2x,) 7Y, OY; (Y)exp( —k,1) =0,
n,b

(6.5)

Proof: We begin with the frequency-domain Green’s
functions, which are defined by the ¥ = 0 version of (2.8).
We consider the o in (2.8) to be a complex variable. If we
multiply Eq. (2.8) by |g(x)|"/? exp( — iw|x — y|), we see
from the analytic Fredholm theorem®>?' that exp( — iw|x

—¥|)G " (w,x,y) is meromorphic in the upper half-plane
and goes to ( — 47|x —y|) ~' as Im @ — . By arguments
similar to those of Ref. 22, it can be shown that the difference
exp( — iw|x — y|)G * (@,x,y) + 47|x — y|) ' goes to zero
as |@| — co. The Fourier transform

for t> —|x—y|
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je_i“’s[e_ wk=¥G + (w,x,y) + (47|x —y|) " ']do,

for 5 <0, is, therefore, equal to 2777 times the sum of the resi-
dues. The residues can be calculated from Eq. (6.3); the
result is (6.4). A similar argument yields (6.5). Q.E.D.

Theorem 6.2: Suppose hypothesis C holds and g has no
» = 0 bound or half-bound states. Then for any 7 satisfying
|7|<|x — y| and for x#y,

G+ (0xy) = — (16nﬁ>—'f°° ¢

—

XI vE (0,ex)Y* " (0,8y)d 8 do
SZ

+ Y o P ()Y (y)cosh(k, 7). (6.6)
n,b

Proof: As in the proof of Theorem 3.2, we begin with Eq.
(3.1). We Fourier transform it into the time domain, obtain-
ing
a * (t,X,Y) - a N (t,X,Y)

= — (16773)".{°c> exp( — iwt)iw

J Y* (0,8,x)0* " (0,8,y)d e do. (6.7)

We now need a step analogous to separating the supports of
G*+andG ~.Todo this, we must use Proposition 6.1, We add
the term

exp( — «,?)

>, W (YY)
nb 2

to both sides of (6.7). On the left-hand side of the resulting
equation, we now have expressions (6.4) and (6.5). We can
then separate the supports of these expressions by multiply-
ing by the Heaviside function H(¢ — 7), where [7I<]x — y|-
We thus obtain

— exp(k,t)

a+(t,x,y) =H(t— 7')[ — (16173’)“"[m exp( — iot)iw

— o0

XJ Pt (0,8,x)0* " (0,2,y)d %6 do

s2

—ZKI‘i/Jﬁ(x)!ﬁﬁ(y)sinh(K,,t)]
nb

+ 3 (2k,) 'k ()Y (y)exp(k, 1), (6.8)

Finally, we transform back into the frequency domain and
evaluate the result at @ = O; this gives us (6.6). Q.E.D.

Corollary 6.3: Suppose hypothesis C holds and ¢ has no
® = 0 bound or half-bound states. Then for any 7 satisfying
|7|<Ix —yl,

5(x—y)
— (16173)_1J (V2 _ q)eiwf(x,y)

Xf ¥* (0,6,xX)00* " (0,8,y)d % do
Sl

+ 3 k7 NV — @ (x) ¢ (y)cosh k, 7(x,y).
nb

(6.9)
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Again various choices of 7(x,y) can be used to illustrate
the new expansion. First we set 7=0 in (6.9). Then one
finds Eq. (6.2), the usual form of the completeness relation
for Schrodinger’s equation.

A form useful for scattering theory results from setting
r=2&*(y — x) in (6.9) where &' is a unit vector. This can be
seen by multiplying both sides of the resulting equation by
q(y) and integrating. After using

(V2 — g())(@2.X)exp( — iw?'x)
= — 2iwéV[y(w,éx)exp( — iwe'x)]

in the resulting equation, one obtains

q(x) = é"V[(Zn'Z)"’f do iv
xf d? ¢y (v, — éx)exp( — iwe'x)A(w,8,&')
S2

Y5 (x)
2

§ Kn

[¥5(@)e ™™ — ph(—&)e™™] ]
(6.10)

Here

P@) = f«ﬂy A

Equation (6.10) is Newton’s representation'” for the poten-
tial of Schrodinger’s equation in the presence of bound
states. This representation plays an essential role in an in-
verse scattering method suggested in the same reference.

Note added in proof: A brief announcement of this work
with extensions to the near-field problem has recently ap-
peared in Ref. 23.
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The radiation produced by two interacting relativistic point charges is considered. Under an
appropriate approximation the radiation of the system as a whole (interference effects
included) is expressed as a function of the relative velocity.

I. INTRODUCTION

In this paper the radiation produced by the interference
of two interacting relativistic point charges is found both
exactly and within an approximation valid under specific
requirements.

In Sec. II the geometrical background is presented. Sec-
tion III is devoted to getting the exact expression for the
radiated momentum (interference effects included) for a
system of two interacting relativistic charges moving arbi-
trarily. An approximation is introduced in Sec. IV. Its valid-
ity depends on the relative distance and relative velocity of
the considered particles. In Sec. V a couple of examples are
exhibited. The last section is conclusions. An Appendix in-
cludes some useful expressions and the main steps for per-
forming some calculations.

Il. NEWMANN-PENROSE RETARDED COORDINATES

In order to define the Newmann-Penrose retarded co-
ordinates it is necessary to have a world line x* = z#(7) in
Minkowski space. One can then define four coordinates
(7,x,0,¢) associated with any point x# in Minkowski space
as follows. The retarded time 7 is the solution of the equation

[x* —z#(n) {x, —z, (N} =0, (2.1)
where

2, (1) =7,,2"(7) (2.2)
with

7,,=diag(1l,—1,—-1,—1). (2.3)

The coordinate « is defined by

k=0, (1) [x* —2z*(7)] (24)
with

v, (7) ‘=—2M =%. (2.5)
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Geometrically, « represents the spatial distance between
x* and z#(7) as measured from a frame whose temporal axis
isv, (1) (7is the retarded proper time of x*).

Finally if we define

[x*—z¥(D) ], =" —t“t)[x, —z.(7)], (2.6)
then @ and ¢ are the polar angles of the three-vector

[x# — z#(7) ], referred to an arbitrary inertial system whose
temporal axis has the direction of a unitary vector ¢ .

Ill. TWO-PARTICLE SYSTEMS

Let us consider two (pointlike) charges ¢, and g,. The
electromagnetic field F4 (i = 1,2) constructed from the
Lienard-Wiechert potentials for ¢, is given by'

q; . .
Fiv=——[K,"5,"V/k; + (1 —k; (0, " K))(K; "M,V /6) ],
Jar

(3.1)
where
a#bV =a*b” — a*b*, (3.2)
(a-b) =a"b,, (3.3)
and
Kt=x""[x*—z*(1)] (3.4)

is a lightlike vector.

The total electromagnetic field produced by the consid-
ered system is

F*=F® + FF. (3.5)

The energy momentum tensor 7#" related to an electro-
magnetic field F# is

T# = F"F," + Iy F*F 5 . (3.6)

Of course
T ,=0 3.7)
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for any field which satisfies Maxwell equations.
Inserting in Eq. (3.6) the decomposition (3.5) for F #*,
T #¥ can be split as follows:

T =TWx + ThW*+ 1%, (3.8)
where

T4, = F*F,," + FF," + W*F\"®F,,, (3.9)

T# =FFF,” + " F,%Fqp, i=12. (3.10)

As usual,? the momentum radiated P* is defined as

PHg = —fT“"dZ,,, (3.11)
P
where X is a timelike surface that will eventually be consid-
ered to tend to infinity.
Equation (3.8) allows us to write

P#R=P;;!Mix +P’1‘11+P’;ez’ (3.12)
where
Phvix = —J- T4 A=, , (3.13)
5
Ph = _f T#ds,, i=12. (3.14)
5

The integrals for P%; can be partially performed to get
more compact expressions for them,?

Pg = -%q?f b2 Mdr, . (3.15)
On the other hand
Pimix = — | Hm (T4, dZ,). (3.16)

s K~

Ky~ 0

The detailed shape of X is not important because of
Gauss’ theorem and Eq. (3.7). Thus we are allowed to
choose to our convenience any surface that makes calcula-
tions simpler. We choose to work with a surface defined by

K, = const (3.17)
(Bhabha tube for particle g,).*
For such a choice
dZ, = [(1 — k(K- 0K, — vy, )6 dr dQY . (3.18)
It is found that
Klim (T4, d2,)
= — (9:9,/2m) [ p*{(v,a)) (a,°K))
— (v,'v) (a,K) (e, K )}
+p*{(v,°a,) (a,°K,) — (a,7a,)}]
XK#dr, dQ, (3.19)
where
pP=K\/Ky, (3.20)
and
at=vr, i=1.2. (3.21)

It is worth noting that all quantities related to g, are
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evaluated at 7; defined as the retarded proper time on the ith
world line of the observation point x*.
It follows that

0

dQ
PR mix =241qu 4ﬂ_1 dr, Ky,
where
XY= PS{(Uz'al)(az'Kﬂ — (Ul'Uz)(az'Kl)(al'Kl)}
+P2{(U1'02)(01'K1) — (a,'ay)}. (3.23)

(3.22)

IV. AN APPROXIMATION

The integrals involved in Eq. (3.22) can be performed
only if the explicit expressions for both world lines are given.
Even in such a case the calculations may become extremely
cumbersome.

However, it is possible to go one step further if it hap-
pens that the time ¢, that a light signal takes going back and
forth from g, to g, is much smaller than some characteristic
time ¢z, of the interaction. The condition 7, €z, is fulfilled
when the particles are close to each other and their relative
velocity

r=[1- v 71"

is small compared with the speed of light.

Under the above conditions v,* and a,* are slowly vary-
ing functions of 8, and ¢, over the interval ¢,.

Then, as an approximation for evaluating the angular
integrals we consider v,* and a,” to be independent of 6,

(4.1)

and &,.

Thus

Phvix = 2quZJdT|W” > (4.2)
where

Wt= —(a,a,) ) + (v,°ay)a,, J*

+ (vyay)a,, J* — (v°v))a,,a,, S (4.3)

and

Jn 122 s=f p"Kla'K‘“""K‘ s (4.4)

47

The integrals (4.4) can be evaluated in the described
approximation and it is found that (see the Appendix)

We=[(v,a,) (00 f1(7) + (a,-ay) g,(r) Ju#
+ [(vy:ay) (vy0ay) fo(r) + (ay°a,) g2(r) 1o

+ (v a))h(Pat + (Uz'al)hz(")azﬂy (4.5)

where f;, g;, and A; (i = 1,2) are functions of the relative
velocity » whose explicit expressions are given in the Appen-
dix.

V. EXAMPLES
A. The neutral particle

First, to illustrate the plausibility of the exact and the
approximate formulas [(3.22) and (4.5), respectively] we
will consider the radiation of interference produced by a neu-
tral system composed by two charges + ¢ and — g travel-
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ing together over the same world line. Of course, the result
should be such as to have null total radiated momentum.
In this case

v =0,=0, a,=a,=a p=I1. (5.1)

The exact expression (3.23) for y now reduces to

x=—a - (Ka) (5.2)
and from Eq. (4.3)

WH= —dJ} —a,a,J@"*. (5.3)
Using Egs. (A10) and (A12)
WH= —g* —a* I} —a,a, ] —a,a, v, . (5.4)
From (A14), (A18), (A19), and (A37),

I#=0, (5.5)

I = Coh '™, (5.6)

I =0. (5.7
Consequently

W* = — (14 Cpla>v*. (5.8)
Equation (A37) implies

W= —3a%*. (5.9)
Thus

Pl =4 g2 f dr a*o*, (5.10)

which cancels exactly the radiation produced for both parti-
cles considered independently. Therefore the total radiated
momentum is zero as expected.

On the other hand, the approximate equation (4.5) now
reads

W = [g,(0) + g,(0) ]a%v*. (5.11)

If the limits of g, (7) and g,(r) [see (A36)—(A38)] are
adequately evaluated when 7 tends to zero then

WH= —3a%*,
which again leads to the correct result.

It is worth mentioning that the approximation is exact
for the described situation (r =0, z* = z,*) because its ac-
curacy increases as r and the relative distance (|z,* — z,*|)
get smaller.

In the same context it is very simple to regain the usual
results for the radiation of an arbitrary charge g by consider-
ing it as the superposition of two charges ag and (1 — a)g.

(5.12)

B. The positronium

Let us now consider a system consisting of two particles
( + g, — gq) each of them revolving around the other with
constant angular velocity @ (the system can be thought of as
a rotating dipole).

We will calculate the radiated momentum during one
period T assuming that the motion is nearly circular with
radius R.

The world lines for one period are described by

z,# = (ct,R cos wt,R sin 01,0} ,
— R sin 0t,0) .

(5.13)

2z, = (¢t, — R cos wt,
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Therefore

v# = a(c, — Row sin wt,Rw cos wt,0) , (5.14)
v, = a(c,Re sin wt, — Rw cos wt,0) ,
and
a,* = a*(0, — Rw? cos wt, — Rw? sin wt,0) , (5.15)
a” = a*(0,Rw* cos wt,Rw? sin wt,0) , '
where
a_%_[l—(ﬁ“’)] -, (5.16)

The adopted approximation allows us to evaluate the
dynamical quantities related to + ¢ at the same coordinate
time ¢ as those related to — ¢.

Then

(U]'az) = (vz'a]) =0 (5.17)
€=(a,"a,) = R’0*/[1 — (Rw/c)?]?, (5.18)
y=(v,'0;) =*[1 + (Rw/c)?*1/[1 — (Rw/c)*]. (5.19)

The momentum radiated by interference from ¢ =0 to
t=Tis

T
APY yix = —Zqz[e{gl(")f vi*dr,
o

T
+g,(r) f vt d'rz” , (5.20)
0

where use has been made of the fact that r is a constant
[ g,(r) and g,(r) are given in (A38)]. But

J; Ul“dfl—f vz"drz————l“ (5.21)
where /# = (1,0,0,0).
Therefore
APR i = [ 81(7) + 8:(1) 147g®
- x{R%Y/[1 — (Rw/C)*1PH*.  (5.22)
Analogously
APR, = APk,
= (47/3)¢{R %»*/[1 — (Rw/C)212}*.  (5.23)
Finally, from (5.22) and (5.23)
APY% = 4ng*{R*0’*/[1 — (Rw/C)*)%}
X[ &i(r) +8(r) +3]1*. (5.24)

VI. CONCLUSIONS

As is well known, the radiated momentun of a single
charge can be expressed as an integral over its history. On the
other hand, for a system of two interacting pointlike charges,
apart from the four-momenta associated to each particle an
interference term appears. As we have shown, the exact
expression for the momentum radiated by interference in-
volves multiple integrals depending on the detailed shape of
both world lines. To gain a deeper insight we have developed
an easier to handle and more manageable approximate
expression which—as in the single particle case—contains
an integral over the past of only one of the particles.
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Besides a trivial example (i.e., a neutral particle consid-
ered as the coalescence of two equal but opposite charges) to
test the plausibility of the results, the total momentum radi-
ated by a positroniumlike configuration was calculated as a
function of the relative velocity ». As it can be seen, the r-
dependent factor g, (r) + g,(r) — }is concave and decreases
monotonically from § (for r =0) to § (for r =1). (Never-
theless, the approximation is valid only for r<1.)
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APPENDIX: EVALUATION OF THE INTEGRALS

We want to evaluate

a dQ’ a
Jna.az SEJ- 477.1 anla'Klaz'”Kl 5

n=0,12,., s=12,., (A1)
when «, — o and where
p=K1/K2 — 1/(K1'v2) . (A2)
Let us introduce
K, *=K*—vt. (A3)
Trivially, K, satisfies
K, v,=0, (A4)
K, K =-1, (AS5)
K, K, =-1, (A6)
which shows that K, is a spacelike vector. Define
dQy
I,= Lp” (A7)
4rr
and
a,a;a, dﬂ(l) n a a a
I, s=f [ STRR STRAAREY TR (A8)
4ar
It is easy to prove that
J,=1,, (A9)
Jrp=L"4+v"l,, (A10)
J =" 4 0,L" + ot , (A11)

A
I =Ly LY o Gy LA v P

(A12)
It will be shown that to evaluate 7, “'** " "*it is only necessary
to know Z,,. In fact, let us first consider 7, *.
Obviously, from its definition
L*v,, =0. (A13)
Then I,* is a linear combination of vectors orthogonal
tov,,.

On the other hand 7,,* can only depend on v,*. Thus we
can write
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400
5" =f K\ fp"=A,v,", (A14)
47
where
vy ¥ =h*0,, =0 — ) (A15)
with
=7 — v (A16)
and
Y= (Ul'vz) . (Al7)
Analogously
dql
InaﬁEJ . P"KuaKuB=BnU21avuﬂ+ Chhxaﬁ’
47
(A18)
dQe
InaBYEf : PnKuaKuﬂKuy
4
= Dnvuavuﬂvuy +E h %, " . (A19)

By multiplying (A 14) by v,,“ and remembering that the
approximation allows us to bypass the integration sign it is
found that

H,—1,_ =7y"r4,. (A20)
Use has been made of the fact that

(0 °0,,) = —yr, (A21)

(K vpy)=1p—v. (A22)

Equation (A20) indicates that A, can be constructed
froml7, and I, _,.

By multiplying (A18) times v,, *v,,?

vl =2yl +1,_, =y’r(y’rB, — C,) . (A23)
Contracting a and f in Eq. (A18)

I, =y*rB,-3C,.

The last two equations constitute a system that can be
solved for B, and C, intermsof [,,, I, _,,and I, _,.

To obtain D, and E, it is possible to mimic the above
procedure and the resulting system is
73171 - 37/21"—1 + 3}/111—2 _In—3

= v*r*(¥*rD, — 3E,), (A25)

yI, —I, |, =v*r*(y*¥D, - 5E,) . (A26)

Thus D, and E, can be expressed in terms of /,,, I, _ ,,
1, ,,and1, ;.

The key point is then to evaluate 7, . Its value should not
depend on the frame of reference.

Let us choose the system attached to ¢,. Then

v* = (1,0,0,0) . (A27)

The z direction can be chosen to coincidence with the
spatial component of v,*.

(A24)

Therefore

v = (100 - 1). (A28)
Also

K# = (1,sin 6, cos ¢,,sin G, sin ¢,,cos §,) . (A29)

In the limit k, - o,
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p=1/y(1 —rx,) (A30)
with

X, =cos b, . (A31)
But

d0} = —dé, dx, . (A32)

Consequently, after performing the angular integration

1
I, =-1-f dx—L (A33)
2J)_0 T (=)
This integral can be easily done, giving
L=2yryIn [(1+r/(1 =11, (A34)

IL=[12yr(i—m {0 +N'"""—(1=n'""],
n#l. (A35)
It is useful to exhibit the explicit expression of I, for the
various values of n needed in the calculations
I_ =1 4 2—1 ’ I_ =% I = N
2 =3(4y ) =9 =1 (A36)
IL=Q072y,)In[(1+r/(1-n], L=1, L=y.

Solving Eqs. (A23), (A24) and (A25), (A26) for B,, C,
and D,, E,, respectively, and using the above results, the
following list can be elaborated:

A,=0,
2
4,=1=7 [—1—1n1+r—1],
r? l2r 1—r
A= 12[1_1—F1n1+r]’
yr 2r 1—r
4,=1,
202 _ 52
B=1lzr [3=r 1n1+’—3],
2yr 2r 1—r
1—7 3(1—7’2)( 1 l+r) ]
B, = 1——1In +1i,
Tp [ 2 2 1—r
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1 3(1-—r2)(1—r2 1+r ) ]
B, = 1 —1 11,
> yrz[ 2r? " +

2r 1—r
Co= —1, (A37)
C1= —iAzy
C,= —4,,
C3=’—%A2,
E1= —éBz,
E,= —B,,
E;= —%Bzy

D, =[(1-r)/r][4, +5E,].
Furthermore, the functions ( f,g,h) appearing in Eq.
(4.5) are given by
filr) = —yB, + 4, + 3y°B,
T C—3yAs+ I, — ¥y’Ds + ¥E;,
f2(r) =B, —2yB; + 4, + ¥°Ds,
g,(r) =yAd,— L, + V’E, — yC;,
&(r)= — A4, —vE;,
hi(r)=C,+ V’E, — vC;,
hy(r) = Cy — yE;,

and as can be seen they are combinations of 4,,, B,, C,, D,,
E,, and I,; so their explicit form as functions of r flows
directly when expressions (A37) are replaced in (A38).

(A38)
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Four-momentum and angular momentum in classical electrodynamics
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The total four-momentum P* and the total angular momentum tensor M * for a classical
point charged particle and its field are considered. The standard definition of P* and M ** is
used as the integrals of their respective densities over a spacelike hyperplane orthogonal to the
four-velocity of the particle. It is shown that the integral defining P# exists and is a conserved
quantity, but that the integral defining M ** does not exist. The last result is due to the
asymptotic behavior of the Coulomb field at spatial infinity.

I. INTRODUCTION

For a point charged particle in classical electrodynam-
ics, given an arbitrary energy momentum tensor 64", and its
corresponding angular momentum tensor density M %,

M4 =x'e4 — x+e%, (L.1)
the standard definitions for the four-momentum P# and the
angular momentum tensor M #* that have been considered in
the literature'~® (for a review on this and related matters, see
Ref. 8) are

Ph(r) = f 04 do,, (1.2)

M (7) =fMj””dav, (1.3)
where the integration is performed on the spacelike hyper-
plane o, which cuts the electron world line (EWL) orthogo-
nally at the point z(7), with 7 being the proper time at which
these quantities are evaluated. Here, do, = — v, (7)d 0.

In this paper we consider some facts that have been
overlooked in the literature, and that are related to the infi-
nite range of the electromagnetic field. Specifically, we study
the integrals (1.2) and (1.3) corresponding to the total four-
momentum P# and the total angular momentum tensor
M*™, for a classical point charged particle in an external
electromagnetic field. We obtain the following.

(i) The integral (1.3) for the total angular momentum
density M **” is not absolutely convergent. It happens that
the value of the integral depends on the way that the infinity
is reached. In other words, the improper Riemann integral
(1.3) does not exist for M.

This fact is due to the behavior of the Coulomb field at
spatial infinity.

(ii) The integral (1.2) for the total energy momentum
tensor ©*" is absolutely convergent. That is, the improper
Reimann integral (1.2) exists for ©** and hence its value
does not depend on the way that the infinity is reached.

(iii) We show explicitly that P# is a conserved quantity.
That is, if a conservation law in differential form is assumed
for 6 (i.e., d,0*" =0, everywhere in space-time), it fol-
lows that the tensor ©#" has a good behavior at spatial infin-
ity in order to define a globally conserved quantity by (1.2).

(iv) Also, through (1.3) we evaluate M % | the part of
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the total angular momentum tensor associated with the in-
teraction of the particles and the external field. This integral
is absolutely convergent due to the asymptotic behavior as-
sumed for the external field.

The infinities associated with P* and M ** (because of
the divergences of ©6#" at the EWL) will be dealt with by the
standard">*® mass renormalization procedure. We want to
stress that the nonexistence of the integral for M *** pointed
outin (i) is not related to the divergences of the theory at the
EWL, but rather to the behavior of the Coulomb field at
spatial infinity.

With respect to the notation, the metric tensor g will
have signature + 2, and the speed of the light is taken as 1.
When it will be convenient, scripts on vectors, and tensors,
will be omitted and scalar products will be indicated by a dot.
Parentheses (-,*) or brackets [ -, ] will denote symmetriza-
tion or antisymmetrization, respectively, of the enclosed in-
dices (without a factor of one-half). The EWL isz(7), where
7 is the proper time, and v(7)=v (v* = — 1) and a(r) =a
(v-a = 0) are the four-velocity and acceleration, respective-
ly. The components of the total electromagnetic energy ten-
sor for a point charged particle and an external electromag-
netic field are

O = (1/47) (FHF}, — 1" F°F,;), (1.4)
where
Frv=Ft + Fe. (1.5)

The electromagnetic field tensor F% is the one corre-
sponding to the retarded Lienard—Wiechert potential. The
nonsingular external electromagnetic field FX. satisfies
Maxwell’s equations for vacuum and vanishes at spatial in-
finity and at the remote past.'® Specifically, we shall suppose
that F£ =0, Vre( — c0,7,], where 7, is an arbitrary prop-
er time (as small as we want), which means that the particle
is free V7e( — «0,7,]. This is a very mild simplifying as-
sumption that can even be relaxed.

Corresponding to the superposition shown in (1.5) we
obtain (in obvious notation) using (1.4),

eelm = eret + emix + eext' (16)

Retarded coordinates will be used here (see, e.g., Ref.
8). Then for any space-time point x, we define

© 1988 American Institute of Physics 1361



R=x—2z(7), R*=0(R°>0),
u=(R/p) —v.
In these coordinates,

p= —U'R,

(S) ——ei(l +vu—uu)—1—
ret 417_ Zg p4

+£2-(a—-ua u R)—l-
4r “plp’

+ L@ = @ RE (17)
4 P

The material properties of the particle will be character-

ized by the standard bare energy momentum tensor K5,

which is given by

KgV=fm0uﬂ(r)uV(r)6[x~z(r)]dr, (1.8)

where my, is the electron bare mass.

Hence, for K4" and its associated angular momentum
tensor density M 3**, we obtain its corresponding bare four-
momentum P# and bare angular momentum M 2

Pg(q—)ngszg”dav = mg*(7), (1.9)

M*(r) EM{,‘“EJ M do, = [Z2(7),ma*(7T)].

(1.10)
The evaluation of P4, has been considered by Ta-

mix
bensky,'® who obtains

mix

Ph m_f o, do,

= — f F(z(m)w, (7')dr'. (1.11)
Following a procedure similar to Tabensky’s, we obtain (see
Appendix A) that

M, (1) —f M do,

mix

== J [ F& (), Jdr. (1.12)

Since 4,0~ =0, in all space-time, and 6%} has nice
properties at spatial infinity, P¥,, and M 2 are independent-
ly conserved quantities. Hence in the following we shall ex-
clude the P#, and M parts in the total four-momentum
P# and in the total angular momentum tensor M A respec-
tively. That is, P* = P4 + P% 4+ P*, and M* =M}

+M% + M.

The plan of this paper is as follows. In Sec. II, we show
that the integral (1.3) for M ***is not absolutely convergent
but that the integral (1.2) for ©#Vis. In Sec. I1I, we show that
P+ is a conserved quantity and also present a way for obtain-
ing a conserved quantity from M **”. In Sec. IV, we discuss
the obtained results. In Appendix A, we prove (1.12) and, in

Appendix B, some relevant integrals are evaluated.
il. EXISTENCE OF THE INTEGRALS DEFINING P* AND
M

In this section we want to show that even though P# as

defined by (1.2) exists, the integral (1.3) defining M * does
not exist.

1362 J. Math. Phys., Vol. 29, No. 6, June 1988

Let us start by remembering some facts about multiple
improper Riemann integrals with continuous integrand in
unbounded regions.'!"'? Let o be the unbounded integration
region, and o, C 0, a sequence of bounded regions such that
o, —»o (cf. Refs. 11 and 12). If for any such sequence o, the
limit when n— o of the integrals evaluated on o, exists (is
finite) and is independent of the choice of {a,}, then the
limit is said to be the improper integral on o. We also have
the following theorems'"'2: (a) the integral on o exists if and
only if the integral of the absolute value of the integrand
exists (i.e., if and only if the integral is absolutely conver-
gent); and (b) the integral of a positive function exists if and
only if it exists for an arbitrary sequence {o,} of bounded
regions.

In order to study the existence of the integrals (1.2) and
(1.3) for ©** and M *, respectively, we shall consider, in-
stead of the hyperplane o, the unbounded hypersurface
09 C o, which coincides with o except for a “hole around the
EWL” defined by the intersection between the light cone
with apex at 7 (7’ < 7) and 0. We do this to avoid the infin-
ites of the fields at the EWL (which can be dealt with later by
the usual renormalization procedure) and to emphasize that
the existence of the integrals that we are discussing is related
only to the asymptotic behavior of the field at spatial infinity.

Since the integrals defining P, and M #%_are absolute-
ly convergent (see Appendix A) we shall consider only the
following integrals:

P#[09] Ef e do,, (2.1)
d(o)
M™*[09] EJ MM dg,. (2.2)
o.(())

First, we want to show that M **[0'®] does not exist. To
do this we split our proof into the following parts (i) and
(ii).

(i) Case of a free particle: Here we shall show directly
that the integral

f \M &, |d o, (2.3)

a.((])

diverges. Without losing generality, we suppose that the par-
ticle is at rest. In this case,

M, =0, klI=123, (2.4)
My, = (&/8m) [2(7) 4+ pu* 1/p*, k=123,
(2.5)
We obtain that, for k = 1,2,3,
2 k
f IM%, |d%0 = £~ lim (|
o 87 o - P
(2.6)

where p’ = 7 — 7/, is the value of the p coordinate corre-
sponding to the intersection between the light cone with
apex at 7 and o. Hence from (2.6),

-
f IM%,|d o> lim U i’/ifdmuﬂ
8m - Uy p
o
—J i';’-—J‘dﬂ|z"(7')|]= + .
o P

(2.7)
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(ii) Case of a particle in an external field F=,: Here we
shall show that different choices for the sequence of bounded
regions {o, }, such that o, - 0'%, throw different results, and
hence the integral defining M ##[0'®] does not exist. In fact
we shall show that

lim M*(o’)= lim M;‘;:"da (2.8)
Ews o E-

and
lim M"‘(a)*‘ lim Mf,’{"da (2.9)

where ¢’ and & are defined in Appendix B, give different
results (notice that under the respective limits ¢ - o and
o-0).

Using (B14), (B16), and the fact that the particle is free
for <, we obtain

lim M*(d’)

E- o

1J
= [A() S 2()] +%e2f [v*(7),e*(7)]dr

”
+—§—e2f [ (), 04 (7) a2 (7)dr. (2.10)
Also, using (B6) and (B7), we obtain that
lim M@
— lim M*(0") + (&/6) LT D] g,

E-w [v(70)v(7)]
We see that the last term of the right-hand side of (2.11)
being a function of 7 is not identically zero V7> 7, (except
for the case of the free particle).

Now we want to show that the integral defining P#[0'®]
in (2.1) is absolutely convergent, i.e., P*[0'?] exists. For
that, it is sufficient to consider ¢'” for 7/ <7, In this case, we
have that

6w, (1) = (62/4mp*) [V*(7)/2 + v(7p) v(T)V*(7,)

— u(7o) v(n)ut(ry) ], (2.12)

and that the invariant area element on ¢ in retarded coordi-
nates is given by

d?c =v'(r)do, = — p*dp dQ/[v(1,)-v(7)], (2.13)

where df) is the solid-angle element for the inertial frame
with time axis v(7,); see, e.g., (A16) in Ref. 8. The expres-
sion (2.13) is easily evaluated following the standard proce-
dure (cf. Refs. 8, 10, and 13) and the fact that the equation of
the hyperplane ¢ in retarded coordinates is given by (B12)
for 74 <7, with E substituted by p. Hence it follows that

pol7°) d

PolTo)

f |4 v, |dc= lim | dQ|4#|
o ™ —

(2.14)
where p,(7') is defined in (Al) and |4#|=p*|O% v,|/
[v(7e) -v(7)]|, is independent of p. It follows directly that

(2.14) is finite, hence the integral defining P#[c'”] exists.
Then, from (B5), (B7), (B13), and (B15) we obtain
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P#[0”] = lim P#(0’)

E- o
= lim PH(3) =f4(r)
2 (7 2
+?e a*(r)v*(r)dr.

(2.15)

It should be mentioned that using (2.13) and a proce-
dure similar to the one used in (i), it can be shown directly
that the integral {0 |M **v,|d >0 for the general case of a
particle in an external field diverges [this will constitute an
alternative proof from the one given in (ii)].

Finally, using the standard mass renormalization proce-
dure, we discuss the evaluation of the quantities

P#[d"?], ;im M*(0'), lim M*(5),
defined on ¢'®, when 6@ - 0.

Since

lim {14y — év(n)/2(r — )} = —3at (1),

(2.16)

we perform the renormalization with the bare four-momen-
tum P4 = mg*(7), obtaining the usual result>>*:

lim {P4(r) + P*[d]}

7 —~T
= mv*(1) — % e’a*(7) +—§—e2f a* (7w (r')d7,

(2.17)

where m is the renormalized mass. Then we get for the total
four-momentum P, the usual result®>5:

PH = mv*(1) — —2— ea'(r) + % eZJ-’az(T')v“(t')d?’

f F& ('), (7)dr'. (2.18)
Similarly,

lim {[2(7), f5(7)] = €[ (D)*(7)]1/2(7 — )}
= — [ (r)a()]. (2.19)

Then, renormalizing the quantities limg_ , M *(0’)

and lim,._ _ _ M*(&) [see (2.10) and (2.11)], with the
bare angular momentum M #(7) = [z"('r),P’g(T)],we ob-
tain

lim [M;}“(v-) + lim MA”(O")]
E—~w

-7

=M¥ = [z‘(r),mv“(r)]-%ezlz‘(r),aﬂ(f)]

+ % ezfr [V M (7),a*(7) ]d7

+ % ezf [ () () ]a*(7)dr,
(2.20)
and
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lim |M(r) + lim M*5)
o7 ”

T —»

=M1;'Z:1 +_ei [Ul('ro)svu('r)] )
6 [v(7) v(m)]

We have shown that the integral (1.3), defining the total

angular momentum M * does not exist [see (i) and (ii)].

However, we can define the following quantities:
MM(g' SoysM* + M*

ren mix ?

M*¥(Goa)=M* 4+ M*

mix

+ (€2/6) [V} (7o) " (1) )/ [v(1y) *v(7) ],

(2.23)
where M ?# is defined in (2.20). The quantity M **(o’ - o)
is the one found in the literature**® (the term M %, being
understood) under the name of the total angular momen-

tum.

(2.21)

(2.22)

iIl. CONSERVATION LAWS
Let us define the tensors

O =K§ + O + Ol

ret

MY =MP 4 MM MM

ret

3.1)
3.2)

The conservation laws for the energy and the angular
momentum, expressed in differential form, are

3,0#"=0, d,M™ =0, (3.3)

everywhere in space-time [at the EWL, (3.3) is an assump-
tion about the cancellation of the infinities].

As is well-known,>'*!3 from (3.3), the Gauss theorem,
and the vanishing of certain integrals at spatial infinity, the
conservation laws in integral form for the total four-momen-
tum P* and the total angular momentum M ** are obtained
whenever the quantities P* and M ** defined by (1.1) and
(1.2) exist. As we can see, there are, in principle, two prob-
lems that must be clarified: first, the existence of P* and
M* and, second, if they exist, their conservation.

In the following, we shall need the two bounded space-
time regions Q' and £, seen in Fig. 1. Let o, and o, be two
hyperplanes that cut the EWL orthogonally at z(r,) and
z(7,), respectively. Let 2 be the bounded part of the Bhabha
tube of radius £ given by the intersection between this
Bhabha tube and the hyperplanes o, and o,. Let C be the
bounded part of the light cone with the apex at 7 (7' < 7,)
given by the intersection between this light cone and the
hyperplanes o, and o,. Then, £}’ is determined by the hyper-
surfaces 3, o7, and o3, where o7, i = 1,2, is the bounded part
of o, given by the intersection between X and ¢,. Finally, Q is
determined by the hypersurfaces C, o,, and o,, where 7,
i = 1,2, is the bounded part of o, given by the intersection
between C and o;.

Now, knowing that P* exists (see, Sec. II), let us show
that it is a conserved quantity. Applying the Gauss theorem
and (3.3) in Q, we obtain

j_ O do, — | ©vda, =1 (r) —fE (1), (34)
where f#(7') is defined in (B7). Hence, under the limit
7 - — o, we have
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FIG. 1. Space-time regions used to test conservations laws in integral form.

P#(Tl) = P”(Tz), (3.5)

i.e., the total four-momentum is conserved. Let us note that
the result (3.5) is also obtained if the region (' is used (as it
should be).

Since M ** defined by (1.3) does not exist (see Sec. IT),
it is senseless to consider its conservation. However, it makes
sense to ask if quantities (obtained through a prescription on
the way that the spatial infinity is reached) like M (¢’ - o)
and M*(o—0c), defined in (2.22) and (2.23), are con-
served.

Then, let us show that M #(¢’ - o) is a conserved quan-
tity. Applying the Gauss theorem and (3.3) on §}', we obtain

f M o, —f M dg. =f M*ds.. (3.6)
o1 o} s

Under the limit £— «, we obtain from (3.6), (2.22), and
(B16) that

M*™(0} -0,) = M*(0 — ). (3.7)
That is, M *# (0’ - o) is a conserved quantity.

From (2.18) and (2.22), it follows that

M*(d' o) = [7,P*], (3.8)

which shows that the conservations of P# and M **(o’ - o)
are compatible.’

Finally, let us show that M **(5 - o) is not a conserved
quantity. Applying the Gauss theorem and (3.3) on £, we
obtain

f M*g, — f M*dg,

o, T,

= [24(7), f2 ()] = [Z(), /4 ()] (3.9)
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Under thelimit 7 — — oo, we obtain from (3.9), (2.23), and
(B7) that

M*(G,-»0,) — M*(G,-0,)
_e [ [ () (r)] _ [¥(70)#(73)]

6L v(r)v(r) v(71) v(7y)

(3.10)

From (3.10) we see that except for a free particle,
M*(5-0) is not a conserved quantity [if the particle is
free, M (0’ » o) and M *(G - o) are equal because it hap-
pens that in this case the sequence of bounded regions ¢’ and
o coincide].

V. DISCUSSION

In Sec. III we showed that the integral (1.3) defining
the angular momentum tensor for a point particle does not
converge absolutely, i.e., that the angular momentum tensor
does not exist. One can ask what is the situation for the case of
an extended charged body. This question has been consid-
ered in Ref. 16 (p. 398), where it is mentioned that the inte-
gral defining the angular momentum tensor is not, generally,
absolutely convergent, expecting, however, that in impor-
tant special cases it will converge. Nevertheless, our result
shows that what it is reasonable to expect, is that the integral
defining the angular momentum tensor for any extended
body is not absolutely convergent, because asymptotically
the behavior of the field of a body is like the corresponding
one to a point particle.'’

We believe that we have made it clear enough that the
nonexistence of M * that we have discussed in this paper has
nothing to do with the infinities at the EWL (as dealt with by
the renormalization procedure). As is obvious from our cal-
culations, the nonexistence of M ** is related to the asympto-
tic behavior of the Coulomb part of ©% (in fact, the result
holds even for a free particle). We want to point out al-
though the Coulomb part of ©% is the most singular in p,
and hence the one from which we expect the best asymptotic
behavior for the integral, this is not the case, because the
other parts depend also on the acceleration of the particle,
which has the asymptotic behavior

a(r) - 0.

In order to emphasize the independence of our result of the
singularity at the EWL, let us note that the nonexistence of
the integral defining M #* is also obtained (the calculations
are straightforward) for the model characterized by the
four-current (30) in Ref. 18 (essentially a free-spherical
charged shell). This model does not present any infinity in
its corresponding ©*".

We have seen that even though the definition (1.2) is
perfectly consistent, because P# exists and is a conserved
quantity (see, Secs. II and III), the invariance of the theory
under the Poincaré group cannot be carried on through the
definitions (1.2) and (1.3) since the definition (1.3) is not
appropriate to discuss the consequence of Lorentz invar-
iance of the electromagnetic theory. We know that a given
choice to reach the spatial infinity on o leads to a definite
result, e.g., M* (0’ —0o) and M*(G—0c) [see (2.22) and

1365 J. Math. Phys., Vol. 29, No. 6, June 1988

(2.23)]. The point of view of taking a definite choice to
reach the spatial infinity on o in order to define a unique M **
is not physically consistent since there are no physical reasons
to choose a particular way to reach the spatial infinity (two
arbitrary points on ¢ are spatially related).

Summarizing, the definition (1.2) is quite adequate to
discuss the translational invariance of the electromagnetic
theory since P* exists and is a conserved quantity. On the
other hand, the definition (1.3) is inadequate to discuss the
Lorentz invariance of the electromagnetic theory. This in-
variance can be considered, however, in the form of a local
conservation law through M ##*, as is discussed in Sec. 9 of
Ref. 8, or in Ref. 19, for a point particle.

The evaluation of M *# (0’ — o) through the region de-
fined in Appendix B has been done in the literature,’ and our
result is the same as the one found in Ref. 5. Here we present
an alternative procedure to calculate M *#(¢’ —¢) in which
there is no need to take the limit £— oo inside the integrals.
As is well-known, this procedure can be invalid. In fact, this
procedure has been taken in the literature®® (for a different
purpose) and criticized by the same author.?!

It is worthwhile to mention that in the formalism set by
Van Dam and Wigner?? for classical relativistic mechanics
of interacting point particles (which includes Wheeler-
Feynman electrodynamics®*), an asymptotic interaction an-
gular momentum is present.”* Although their framework
and ours are different, the root of their unexpected result,
like ours (i.e., the nonexistence of M **,) is the same, that is,
the long range of the electromagnetic interaction.?* We no-
tice that in their formalism?>?* the total angular momentum
tensor exists and is a conserved quantity.

Finally, we want to mention that in the standard formu-
lation of classical field theory, the fields are assumed to van-
ish fast enough, in order for the integrais (1.2) and (1.3)
(with o being, in general, an arbitrary spacelike hypersur-
face) to exist and define globally conserved quantities (see,
e.g., Refs. 14, 15, 25, and 26). Our results show that for the
very simple model of an electromagnetic field with a source,
this is not the case for M ** (even for a free point charged
particle).

APPENDIX A: EVALUATION OF M 24,

In this appendix we want to evaluate M 2% . For this
purpose (and for some calculations in Appendix B) let us
introduce the following notation.

We let € (') stand for the bounded segment of the fu-
ture light cone with apex at z(7'), determined by the inter-
section between this light cone and the hypersurfaces o and
the Bhabha tube of radius E.

We have that’

po(T)=v(1) [2(7) —2(7)1/v(7) - [o(7) +u], (Al
is the set of values of the coordinate p given by the intersec-
tion between % (7') and o (for 7 < 7).

In order to evaluate M % , we choose the bounded
space-time region Q2 (7",7') shown in Fig. 2, where = repre-
sents a segment of the Bhabha tube of radius E
[E <inf py(7') ], and & is the part of the hyperplane o deter-
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EWL

FIG. 2. Space-time region used in the evaluation of M , P#(@), and
M*(5).

mined by the intersection between o and the hypersurfaces
% (') and € ("), with 7" <7’ < 7. Since I, MY =0 in
that region, by the Gauss theorem we obtain

[ do, = [ Mz, + | miac,
G z € ()
— | Mmmac, (A2)
@)
where d2,=E?drdQu, + (¢'u)R,), and dC,
= —pdpdQR,.

Performing the required integrations, we obtain that

-
f M s, — __"_J drjdﬂ
b 4 J-
X [24(7),F&5 (E,r,Q) |v, (1) + EG*,

(A3)

where G* is a function of good behavior that satisfies

limg_o|G*| < o because of the properties assumed for

F# If we use again the properties imposed on F 4%, we have

that

lim —— [ dQ Fr (B,r,Q) = Fr(z(r))=F5 (7).
E—0 417

(A4)

Then,
.

lim | MM d3, = — f dr[2M(1),Fi5 (1) ], (7).
E-0 J5 ™

(AS)

Also, we find that

Mk dC,
“ ()
e po( ') Ra
=2 |da dp[x*F“ (p, 7, 00)] =, (A6)
49 E P

where p,(7') is defined in (A1).
Hence from (A6) it is clear that
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lim MM dC, =0,

. mix
T oo JE(r")

(AT)

because of the asymptotic properties of F4y,.
Since F'%;, is well defined and bounded on the EWL and

ext

lim,._ . po(7') =0, from (A6), we obtain that

lim lim M dC, =0,

77 E-0 Jg )
The final result is that

(A8)

[ M do, = —ef dr' [ (), () Joa ().
i - (A9)

Because of the assumed properties of F£7, the integral
of M pointed out in (A9), is absolutely convergent since
it is not an improper integral [the same comment is valid for
P, given by (1.11)]. For the same reason, the limit of

integration — oo in (A9) can be substituted by 7.

APPENDIX B: EVALUATION OF P*(g), M **(5), P “(¢"),
AND M *(¢")

In this appendix we want to evaluate some useful inte-
grals.
First, we shall evaluate the integrals

P“(Ff)EJ_G‘,‘;daV, M*ﬂ(a)sfo::"dov, (B1)

where 7 is the bounded part of the hyperplane o defined in
Appendix A and already shown in Fig. 2.
Since, in the region Q(7”,7') shown in Fig. 2, -

3,0l =0, I Mt =0, (B2)
we obtain, using the Gauss theorem, that
[emar,=[omas,+[ emac,
o X C(r")
- 6. dC,, (B3)
€ ()
f M dg, =J M®vdz, + M dc,
o bl € ()
— M*dcC,. (B4)
C ()

The evaluation of the integrals in (B3) and (B4) are very
simple and only the results will be stated. One obtains

.

P“(5) =f’:(7")+%e2f a*(r)(r)dr — fu ("), (BS)
v

MM (@) = [Z(), f4(r) ] +—§-82J [v*(r),a*(r) }dr

.
+%e2 f [2(r), (1) 1@ (Pdr

= [, 2], (B6)

where
fr(ry =L@ o) + (]
v 6v(7)-[2(7) — 2(7)]

We notice that P#(7) and M *(5) in Egs. (BS) and
(B6) do not depend on E (as it should be).

(B7)
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FIG. 3. Space-time region used in the evaluation of P#(¢’) and M ngy.

Second, we shall evaluate the integrals

Pro= omdo, M= ( Mitrdo,  (BY)
o o

where ¢’ is the bounded part of the hyperplane o shown in
Fig. 3 determined by the intersections between o and the
hypersurfaces € (7') and 3’ (see Refs. 5 and 8). The hyper-
surface X’ is a segment of the Bhabha tube of radius E
[E> sup po(7,) ] determined by the intersection of this tube
and the hypersurfaces € (7') and o.

Since, in the space-time region Q'(E,7'), shown in
Fig. 3,

avef"e‘t’ = O’ avaé:v = 0’ (B9)
we obtain, using the Gauss theorem, that
[omdo,=[ emac,+| emaz, @0
o € (r) 3
J M*do, = Midc, +J- MM ds . (Bll)
o EACH] pig

In order to calculate the integral on X’ in Egs. (B10)
and (B11), we have to evaluate 7 (E,6,¢), that is, the set of
values of the retarded coordinate 7 determined by the inter-
section between o and Z'. The imposed condition,
E > sup py(7,), implies that the retarded coordinates at the
intersection are the ones corresponding to a free particle.
Then, using the equation of o in retarded coordinates and the
fact that the particle is free for proper times smaller than 7,
[and hence z(7') = z(7y) + V(7o) (7' — 7p), V7' < 7p], We
obtain that

v(7) [2(7) — 2z(7) — Eu(75,0,0) 1]
v(7) v(7y)
—E+ 7, (B12)

The evaluation of the integrals in (B10) and (B11) is
very simple and only the results will be stated. One obtains

TR (E,9’¢) =Trp =
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2 rd
PH(0’) = fA(7) +?e2f

7o

2
P (r)H(r)dr — TQE V(7o)

+E2fdﬂf06¢guv dr, (B13)

M*(d') = [ZA(7), 4] + % ezf [v*(r),e*(7) 1dr
+ %ezf [ (r)v4(r) 1a*(7)dr
— £ A wr)]
2F

+E2f dQJ"Mfg;v dr, (B14)

where f* and 7, are given by (B7) and (B12). The double
integrals appearing in Eqs. (B13) and (B14) are easy to
evaluate using the fact that a“(7) = 0, V€[ 74,7,]. It is ob-
tained that

To 2
aa| e, dr=-2 [ (D o ] BIS
f J;R el 8T =g v(7)v(71g) + () |, (BIS)

J o f "My, dr
(1)

é o
= T 6B’ H o) Sy )

v(7) [2(1) — 2(7)] .4 ]
S . B16
P e W™l (8IS

+ Uu(To)]
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An efficient procedure for the evaluation of the coefficients of fractional parentage (cfp’s) for
L-S coupled wave functions is presented. The cfp’s are calculated separately for N particles,
each with angular momentum / (s), coupled into a total angular momentum L (S). The
N-particle states formed can belong to any permutational symmetry. The procedure for the
evaluation of the L and the S cfp’s for arbitrary permutational symmetry is a generalization of
the procedure proposed by Bayman and Lande [Nucl. Phys. 77, 1 (1966) ] for symmetric and
antisymmetric states. It involves the construction and diagonalization of the matrices
representing the quadratic Casimir operators for the appropriate special unitary and
symplectic (or orthogonal) groups. The cfp’s of the antisymmetric L-S coupled states are
obtained in terms of products of cfp’s for L and S corresponding to conjugate representations
of the symmetric group. This method is demonstrated to provide cfp’s for L—S states for
systems with a considerably larger number of particles than is feasible using the procedures

heretofore available.

1. INTRODUCTION

The theoretical study of many-particle systems possess-
ing spherical symmetry has been a problem of central inter-
est of both atomic and nuclear physics since the advent of
quantum mechanics. One of the most efficient methods for
the construction of many-particle wave functions with well-
defined permutational symmetry and total angular momen-
tum is the iterative procedure, originally proposed by Bacher
and Goudsmit' and extensively developed by Racah.? In this
procedure the N-particle wave function is expressed in terms
of states formed from appropriate (N — 1)-particle wave
functions by the coupling of one more particle. The coeffi-
cients in the expansion of the N-particle state in terms of the
(N — 1)-particle states are known as the coefficients of frac-
tional parentage (cfp’s).

The most common procedure for the evaluation of the
cfp’s is the Redmond iteration procedure.® This procedure
was extensively applied in the calculation of j-j coupled
states in nuclear physics.* However, this procedure is limited
to a relatively small number of particles, because of inherent
numerical difficulties.® These difficulties become more se-
vere in the context of L-S coupling and restrict the feasible
applications to a rather small number of particles. An im-
proved version of this procedure, which enlarges its domain
of applicability, was recently introduced by Ji and Vallieres.’

A well-known and very powerful procedure for the
evaluation of the cfp’s for the symmetric and antisymmetric
states in j—j coupling was introduced by Ginocchio® and, in-
dependently, by Bayman and Lande.” This procedure uses a
group theoretical labeling of the states of interest. It involves
the diagonalization of the matrices for the quadratic Casimir
operators of the appropriate special unitary and symplectic
(or orthogonal) groups in terms of a set of N-particle states.
These N-particle states are obtained from symmetric or anti-
symmetric (N — 1)-particle states specified by their total

® Permanent address: Department of Chemistry, Technion—Israel Insti-
tute of Technology, 32000 Haifa, Israel.
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angular momentum and seniority, to which an N th particle
is coupled to form a state of well-defined total angular mo-
mentum. Consequently, the common eigenvectors are the
desired cfp’s and the eigenvalues specify the permutational
symmetry and the seniority. This method was recently used
by one of us® for the rapid and accurate computation of cfp’s
for identical particles with integral spin.

The Bayman and Lande procedure’ was developed for
J—j coupled states, involving Young frames with either one
row or one column. In order to construct the L-S coupled
wave function one has to couple an L function specified by
an arbitrary Young frame with a corresponding .S function.
As commonly applied in atomic structure theory the con-
struction of L-S coupled wave functions involves spin-} par-
ticles. Consequently, the Young frames specifying the per-
mutational symmetry have at most two rows for spin states.
In the recently developed fermion dynamical symmetry
model (FDSM)? the total angular momentum of a nucleon
is decomposed into a pseudo-orbital angular momentum k
and a pseudospin i. This i can assume values up to ¥, and k
can be 0, 1, or 2. The construction of the K- coupled wave
function in the case of the actinides requires the coupling of
up to 22 particles. The calculation of the cfp’s for such cases
is certainly beyond the scope of the presently available codes.

Our objective in this work is to provide a fast and effi-
cient mechanism for computing the cfp’s for a relatively
large number of particles, each with a spin j, possessing an
arbitrary permutational symmetry. This procedure would
be applicable to the construction of an L-S coupled statein a
many-particle system in which each individual particle’s /
and s are not restricted to very small values.

Figures 1 and 2 serve as a guide through the calculation
of symmetrized states and associated cfp’s, carried out in this
work. The principal characters are identified in the legend:
states, cfp’s, and quantum numbers for the important
groups—J for SU(2), 'y for SU,; , ,, and v (seniority) for
the symplectic group Sp,; , , ( jhalf-integral) or the orthog-
onal group SO, , (j integral). The sections in this work
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: state

N . configuration

J : total angular momentum

Ty,... .. [y : permutational group indices
v : seniority (irrep label of sz.n (N))

o : additional necessary quantum numbers

FIG. 1. Schematic presentation of the procedure for the evaluation of the
cfp’s for arbitrary permutational symmetry.

where the particular calculations are carried out are indicat-
ed by a Roman number. For example, the maximal set of
quantum numbers generated by these symmetries, and used
to label the states are identified in Sec. II.

The procedure for computing symmetrized states and
cfp’s is recursive. Beginning with symmetrized states for
N — 1 particles, the symmetrized N-particle states are con-
structed by following essentially the same procedure three
successive times, once for each of the groups SU,(%),
SU,;,:1 (), and R, ,(N) [ie, Spy,,(N) or
SO, . 1 (N)]. These three steps are displayed in Fig. 1, each
identifying one new N-particle quantum number (which is
underlined in the figure). To initate this succession of calcu-
lations, unsymmetrized N-particle states are constructed by
taking direct products of symmetrized (N — 1)-particle
states with a single-particle state. All the (N — 1)-particle
states considered have the same value of I',_, (which re-
mains a good quantum number of the symmetrized N-parti-
cle states) and all the values of /' and v’ consistent with it.
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The N-particle states so constructed span a space with the
multiplicity of N quantum numbers: J, ", and v.

States with a good quantum number J can in principle
be constructed by diagonalizing the total angular momen-
tum operator J %, which is the Casimir operator for SU,(N)
in this basis. The corresponding eigenvectors are the stan-
dard Clebsch-Gordan (CG) coefficients. In fact, the wide-
spread knowledge of these cfp’s for SU, makes this step un-
necessary in practice. The quantum number J generated in
this step is indicated below the appropriate box in Fig. 1, and
underlined in the symbol of the resulting N-particle state.

The second stage in this procedure involves diagonaliza-
tion of the quadratic Casimir operator of SU,, , ; (¥) in the
basis with fixed J. The subspace of states corresponding to
each distinct eigenvalue is associated with an irrep of
SU,;, , ; these irreps may be uniquely identified through the
eigenvalues of the quadratic Casimir operator. This is a
somewhat surprising result, which is a consequence of the
recursive buildup employed, as discussed in Sec. VIII. The
corresponding eigenvectors are the seniority-free cfp’s. The
states so constructed have I', in addition to J, as a good
quantum number (underlined for emphasis). The new
quantum number I, constructed using the group SU,; , ,,
specifies in fact an irrep of the permutational group S . This
comes about because of the duality between SU,; , ; (¥) and
Sy. The diagonalization destroys two of the (N — 1)-parti-
cle quantum numbers (/' and v'), since the corresponding
operators do not commute.

The cfp’s corresponding to the same I'y but distinct
I'y_, result from “distinct” diagonalizations. In conse-
quence, the phase information between the cfp’s is an artifact
of the computational procedure. These cfp’s are made phase
consistent following a procedure elaborated in Sec. X.

The third stage in this process involves diagonalization
of the quadratic Casimir operator for R; , | (&) in the basis
of states with good J and I',. The subspace of states corre-
sponding to each distinct eigenvalue belongs to a distinct
irrep of R,; . ;. The eigenvalue is sufficient to uniquely label
the irrep of R,; , ;. The irrep label, which is a Young parti-
tion v, is the state’s seniority. The states that result have good
J, Ty, and v (underlined for emphasis). The eigenvectors of
this matrix diagonalization are the cfp’s sought.

{IN(a'v' ) L>} ®
Xl

{IsN(osveI3y)S>}

Clebsch - Gordan
Coefficients for Sy

state : | (sN ' oS vI v [, T3, T, LS>
cfp : [(sN (0! 0 v v Ty, T3y Ty y) 15) LS]} (15N & 0 V! ve [ T3, Ty LS]

FIG. 2. Schematic presentation of the procedure for the evaluation of the
L-S coupled cfp’s.
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The illustration of the procedure continues in Fig. 2,
displaying the LS coupling step. To obtain the L-S coupled
states and cfp’s, the procedure presented in Fig. 1 is carried
out separately for the / coupling and the s coupling. These
cfp’s are then combined by means of S, (permutation
group) CG coefficients (actually, inner product isoscalar
factors) to obtain the L-S coupled cfp’s exhibiting appropri-
ate permutational symmetry. In the usual case of Bose and
Fermi symmetries, and the S, CG coefficients vanish except
when the L and S permutational symmetries involve equiva-
lent and conjugate representations, respectively.

The procedure described above is presented in this pa-
per as follows: In Sec. I we discuss the state labeling scheme
adopted in this work and compare it with the Weyl complete
labeling scheme. In Sec. III we construct the form of the N-
particle quadratic Casimir operators for the groups
SUy 4 15 Spyj 415 50y 4 1, and SU,. A result concerning the
matrix element of a one-body operator between two states of
arbitrary permutational symmetries, which is needed for the
evaluation of the matrix elements of the quadratic Casimir
operators, is developed in Sec. IV. The cfp’s themselves are
defined in Sec. V. The matrix elements for the quadratic
Casimir operators are constructed explicitly in Sec. VI for
SU,; , and in Sec. VII for Sp,;, , and SO,,, ;. These are
the matrices actually diagonalized in the recursive proce-
dure outlined above and indicated in Fig. 1. The identifica-
tion of the irreps of the special unitary and symplectic (or
orthogonal) groups by means of the eigenvalues of the qua-
dratic Casimir operators is discussed in Sec. VIII. Section IX
is devoted to a set of illustrative examples. The procedure
used to construct a phase-consistent set of cfp’s for degener-
ate irreps is discussed in Sec. X. The L-S coupled cfp’s are
constructed in Sec. XI. The overall computational proce-
dure and some detail concerning the performance of the
computer code implementing it (a copy of which is available
upon request), are presented in Sec. XII. In Sec. XIII we
present some concluding remarks.

Il. STATE LABELING SCHEMES

The purpose of the present section is to describe the set
of quantum numbers which specify the appropriately sym-
metrized states. As a first step, we determine the symmetries
present. A single particle of angular momentum j carries a
representation of the group SU,; , ,. A system of NV identical
particles carries a representation of the group [SU,;, ]° N
(N times direct product of the group SU,; , , ), which can be
reduced'® to the direct product group SU,;, , ® Sy, where
Sy is the symmetric (or permutation) group on X particles.
It is useful to introduce a subgroup, R, , , CSU,;, ,, to
further refine the state classification procedure. This sub-
group is the symplectic group, Sp,, , ,, for half-integral an-
gular momentum, or the orthogonal group SO, , ,, for inte-
gral angular momentum.!' Finally, states are classified
according to their total angular momentum J by introducing
the subgroup SU,CR,; , . The group—subgroup chain is

N particles

[SU5 ., ] qaNDSUzj+1 ®Sy

SU2j+l -
DR, 1 ®SyDSU,8S,. (2.1)
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The state labels are related to the chain of subgroups
given in (2.1). For an N-particle system described by the
subgroupSU,, , , ® Sy theyare{A}y and ", where {1} is
an N-box proper Young frame (i.e., 2 Young frame with at
most 2j + 1 rows) labeling an N th-order irreducible tensor
representation of SU,; , ,,and I' y is a Young partition label-
ing an irreducible representation (irrep) of S,. The parti-
tions T and {4} y must be identical, according to a result by
Weyl.'°

The representation labels {4}, and Iy generate inter-
nal indices that describe the individual states within these
representations. The internal state labels of the symmetric
group Sy are usually denoted by u,. A more informative
labeling of the internal states is obtained by constructing the
chain of subgroups

SyOSy_, D '8,D8,D8,. (2.2)

The corresponding sequence of irreps, ['yI'y_ -, is
equivalent to a Yamanouchi symbol ¥(Sy)."!

Theirrep {4}, of SU,; , , decomposes into a direct sum
of irreps under the reduction of R,; , ; (cf. Ref. 11):

SUy; 4 118py; 4

Gy S (23)
SUy; 118035 41
Uy — Sl (2.4)

The branching rules for the reduction are known.'? The par-
tition {4} for SU,; , | has N boxes, but the partition (1 )
([A]y) for an  N-particle representation of
Spy; .1 (SO, ) may have fewer than N boxes. In the case
of the fully antisymmetric (symmetric) representation of
SU,,, ; the number of boxes in (1), ([4]y) has been
called the seniority of the state. In general, seniority is the
representation label for the subgroup R,; , ,, and it is a good
quantum number. We shall use the generic symbol v for ei-
ther (1 ), or {4 ], depending on whether 2j + 1is even or
odd. The seniority v is the permutational symmetry type
with the smallest number of particles in which the symplec-
tic (orthogonal) symmetry is first encountered. The total
number of boxes in v, v = X, 4,, will be referred to as the
seniority index. For symmetric and antisymmetric states, for
which v has only one row or column, the seniority index
specifies theirrep of R, , | (i.e., SO, , and Sp,; , ,, respec-
tively) uniquely. .

Under the reduction R, , DSU, the representation
(A)y or [A ], decomposes into a direct sum of irreps of
SU,. Their angular momentum Jis a good quantum number.
This reduction is generally not simple: A given value of an-
gular momentum may occur more than once.

Besides the good numbers described above, there are
additional good quantum numbers. We show in Sec. 111 that
the SU,; , , representation labels for (¥ — 1,N —2,...,2,1)-
particle states are all good quantum numbers. The N-particle
states with the appropriate symmetry may thus be written

le;av{ﬂ'}N,{l I}N._ 1 9-“,{& ”}1 3 I“N #N;J’M )

Here j is the single-particle angular momentum, and ;¥ de-
notes the N-particle configuration. The sequence {A},,
{4} n_y,{A "}, represents SU,, . , representation labels

(2.5)
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for states with N,N — 1,...,1 particles. The label {1 '}, , is
obtained from {4}, by proper addition of a single box. In this
sense, the entire sequence may be summarized by a Yaman-
ouchi symbol Y(SU,, , ,)."" The representation label v de-
termines the seniority of the states, and J,M are the angular
momentum quantum numbers. The symbol a represents all
other quantum numbers “required” for a complete state spe-
cification.

The dual roles of the special unity group SU,; , , and the
symmetric group S, may be emphasized by writing the state
(2.5) in the form

[avY(SU, . 1), Y(Sy)JIM ). (2.6)

The Yamanouchi symbols for the special unitary and sym-
metric groups are based on the same Young frame. Since the
duality between the special unitary and symmetric groups
holds for each pair of labels {1} 5. and Ty, (N’ = 1,2,...,N),
the Yamanouchi symbols are actually identical. This proper-
ty is central to the procedure we employ, allowing the use of
the special unitary Casimir operators to specify the permuta-
tional symmetry characteristics.

While it is usually assumed that the additional labels
represented by « can be found “in principle,” this is rarely
demonstrated. It has been established by Weyl' that all the
states in the Hilbert space for [SU,;, , ]®*"DSU, ., ®Sy
are uniquely labeled. The labeling proceeds via the group—
subgroup reduction (2.2) for the permutation group S, as
well as the dual group—subgroup reduction for the special
unitary group

SU,,,, DSU,;D+--DSU, 38U, DU, 2.7

Every state for an irreducible representation of
SU,;, 1 ®Sy is uniquely labeled as follows:

lFN#N{/l}NVN>’ (2.8)

where I, is an N-box frame describing an irreducible repre-
sentation of S, and {4}, is an N-box frame describing an
irreducible representation of SU,;,,. As for (2.5),
I', = {4}, and the internal label i, is a Yamanouchi sym-
bol for S,. The label v, in (2.8) describes a sequence of
irreps for the reduction (2.7), which differs from the reduc-
tion {4}y, {4 }r_1,-..{4 "}, used to describe the state in
(2.5). The internal labels £, and v, which are not related
to one another in any rigid way, produce a unique classifica-
tion for all states in the Hilbert space for SU,; , , ® S.

The group—subgroup reduction (2.7) is not useful for
our general purpose, as the physical angular momentum
group is not contained in any of the subgroups of SU,; , ;:

SU3 (ohys) ©SUy 4 1 DSU,; PSU, sy - (2.9)

The failure of this last inclusion is responsible for the com-
plexity in constructing appropriately symmetrized N-parti-
cle states of good angular momentum.

We have only referred to the Weyl labeling scheme
(2.8) in order to point out that each state in each component
Hilbert space can be uniquely identified. The labeling
scheme which we actually adopt is that specified by (2.5).
Comparison to the complete labeling achieved in the Weyl
scheme establishes that the “additional quantum numbers,”
a, introduced in (2.5), exist in principle.
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ill. THE SET OF COMMUTING OPERATORS
CHARACTERIZING THE STATES

The various labels specifying the N-particle states were
introduced in the previous section [Eq. (2.5)]. In the pres-
ent section we discuss some further properties of the groups
involved and present the operators of interest in a form suit-
able for our further development.

A. The quadratic Casimir operator of the special unitary
group SU,, ,

The special unitary group SU,, , , is a compact contin-
uous group and has, therefore, a countable set of finite-di-
mensional inequivalent unitary irreducible representations,
characterized by Young frames with an arbitrary number of
boxes. What we are really interested in is a realization of this
group over the space of N-particle states, denoted by
SU,; . (V). In terms of Racah’s unit tensor operators,>*
which satisfy

(¥l \us19h) = &; (kigm|i'm'), (3.1)
the generators of the group are given by
N
Ui(N)= D ul (). 3.2)

i=1

The quadratic Casimir operator is given by the expression’

1 ¥
C?[SU,,. , ()] = — D*2k + 1)3?
[SUy. 1 (N] 2j+1k§]( Yk + 1)
X [UXN)YUXN)]S . (3.3)

The most important property of the realization
SU,, . ; (V) is that its operation within the N-particle space
is in very close correspondence with that of the symmetric
group S,. In particular, as emphasized in the previous sec-
tion, the irreducible basis corresponding to a specific Young
frame of S, corresponds to the same Young frame of
SU,; 41 (V).

In order to discuss some properties of the Casimir oper-
ators corresponding to different values of N we note that

UL(N) =UZ(N—1) + us(N) (3.4)
and obtain
(UM U*N)]g = [UNN-DHUXN-1D]g
+2[UX(N - D" (M]3
+ [ (WU (V) ]3. (3.5)

From Eq. (6) of Ref. 7, the last term in Eq. (3.5) is

[e* (N (W) ]§ = (— I)ijlf ’; 3] ug (N),
3.6)
and from p. 521 of Ref. 4, the middle term in Eq. (3.5) is
[UXV - Du (N 1]
=[(— D* 2+ TJUKN - )" (V). 3.7

Using Eqs. (3.4)—(3.7) we obtain the following expres-
sion for the quadratic Casimir operator of the special unitary

Novoselsky, Katriel, and Gilmore 1371



group:
C*[SUy41(N)]
2 ¥
= C2[SU,. N—-D]+ 2k + 1
[SU41( )] y+1 kgl( +1)
(UK = 1)t () + 0y ZUTD 34
2f+1
From this expression and from the fact that

C*[SU,, , (N — 1) ] commutes with U % (N — 1) (Ref. 7),
it follows that C*[SU,;, , (N — 1)] and C?[SU,;, , (V)]
commute with one another. Using the above relation one can
express C2[SU,;, , (N)] interms of C*[SU,;, , (N")] for
any N’ <N and use this expression to show that these two
operators commute.

B. The total angular momentum J3%

The total angular momentum operator J% can be ex-
pressed in terms of its Cartesian components

N
J. = z J (D), a=xp.z
i=1
where the J, (i) are the single-particle angular momentum
operators. This operator commutes with S, as well as with
each one of its subgroups S, N '<N. It follows immediately
that it commutes with each one of the realizations
C*[SU,, ,(N")]. Note, however, that J%. (N'<N),
which trivially commutes with J %, does not commute with
C?*[SU,,,(N)] (or, for that matter, with any
C?*[SU,;,,(N")] with N'<N"). An immediate conse-
quence, which is well-known in the context of antisymmetric
wave functions, is that when an N-particle state with an an-
gular momentum quantum number Jis formed from an anti-
symmetric (N — 1)-particle state with an angular momen-
tum quantum number J' by means of angular momentum
coupling, the coupled state is a common eigenstate of
J% and J%_,, but it is, in general, not antisymmetric. In
order to antisymmetrize the N-particle state one has to ex-
press it in terms of (N — 1)-particle states with several dif-
ferent values of J'. Thus the common eigenstate of J, and
C?[SU,;, , (N)] is not, in general, an eigenstate of J3,_,,
whileitis an eigenstateof all C*[SU,, , ; (N')} with N’ < N.

C. The quadratic Casimir operators of the symplectic
and orthogonal groups

When 2/ + 1is even ( jis a half-integer), the symplectic
group Sp,, ., ; is capable of providing a further classification
when a degeneracy remains after classification with respect
to {SU,., ,(N'); N'=12,..,N} and J3 has been per-
formed. When 2/ 4+ 1is odd ( jis an integer), the same role is
assumed by SO, , , . Asstated in Sec. I1, we denote these two
groups by the generic symbol R,; , ;, the value of 2j + 1
(even or odd) identifying R as either Sp or SO.

The quadratic Casimir operator for R,, , , is’

CZ[R2J+1(N)]
1 20— 172} + 1
2+
X [UXNUXN)]5.

(— D2k 4+ 1)

k=1,3,..

3.9)
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Using Eq. (3.5) it can be written in the form
C*[Ry,((M)]

2 2~ 1/2] + 1

= C?[R,, N—1 k+1
[Ryii( )]+2j+1 k=zl:,3... 2k+ 1)
X(UM(N — 1)-u*(N))
ug(N) 20— 1721+ 1
_ (2k+1)3/2
2+ 1 k=zl,3...
: kK O
><(—1)2«/2j+1[§ j j]. (3.10)

The sum in the third term can be shown to be equal to
— (j4 1) (2j + 1) for half-integral jand to — j(2j + 1) for
integral j.

Since Ry; , , is a subgroup of SU,, , ,, their Casimir op-
erators commute. Moreover, since Cz[sz +1(N)] is sym-
metric with respect to all the permutations in S, it is sym-
metric with respect to any Sy., N’'<N. However,
C?[R,;, (N')] is not symmetric with respect to Sy, for
N’ <N, and, consequently, does not commute with
C?[SU,;,  (N)]. This is completely analogous to the be-
havior of the angular momentum operators, as presented in
the previous section.

D. Maximal set of commuting operators

The foregoing discussion suggests that the set of qua-
dratic Casimir operators corresponding to SU,, ., (1),
SU,; . 1(2),.,8U,;,  (N), as well as to Ry; , , (N) consti-
tute, together with J% and J,, a set of commuting operators.
Since the sequence of Casimir operators for SU,; , ; specifies
a sequence of Young frames with one box added at a time,
the state they characterize can equivalently be designated by
the corresponding Yamanouchi symbol.

We stress that the sequence {SU,, (N');
N’ =1,2,...,N}, which we use to label the states, differs from
the Weyl sequence {SU, (N); r =2 + 1,2j,..,1}.'° In our
labeling the sequence of Young frames corresponding to the
SU,,, 1 (V") irreps is identical with the sequence of Young
frames corresponding to the symmetric groups {Sy:;
N’ =1.2,..,N},sothat a double Young frame notation is not
needed.

IV. MATRIX ELEMENTS OF ONE-BODY OPERATORS

In this section we evaluate the matrix elements of the
one-body operator

N
V= Z v;

i=1

4.1)

between two states having internal labels i, and u},, respec-
tively, of the irreps I'y and I'}, of the symmetric group S,
{or of SU,; . , (N)]. Since there are (N — 1)! permutations
Pin Sy that transform any specific index m into some other
index 7, it follows that

N
S P, P=(N=-D!'Y v.

PeSy =1
Note that m could be any of the indices 1,2,...,N. For the
applications we have in mind it will be convenient to set

(4.2)
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m = N. The corresponding matrix elements satisfy

> (Cupiw|P "oy P|Tiypy)

ASS,,
N

2

i=1

=(N-— 1)!<FMuN (4.3)

Y Ffv/‘fv) .
The operation of the permutation P on a state [[yuy) is
given by

rl

PThun) = 3 Thui)D b (P),

uf=1

(4.4)

where {D ;;’:’: (P); iy iy = 1’2""’”r;,,} are the elements of

the representation matrix of Pin theirrep I' . Hence, the lhs
of Eq. (4.3) is equal to

N! iy
n rerv PR z <FN#NIUN|FN‘“’
r

N py=1

(4.5)

where use has been made of the representation orthogonality
theorem.'! Substituting Eq. (4.5) in Eq. (4.3) we obtain the
relation

N
(rN/‘N 2 Ui r;v,u;v>
=1
N iy
=—’:—5FNFN ety 21 (Typn|ow | Tpp)- (4.6)
N uy=

Note that the only dependence on the internal state labels
s 1 18 via the Kronecker delta factor. For antisymmetric
(or symmetric) N-body states, this equation reduces to the
standard result

<</1)N

where (1) 5 = (1V) or (V).

If the states of interest are labeled by angular momen-
tum quantum numbers J and J ', respectively, in addition to
their characterization with respect to the symmetric group,
we obtain the reduced matrix elements

N

>

i=1

v, (/1)1\1> =N{(A)yloy[(A)n), (4.7)

N
(rous || S oo||ranss’)
i=1
N o
= 5rNrN it z (T |on | |ITawpeid -
Rry ni=1

(4.8)

V. COEFFICIENTS OF FRACTIONAL PARENTAGE

The coefficients of fractional parentage (cfp’s) are a
central element in the buildup of N-particle states of well-
defined total angular momentum and permutational sym-
metry from (N — 1)-particle states similarly characterized.

For N particles, each having spin j, the state with total
angular momentum J and additional labels a can be ex-
pressed in the form

| ey = [N HBIIYLN - BINT} ed ].
J'.B
(5.1)

Here, | /¥~ 1(BJ")jJ ) is a state of total angular momentum
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J, obtained by coupling of a single particle to a state of N — 1
particles with total angular momentum J ' and additional la-
bels B. The coefficient [j¥~'(8J’)jJ |}/"ajJ ] multiplying
this state in Eq. (5.1) is the corresponding cfp. If both the
(N — 1)-particle state |/¥~'8J’) and the N-particle state
|/aJ ) are assumed to be antisymmetric or symmetric, the
above relation is the standard defining relation of the cfp’s.
However, if the additional quantum numbers a and S con-
tain statelabels ' yzty and Ty, _ g _ ; , respectively, specify-
ing their permutational (or unitary) symmetry as well as
group representation labels v and v’ specifying their symme-
try under the symplectic (or orthogonal) group, we obtain

| /*avl ypnd )
= 2 Y NBVT iy I )T
v’

X [jN‘ YBVT o I W | v ypund 1.
(5.2)
In the last expression we have redefined o and 8 to contain
the remaining quantum numbers needed to uniquely specify
the states.

The ranges of the quantum numbers J', v’ are obtained
directly from the properties of the Clebsch—Gordan series of
the respective groups. For SU(2), J'®j=J'®0O gives the
familiar result [/ — j|<J'<J + . For Sp,;,, and SO, ,,
v'® 0 = X v, where the partition v is obtained by proper
addition of a single box to or deletion of a single box from the
partition v'. Proper addition of a single box to v’ may result in
a partition v with more than the proper number of rows
([j+1D). In this case the appropriate modification rules
must be applied.’*'® These reduce, in the present circum-
stances, to

Spyj,1:if vhas (74 1) + 1 rows, the partition must be

deleted;

SO, ,: if v has j + 1 rows, the last row, of length 1,

must be removed.

From the modification rules it follows that for j half-integral
the N-particle states have even seniority index if &V is even
and odd seniority index if NV is odd. For integral spin parti-
cles, the N-particle state may have both even and odd senior-
ity indices, when N > j. A well-known example of the SO, ,
modification rule, the j = 1 case, is briefly discussed in Sec.
IX B.

The representation and internal labels T'y, _,uy_, are
uniquely determined in terms of I" yu , so there is no sum-
mation over these indices in Eq. (5.2). To specify the rela-
tionbetween I' yuy and 'y _ ;e _ |, we recall that the label-
ing of the N-particle states by the sequence of eigenvalues of

C2[SUy, (N)], N'=12,..N,

corresponds to a sequence of Young frames with one box
added at a time. The representation label I y corresponds to
the last frame in the sequence, and the internal label u,
consists of a sequence of Young frames leading to I ;. Here
I'y_, is the last [ (N — 1)-particle] frame in the sequence
s and uy _ is the sequence obtained from pt ; by omitting
the (N — 1)-particle frame. It will be shown in Sec. VI that
the cfp’s depend only on the N- and (N — 1)-particle frames
I'vand Ty, and not on the preceding frames specifying

pyanduy .
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VI. MATRIX ELEMENTS OF C2[SU,,, (M]

In the present section we derive the expressions for the
matrix elements of the quadratic Casimir operator
C? [SUZJ. +1(N)]. These matrix elements are evaluated be-
tween N-particle states obtained by coupling one particle to
appropriate (N — 1)-particle states. The N-particle states,
which have a total angular momentum J, are denoted by

| NN &' YT ). (6.1)

Here Y' is the Yamanouchi symbol characterizing the
(N — 1)-particle state with respect to the sequence of com-
muting operators

{C*[SU,, ,(N)]. N'=1,2,.,N—1}, (6.2)

J'1is the (N — 1)-particle angular momentum, and &’ is the
collection of all additional quantum numbers, including the
seniority. No further labels are necessary since from a given
(N — 1)-particle state we obtain a unique N-particle state
with a definite total angular momentum.

In Sec. III it was shown that C*[SU,,, , (N)] com-
mutes with both the N-particle angular momentum operator
and with the sequence (6.2). Consequently, its eigenstates
must be linear combinations of all the N-particle states of the
form (6.2) with a given J and Y. The coefficients in this
linear combinations are the desired cfp’s.

To evaluate the matrix elements of C*[SU,; , , (N) ] we
start from Eq. (3.8) and treat each one of the three terms on
the right-hand side of that equation separately.

(a) For the basis set chosen above, Eq.
C?[SU,,, (N —1)] is diagonal. Hence
(N U@ YT |C?[SU,, (N~ 1)]

X| N Wa"Y"T "))

=8y y-8ua by

X{ATh_1|C?[SUy,  (N— 1) ]ITh_1), (6.3)
where the eigenvalue of the quadratic Casimir operator for a
well-defined eigenstate, appearing in the rhs, is given in Eq.
(8.1). This eigenvalue depends onlyon I'}, _,, the (¥ — 1)-
particle Young shape, and not on the whole Yamanouchi
symbol Y.

(b) The matrix element of the scalar product
(UM(N — 1)-u*(N)) is evaluated using (Ref. 4, p. 522)

(6.1),

N U@ YT T WUMN = 1) -1 (V)

le—-l(a”YllJ”)jJ>
. G T
=(=1 J+J+J[ ]
( ) ] J” k
X(] —1 ’YIJI”U (N_l)”] -1 ”Y”J”)

X (Gl (N[ ) (6.4)

The one-particle reduced matrix element satisfies ( j||u*|| )
= (— 1)*y2j + 1. To evaluate the (N — 1)-particle re-
duced matrix element we first note that U*(N — 1), which
is one of the generators of SU,, , (N), commutes with
C?[SU,;, ; (N — 1)]. Therefore, this matrix element van-
ishesif ¥’ and Y " correspond to different irreps. The expres-
sion for this matrix element follows from the general result
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for a one-body reduced matrix element, Eq. (4.8), from
which

(N la' YT | UKN —
N—1

D~ la"Y"T")

-N—-l l

(J 1YJ'

=8y
Rro_, ¥ery_,

¥ (N — D] ¥~ a"Ty_, ¥I"). (6.5)

Here ¥, which is an (N — 2)-particle Yamanouchi symbol
equivalent to a sequence of Young frames of the form
I,I';- Ty _,, ranges over the basis states for the the irrep
F;v_ 1

The reduced matrix element in the sum in Eq. (6.5) is
expressed in terms of cfp’s from N — 2 to N — 1 as follows:

(j -1 ,FN YJllluk(N_ 1)“] —1 ur/ YJII)
_ z [jN—Z(BI‘yA!)JJI‘}J —1 IFI IYJI]
B'NE"A

X [jN—Z(ﬂ"'ivA")jjnl}j -1 IIr\N_ ) YJ"]
X(f¥ 2B YA |luk(N = 1)

| N =2(B"FA" )T "), (6.6)
and by using Ref. 4, p. 552, we obtain
(2B YA | uM(N = D|| N 2B TA" )T ")

= (=DM DT+ D)

SRRV O E S

(6.7)

where A’and A” arethe (N — 2)-particle angular momenta.
By subtituting Egs. (6.5)—(6.7) in Eq. (6.4), one ob-

tains

<jN— l(a;YlJr)jjl(Uk(N_
le— l(a"YHJn)jJ>

1)-u*(N))

Jj
j J”

— ( _ 1)2j+J+J'+J"+k[

J1 ...
k] (2./+ l)ﬁy'Y”

xX=L G i@+ n
Th_y
X ¥ T (=DM HBYA}
Yery_, PA
N —1 lrr YJ’]
><[1” 2(BYA)jJ"I}J ~'a"Thy_, ¥7"]
[Jll j k] (6.8)

Using Eq. (6.8) we find that the sum over & in the sec-
ond term in Eq. (3.8) reduces to

2 j
2k + 1) (— 1)* { " }F" . ]
1;.—;1 j J J"
J'j J]
—( — 1)/ +A
=(=b {J" i A
(_1)2]'+2j+1+/\
'+ D@+
Using Eq. (6.9), the total contribution of the second term in

(6.9)

ST
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Eq. (3.8) is
2= DI AT DT

F1) byy- =1
n

Y S (=D ABYAT |}

Yery_, BA
N—l IFN YJI]
[_]N 2(ﬂYA)_]J"|}jN_ la”FIN—l?J”]
JjoJ
vef ]
X [( ) J" j A
( _ 1)2]'+2j+J+A]
T+ H@+ D
The contribution involving the §,.,. factor in Eq.
(6.10) can be simplified by the use of the orthogonality
property of the cfp’s (Ref. 4, p. 522):
I N-1
2ji+1 e,

.
Pyt

(6.10)

6111”5}”’”2( . 1)4j+4J'+2J

XY 3 (

v
X [N THBYMI B e Ty YT
=8,,-8yy-Bua [2IN= 1)/(2/ + 1] (6.11)

Finally, the contribution of the second term in Eq. (3.8) to
the matrix element of C2[SU,,, , (N)] is

20— DI NQT DT+ 1) Syeye

X[(N=1/ng, ]Z Y (—D*

Yery_, BA

X [N HBYMT |V '@’ Ty

—1

— DAY 2BYN)T | e Ty VI]

%70

N2 h s AN me  Tee T
XY HBYMT (WY e Ty YT ][J" j A]
— 8550 8pyeOua [2IN=1)/(2 + 1] (6.12)

(c) The matrix element of the third term in Eq. (3.8) is
diagonal in the quantum numbers of the (N — 1)-particle
state. Using Ref. 4, p. 522, we obtain

(jN— l(alleI)JJlug(N)le— l(a”Y”J")jJ)
= 8yyeBe by (6.13)
Adding the contributions of the three terms, Eqs. (6.3),

(6.12), and (6.13), we obtain the matrix element of
C?[SU,;, (N)] in the form

(U@ YT CPSU, (M|~ Ya” Y T ")T)

=6Y'Y'6a'a'5.l’!'[<f “la'y'J|C?

[SU,  ,(N=D]| /" la"Y"T")
4j(j+1)—2(N—1)]
+ -
2ji+1

+8yy- V-1 (— DF+HI+Jr

i
J j I
DEJ"+ 1) . ,,]
‘YEE ;4:’ AjJ
X [N~ 2(BYA)T' Y~ 'a'Ty l7"./’]
X [N~ HBYAT " | BN ! "r;v_,?J"].

XV(2J +

(6.14)
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For the antisymmetric representation this expression re-
duces to Eq. (19) in Bayman and Lande.”

The following observations can now be made concern-
ing the matrix of C*[SU,, . , (N)]. First, as expected, this
matrix is diagonal in the eigenvalues of
C?[SUy, (N=1)], which commutes with
C? [SUy 4 1 (&) ]. Second, the matrix elements depend on
the representation T';,_, of C*[SU,;, , (N — 1)], but they
do not depend on the particular internal state ¥ within this
representation. This means that the eigenvectors, i.e., the
N — 1to Ncfp’s, depend on the Young framesI'y and I, _,
but not on the complete sequence of frames
I,y - Ty _,. This will turn out to result in a consider-
able simplification in the determination of the phase consis-
tent sets of cfp’s for degenerate irreps, discussed in Sec. X.
Even more significantly, this property is crucial in the con-
struction leading to the definition of cfp’s for L-S (or
L-S-T, etc.) coupled states, as discussed in Sec. XI. In view
of this property we denote the cfp’s by
[/"~"(a'Ty_,J")iJ|}*al'yJ | and define the renormal-
ized cfp’s:

[/ '@ Ty_ s )0 Ml ],

=ynr,_,/Nr, [/ (@' Ty WO el yJ ]

(6.15)

These renormalized cfp’s are slightly less convenient for the
representation of N-particle states, but slightly more conven-
ient for the representation of matrix elements of operators.
Replacing the cfp’s by the renormalized cfp’s in Eq. (6.14),
it is modified in two ways: First, the sum over the internal
labels ¥ of I'y_, should be replaced by a sum over the
Young frames I';,_, obtained from I';,_, by deleting one
box; and second, division of the sum by the degeneracy fac-
tor has been absorbed into the renormalization. As a conse-
quence of these modifications the expression for the matrix
element involves unique contributions only and looks more
similar to the standard expressions for matrix elements of
antisymmetric states in terms of corresponding cfp’s.

VIi. MATRIX ELEMENTS OF C2[Sp,,,, (V)] AND
€S0, (M]

The matrix elements of the operators referred to in this
section’s heading, which we also denote collectively by
C?[Ry; . (N)], are easily obtained using expressions de-
rived in the previous section. Referring to Eq. (3.10) we note
that the first and third terms in the expression for the matrix
element of C'2 [Ry 41 (V)] are easily written down using the
corresponding results for the C?[SU,,, , (N)] [Egs. (6.3)
and (6.13)]. Their sum is

Oy y-Ouabyy- [<]~ ‘a'Y'J’ IC [R2;+1]

|/ e Y7y + (3 —20D], (7.1)
where [ j] is the integral part of j. Note that the last term is
equal to j for integral j (SO,;, ,) and to j + 1 for half-inte-
gralj (Spy, 1)-

To obtain the contribution of the second term in Eq.

(3.10) we use the results in Egs. (6.4)—(6.8). The sum over
k, which contains odd terms only, can be expressed in the
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form
2j

> @k+D(-D* {,

k=T,
> 5 Al
- J+A
[ 2J+1+( b {J” J A - (72

Using this result the total contribution of the second term in
Eqg. (3.10) can be separated into that of the Kronecker delta
term

J J}[j J’ A]
JII k " j k

Y+ I+ I VI + D)2+ 1) Spoye

—(=1
( ) Y41
N-1 N2
X S S UVHBYDI}
| VS Yery _, B
Nl Ty ¥I']
X[jN 2BYNI "W e Ty YT, (7.3)
1

<jN—l(arYlJi)lec2[R2j+l(N)]|jN-—1(auYuJu)jJ>

and that of the term containing the 6j symbol:

(= DY+ [T L 1) (2" + 1) y.y-

=Ly oS-

Yery, _, BA

X 1)2A

,
Ly o

X ¥ 2BYN)T | YN e’ Ty I’

X [V 2BYANT |} " Ty VT "]
X{J’ J J] 14
J” _] A * ( . )

The phase factors can be simplified by noting that 2(J + A)
and 2(j+J+ J") are always even. Adding the contribu-
tions of Egs. (7.1), (7.3), and (7.4), we obtain

=8y {88y [V 'Y T |C Ry (N = D[V Y "I ") + (3 —201]) ]

N—-1

+ (=¥ D@+ D

ry_, Yerj_, PA

o VI +1)(2J"+1) N—1

X []N_Z(B?A)j-,lll}] —1 "FN__ . YJ”]

SEDIED N AR (2 20V M) Akl d s VNS 748 [ i V3 )1 A0) Tl ) yHS 240

Yery_, B

For antisymmetric states this result reduces to Eq. (13b) of
Bayman and Lande.”

VIIL. IDENTIFICATION OF THE IRREPS VIA THE
EIGENVALUES OF THE CASIMIR OPERATORS

A Lie algebra of rank / has / Casimir operators that
collectively label its irreps. However, in our procedure we
are only using the quadratic Casimir operators of the
SUy ., and Ry; ., (i, Spy ., orSO,;, ) groups. The
special circumstances that enable the identification of the
irreps using only these operators are closely associated with
the recursive buildup of states being employed.

An irrep of SU,;, , is labeled by the Young frame

A Agndyj 1}, where  A>A,3 >4, (>0 and
2,2’_+,‘ A;=N. The corresponding eigenvalue of
C? [SUZJH(N)] is
2+ 1 ; 2 _
S A4, —2i+ 1)+ XEED (8.1)
i=1 2_] + 1
Similarly, for an irrep of Sp, ,, labeled by

(AuAasndi 12 ), the eigenvalue of C2[Sp,, . , (N)] is
1 j+172

e} Z A + 27— 20+ 3),
i=1

and for an irrep of SO,;, |, labeled by [4,,4,,...,4;], the

(8.2)
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Jj o J oy,
Z[J/I _] ][JN Z(ﬁYA).]J ,}j ]a N—-lYJ]

2741 e
(7.5)
|
eigenvalue of C?[SO,; . (N)] is
—Z/l(/l +2j—2i+1). (8.3)

i=1

For the SU,,, group the situation is particularly
straightforward because at each stage we add one box in an
allowed position to a well-defined Young frame. Starting
from the frame specified by {4,,4,,...,2,;, 1}, we have to
show that any two Young frames generated from it by an
allowed addition of one box have different values of the qua-
dratic Casimir operator.

Compare the frame obtained by increasing A, into
Ar=A,+1 to the one obtained by increasing
Ajintod, =4, + 1. It is assumed, of course, that
Ay <A, and 4, <4;_,. Using Eq. (8.1) we equate the
eigenvalues of the quadratic Casimir operator of the two
(N + 1)-particle Young frames formed above and obtain
A, — A, = k — I. This equality cannot hold, because if k> /
then A, <A,. This establishes the uniqueness of the charac-
terization of the relevant irreps of SU,;, , in terms of the
eigenvalues of the quadratic Casimir operator.

For the symplectic group the situation is somewhat
more involved because the number of boxes can either in-
crease or decrease by 1, on going from the N- tothe (N + 1)-
particle system. Moreover, unlike the SU,, , , case, the sym-
plectic irrep labels for the N-particle system are not good
quantum numbers for the (N + 1)-particle system. How-
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ever, the (N + 1)-particle symplectic irrep can be uniquely
identified by inspecting the symplectic irrep of any N-parti-
cle state contributing to it.

In analogy with the argument presented above for the
special unitary group, two shapes, which are both obtained
by subtraction or both by addition from a common N-parti-
cle shape, correspond to different eigenvalues of the sym-
plectic Casimir operator. Let us consider the frame obtained
by addition of a box to A, and the frame obtained by subtrac-
tion of a box from A4,. Clearly, this assumes that 4, <4, _,
and that 4, > 4, , ,. Equating the expressions for the eigen-
values of the quadratic Casimir operator, Eq. (8.2), for these
two frames we obtain

A+, +25+3=k+1

This equality cannot hold because the maximum number of
rows in a symplectic Young frame is j+ 1 so that
k+1<2j+1.

For the orthogonal group one can analogously establish
that two Young frames obtained from an N-particle state by
the addition or subtraction of one box in any allowed way
have different eigenvalues of the quadratic Casimir operator.
As mentioned in Sec. V, one of the (N + 1)-particle irreps of
the orthogonal group that can be generated from N-particle
‘irrep with j rows has the same Young frame as the one it was
generated from. The corresponding eigenvalue can also be
shown to differ from the eigenvalues of all the other N + 1
frames obtained from the given N-particle frame.

Stronger statements concerning the sets of irreps gener-
ated for the special unitary, symplectic, and orthogonal
groups can be deduced from the expressions for the corre-
sponding quadratic Casimir operators, Eqs. (8.1)-(8.3).
Suppose [4] represents a partition identifying an irrep of
8O,;,, and [4,;], [4 ] represent partitions with one
box added to the ith row or removed from it. If C?[1] repre-
sents the quadratic Casimir operator SO,; , ,, we have the
strict inequalities

C*A_,1<C?[A_,] < <C*A_(_n]

<C?’[A_;]<C?[A)<C?[A,;]1<C? A, ;-n]

< <C?A,,]1<C*[A,,]- (8.4)
Similar inequalities hold for the Clebsch—-Gordan series of
(1) ®0O and {4} @ O corresponding to the symplectic and
special unitary group, respectively. For the former Eq. (8.4)
has to be modified by eliminating the term C?[A4]. For the
latter, only the terms with added boxes are present. These
inequalities imply the uniqueness of the identification by
means of the eigenvalue of the quadratic Casimir operator,

and provide a convenient framework for carrying this identi-
fication out.

IX. ILLUSTRATIVE EXAMPLES

Toillustrate the application of the results of the previous
three sections we consider in some detail a sequence of sim-
ple cases. The examples presented illustrate the evaluation of
the matrix elements of the quadratic Casimir operators of
the special unitary, symplectic, and orthogonal groups, the
calculation of the cfp’s and the identification of the various
irreps. In Secs. IX A and IX B we present general results for
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one- and two-particle states, respectively. In Secs. IX C and
IX D we evaluate the matrix elements of the Casimir opera-
tor of the special unitary group for three- and four-particle
states with j = 1, identify the corresponding irreps, and ob-
tain the cfp’s. In Sec. IX E we illustrate the classification by
means of the seniority quantum number for four-particle
states with j = 3.

A. One particle, arbitrary j
For a single particle, Eqs. (6.14) and (7.5) give
GIC?[SUy (D] =4+ D/Q2j+ 1D, (9.1
(JIC?[Ry 1 (D] =i+ [1=(=D¥]/2. (9.2)

Equation (9.1) agrees with the case {1} of Eq. (8.1). Equa-
tion (9.2) agrees with the case (1) of Eq. (8.2) for half-
integral j and with the case [1] of Eq. (8.3) for integral j.

B. Two particles, arbitrary j
For two particles,
(FTIC?[SUy . (D AT)

SN .
“BUED=2 g T )

2+1 J
_HUAD —2 50 s (9.3)
2+ 1
(FIIC* Ry DA
‘ i joJ
=2+ 1—(=1¥4 (Y 1[” }
)j + ( )+ (2 + )j i o
—(2j+ 1D,y
=254+ 1—-(=D¥4+(=-D¥ - (2j+1,,.
(9.4)

The values of C*[SU,,, , ] for the two-particle irreps
[2] and [1?], as determined from Eq. (8.1), are in agree-
ment with the values obtained in Eq. (9.3) for 2j — J even
and odd, respectively. This is a well-known elementary re-
sult. For half-integral j, the relevant irreps of the symplectic
group are (2), (1?), and (0). The corresponding eigenval-
ues, obtained from Eq. (8.2), are 2j + 3, 2j + 1, and O, re-
spectively. These are the values obtained from Eq. (9.4) forJ
odd, even, and zero, respectively. For integral j> 1 the rel-
evant irreps of the orthogonal group are [2], [1%], and [0].
The corresponding eigenvalues, from Eq. (8.3), are 2j + 1,
2j — 1, and 0, in agreement with the value obtained from Eq.
(9.4) for J even, odd, and zero, respectively. As discussed in
Sec. V, for j = 1, the Young frames can consist of only one
row; the frame [1?] is modified into [1]. The eigenvalue of
C?[SO,,,(2)] [Eq. (8.3)]is 1, corresponding to the state
|12, J = 1) [cf. Eq. (9.4)]. Thus this state is a two-particle
state whose seniority index is equal to 1.

C. Three particles, /=1

Coupling one more particle to the two-particle states
[12{2}0), |12{1?}1), and |1?{2}2), we construct the follow-
ing three-particle states: |12({2}0)1, J= 1), [1I>({1?}1)1,
J=0,1,2), and |17({2}2)1, J = 1,2,3). The only value of J
for which a two-dimensional subspace has to be diagonalized
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is J= 1, for which there are two states belonging to the
Young frame {2}. The C2[SU, (3) ] matrix in this subspace

18
3
3oy )

with the eigenvalues 12 and 6 corresponding, according to
Eq. (8.1),to {3} and {2,1}, respectively. The corresponding
eigenvectors provide the cfp’s as follows:

[13(3}, 7=1) = (5/3)|12({2}0)1, J=1)
+312({23)1, J=1),

Wb qg

(9.5a)

(12({2}2)1, J=2|C*[SU,(3)]|12({2}2)1, J=2) =6 = {2,1},
(12{2)}2)1, J=3|C2[SU,(3)]|12({2}2)1, J=3) =12 = {3},
(PP, J=0|C?[SU,()H]|1P{1PID)1, J=0) =0 = {1°},
(12131, J=2|C3[SU,(3) ]|12{12)1, J=2) =6 = {2,1}.

D. Four particles, j=1

+ (V5731 12({23)1, J=1).
(9.5b)

The irrep {3} is one dimensional, but {2,1} is two dimen-
sional. The other J=1 state belonging to {2,1} is
[12({17}1)1, J = 1). The relative phase of these two states
has to be determined in a manner discussed in the following
section.

Each one of the other three-particle states is obtained
from a unique two-particle state; the corresponding cfp’s are
equal to 1. Evaluating the expectation values of C?[SU,(3)]
for these three-particle states we identify the corresponding
irreps as follows:

(9.6a)
(9.6b)
(9.6¢)
(9.6d)

Some of the four-particle states are obtained uniquely by coupling of the fourth particle to appropriate three-particle
states. The expectation values of the SU,(4) Casimir operator for these states can be used to identify the irreps. The results are

(P({3}3)1, J=4|C*[SU,(4)]|1°({3}3)1, J=4) =3¢ = {4},
(P{3})1, J=0|C*[SUs(4)]|1P({3}1)1, J=0) =3¢ = {4},
(P31, J=1C?[SU;® 11311, J=1) =% = {3,1},
(13({3}3)1, J=3|C3[SU5(H 1| 13({3}1, J=3) =% = {3,1},
(P({2,1}2)1, J=3|C?[SU(4) ]| 1°({2,1}2)1, J=3) = = {3,1},
(P2,1}D)1, J=0[C*[SU;H ]| P21}, J=0) =3 = {27},
(B{12}0)1, J=1|C2[SU,(4)]|1P{1}0)1, J=1) =§ = {2,12}.

The state |1*{3,1}3) is triply degenerate. Two of the
three members of this degenerate state are obtained from
|13{2,1}2), and the third is obtained from |1>{3}3). While
the first two states have identical cfp’s, the phase of the third
state relative to the first two has yet to be determined (cf.
Sec. X). A complete labeling of these three states would in-
volve the sequence of Young frames {1}{2}{3}{3,1},
{1H2H2,13{3,1}, and {1H{1?}{2,1}{3,1}. Similarly,
|14{27}0) is doubly degenerate, the complete labels for the
two  components being  {1}{2}{2,1}{2?} and
{1H{12{2,1}{2%}. The states |1*{3,1}0), |1*{3,1}1), and
[14{2,1}1) are also triply degenerate but the above list con-
tains only one member of each of these basis sets. The con-
struction of the other two members of each basis requires the
diagonalization of appropriate 2 X 2 matrices of the SU;(4)
Casimir operator.

The simplest case involving the diagonalization of a
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(9.7a)
(9.7b)
(9.7¢)
(9.7d)
(9.7¢)
(9.7)
(9.7g)
I
2 X 2 matrix results in
|144)2) = 5 P31, T=2)
+\/%|13({3}1)1, J=2), (9.8a)
[14{3,1}2) = \[% (1*({3}3)1, J=2)
—‘/%|13({3}1)1, J=2). (9.8b)

In this case the three-particle states involved belong to the
nondegenerate symmetric representation {3}.

A more interesting case involves the pair of states
|12({2,1}2)1, J=1) and [1*({2,1}1)1, J=1). In this
case the three-particle states are doubly degenerate and the
evaluation of the off-diagonal matrix element of
C?[SU,(4) ] requires that the relative phases of the two com-
ponents of these two representations be determined consis-
tently. This problem was mentioned in connection with the
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construction of these three-particle states, but it is here that
it becomes crucially relevant. The appropriate procedure is
discussed in Sec. X.

E. An illustration of the seniority classification

In all the cases encountered so far the resultant angular
momentum and the sequence of realizations of the quadratic
Casimir operator for the SU,; , , group provide a complete
classification of the states. While the states discussed could
have been (and some were) characterized with respect to
their seniority, this was unnecessary for their classification.
To encounter a simple example in which the seniority classi-
fication is needed, we consider a system of particles with
J = 3. The results for one and two particles were already pre-
sented in Secs. IX A and IX B. For three particles the states
are still completely classified by C?[SU,(3)] and the total
angular momentum.

The four-particle states |(3)*({3}5)3,/=1) and
[(3)*({31)3, J = 1) present a case in which classification by
means of the symplectic Casimir operator is necessary.
These two states both belong to the {3,1} irrep of SU,(4), as
one finds by evaluating the matrix of the appropriate Casi-
mir operator. However, upon diagonalizing C*{Sp,(4)] we
obtain the seniority 4 state (3,1) whose Casimir operator
eigenvalue is 12, as well as the seniority 2 state (2) whose
eigenvalue is 6. The corresponding eigenstates are

IH*G3,D{3H3,1}, J=1)
=J& @33, J=1)

+VE I3, J=1), (9.9a)
IHU2D{3H3,1} J=1)
=& 1313, J=1)
—JB 1333, J=1) (9.9b)

X. GENERATION OF CONSISTENT BASES FOR S,
REPRESENTATIONS

The procedure for the generation of the N-particle wave
functions and cfp’s proposed in the preceding sections is re-
cursive. Assuming that the states for N — 1 particles have
been constructed, we form the set of N-particle states
| /¥~ Ya'v'Y'J')jJ) foralla’ v’ and J ' allowed for given ¥’
and J. While these states have well-defined angular mo-
menta, they do not, in general, belong to irreps of the special
unitary and symplectic (or orthogonal) groups. Diagonaliz-
ing the matrices for the Casimir operators C? [SU, .1 (M)]
and C 2[sz +1(N)] within the space specified above, we
obtain the set of states | /"avYJ ). Recall that Y is a Yama-
nouchi symbol equivalent to the sequence of Young frames
I'I,---Tyand Y'isequivalentto "'\ T, Ty _,.

Basis sets for irreps of S, labeled by Yamanouchi sym-
bols can be split into subsets, each one of which is specified
by anirrep of S _,. It was shown in Sec. VII that the N — 1
to N cfp’s depend on I',_, and 'y, which also specify the
irreps of SU,;, ; (N — 1) and SU,;, , (N). These cfp’s do
not, however, depend on the internal labels of the ', _, ir-
rep. This is a source of considerable simplification, since it
implies that we have to generate only one representative of
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each subset in order to obtain all the cfp’s needed to span a
particular N-particle irrep. On the other hand, the genera-
tion of states labeled by the same I' ; but different I", _; has
to be performed in a consistent way. This guarantees that the
corresponding representation matrices conform to some
standard form.

To clarify the issue discussed above let us consider the
irrep {3,1} of SU,,, 1 (4). The three-dimensional irrep (3,1)
of S associated with this representation is spanned by the
states

(1)(2)(3)(3,D(2111),
(1)(2)(2,1)(3,1)«(1211),
(H (12,1 (3,1« (1121).

(10.1)

The Yamanouchi symbols of the sequences of Young frames
in (10.1) are denoted to the right of the corresponding se-
quences. In this example the first state belongs to the one-
dimensional irrep (3) of S; and the other two belong to the
two-dimensional irrep (2,1). The states belonging to the sec-
ond and third sequences have the same cfp’s. However, these
cfp’s have to be generated with the correct phase relative to
the cfp’s of the state belonging to the first sequence.

Recalling that all the relevant (N — 1)-particle Young
frames are generated by the removal of one box from the N-
particle frame, it will now be demonstrated that we only have
to consider transpositions (N — 1,N) of the last two indices
in order to construct a complete phase-consistent set of cfp’s.
Let Y, = I',[';--- Ty be a Yamanouchi symbol of the form
(ab---) and Y, a Yamanouchi symbol of the form (ba:-*),
related to Y, by the transposition (¥ — 1,N). Let us further
assume that N — 1 and N appear in different rows and co-
lumns. The state labeled by Y, is generated from the corre-
sponding state labeled by ¥, with the standard phase con-
vention, by using the relation'’

Y2= (l/\’l"‘ofs)[(NyN_ 1)_ars]Yl’

where r and s are the indices of the rows in which N and
N — 1 are placed in Y,, A, and A, are the lengths of these
rows, and o,, = 1/(4, — A, + s — r). A Yamanouchi sym-
bol having N — 1 and N in either the same row or the same
column is an eigenstate of the transposition (¥ — 1,¥), and
is consequently of no interest in the present context.

The state | j"a¥,J ), where a contains the seniority la-
bel, is given in terms of the appropriate cfp’s:

(10.2)

| faYJ) = z} [ '@Ty_J)J |}l ]

X| &' YT ). (10.3)
We would like to determine the cfp’s for the state | /*aY,J )
by means of Eq. (10.2). This is achieved by writing the origi-
nal state, Eq. (10.3), usingthe N—2to N— 1 cfp’sand a
recoupling transformation. As a consequence, the particles
N — 1 and N are coupled into well-defined angular momen-
tum states, which, for two particles, have unique permuta-
tional symmetry characters. The resulting expression for the
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state (10.3) is
|jNaF1"'FN_2FN—1FNJ>

=3 [ "@Ty_JjJ 1} "alyJ ]

a'J’
X Z [jN—Z(aler_2Jﬂ)jJ/|}jN—]arFN_ 1J:]
a”J"
X( _ 1)2j+J+J" 2,]' + 1
21 — n > ’
X Y VoI +1 [ 77 ]
7= ¥ J J
X|(j¥2a"T Ty o J ") FTL (DIV),
(10.4)
where
(2), J=2,2—2,.00r1
(1%), J=2%—1,2—3..1 or 0.
Using the form of the N-particle state obtained in this way, it
is a simple matter to apply the operator specified in Eq.
(10.2), since (N—-1LN)(2)=(2) and
(N—LN)(1*) = — (1%).

Application of the operator (10.2) to the state in Eq.
(10.4) generates the state | /*a Y,J ), expressed in terms of
the already available cfp’s of the state | /¥aY,J ). To extract
the cfp’s of | j/*aY,J ), we note that the sequence of Young

frames corresponding to Y, differs from that for ¥, only by
the Young frame for N — 1 particles. Thus, an expression for

r,J) = {

J

[P{2H2,1}, J=2) = |1*{2}2)1, J=2)

=4{1}3)1%{2}2), J=2) + (J3/)|(1' {1} 1) (1*{13}1), J=2).

Application of Eq. (10.2) yields

this state can be obtained by replacing ', _ , by I'},_, in Eq.
(10.4). This expression involves the still unknown N — 1 to
N cfp’s of the state | j~a Y,J }. Equating the coefficients of

|2, Ty d ) (P (D DV

in the two equivalent expressions for the state | "a¥,J)
whose derivation was described above, we obtain a set of
linear equations for the cfp’s desired.

To establish that the number of linear equations is suffi-
cient to determine all the cfp’s, we note that the number of
terms of the form

(¥ 2a"Ty_>d ") (FT, (DDHT)

is equal to the number of ways of getting J from J * by cou-
pling two more particles, disregarding permutational sym-
metry. The number of cfp’s

[V~ Y@ Ty_ I | el yJ |

is equal to the number of (N — 1)-particle states from which
a particular symmetry N-particle state can be obtained. The
(N — 1)-particle states were obtained from the set of
(N — 2)-particle states {| /¥ ~2a"T' 5 _,J ") } by coupling of
one particle and selecting according to the permutational
symmetry. Therefore, there are at least as many linear equa-
tions as there are unknown cfp’s.
As a simple illustration we note that starting from Eq.

(9.6a) and using Eq. (10.4), we obtain

(10.5)

|13{12H{2,1}, J=2) = 2/3)[(2,3) +4]|1*{2H2,1}, J=2)

= (32 |(1{1in (1*{2}2), J=2) — ({13 (1H{1%}), J=2).

(10.6)

To extract the cfp’s for the latter state we use Egs. (9.6d) and (10.4) to write
|P{1°H2,1}, 7=2) = [(1}{17}ID) 1, J=2}1{1”H2,1}, J=2]|12({1*}1)1, J=2)

= [({12I)1, J=2|}1*{1?H{2,1}, J=2]

(10.7)

X (32| (1{1}1) (13{2}2), J=2) — 4| (1 {1}1) (12{1?}1), J=2)).
Comparison of the last two equations shows that [ (12{12}1)1, J = 2|}1?{1?}{2,1}, /= 2] = 1. In this case it was only the

phase of the cfp that had to be determined.

A somewhat more interesting case is obtained by using Eq. (10.4) to yield

13{12}{2,1}, J=1) = |(1H{13})1, J=1)

= — (33|11} (1*{2}0), J=1) + (J15/6)|(1{1}1) (1’{2}2), J=1)

+1 {1 ({1, J=1).

Applying Eq. (10.2),

|12{2H2,1}, JT=1) = (2//3)((2,3) — Y|*{1°H2,1}, J=1)
= — ({1} (1?{2}0), J=1) + (J5/6)|(1{1}1) (1*{2}2), /= 1)

— (V372|113 (1{12}), J=1).

On the other hand, using Eq. (10.4),
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|13{2}{2,1}, J=1=[1?2({2}01, J= 1|}13{2}{2,1}, J= 1]|(12{2}0), J=1)
+ [12({2}2)1, J=11}12{2H2,1}, 7= 11|(1?{(2}2)1, J=1)
=[12{2}0)1, J= 1|}13{2}{2,1}, J= 1](§|(1‘{1}1)(12{2}0), J=1)
+ B33 (13{2}2), J=1) — AAB A1) (112}, J=1))
+ [12({2}2)1, J=113*{2H{2,1}, J=11(5/3) (1 {1}1) (1*{2}0), T =1)

+3 ({13 (12{2}2), J=1) + W15/6)| (1'{1}1) (1}{1?}1), T=1)). (10.10)
Equating coefficients of appropriate terms in Egs. (10.9) and (10.10), we obtain the (redundent) set of linear equations
] V5/3 —1
3 3
[1°{2}0)1, /= 1}1*{2H2,1}, /= 1])
= . 10.11
&5 1 o 1o ibeman, son)=| (01D
— 143 J15/6 —372
These equations have a consistent solution which yields the state
|13{2}2,1}, 7=1) =3|12({2}0)1, J=1) — (V5/D)|12({2}2)1, J=1). (10.12)

Note that the same state, with reversed phase, is presented in Eq. (9.5b). The phase presently obtained is consistent with that
of the state presented by Eq. (10.8). These two states span the (2,1) irrep.

XI. THE L-S COUPLED WAVE FUNCTION

To obtain the L-S coupled wave function with any desired permutational symmetry, we couple an L and an S state using
the appropriate Clebsch—Gordan (CG) coefficients for the symmetric group. Consider a state consisting of N particles, each
one having an orbital angular momentum / and a spin s. The orbital angular momenta are coupled into a resultant angular
momentum L and into a permutational irrep I"}, and the spins are coupled into a resultant spin S and a permutational irrep
I'y. The state with a total permutational symmetry I'; and internal state label i1, can be written in the form

|U) ¥ TATR T apn LS ) = Y (DiypnDapeiy [TV D) | M e Typy Lis* e Ty uy S ). (11.1)
Bty
Since we are usually interested in totally antisymmetric (or totally symmetric) wave functions, we note that the corre-
sponding CG coefficients have the very simple forms'’

(Chvpn Dapn [TNDN () = 8t pe e (14000 (11.2)

Db Dy

Here, Am‘ 3 is a phase factor. It is equal to 1 when the parity of the permutation from the highest Yamanouchi symbol (i.e.,
the Yamanouchi symbol represented by the largest “number”) in the irrep ')y to the Yamanouchi symbol of the state with an
internal label u}y in that irrep is even, and to — 1 otherwise. Here (I"yu, )" denotes the state conjugate to I' yu . Thus if
|Typey) =T\ Ty - Ty) then [(Tyuy)t) = [TIT] - TL ), where 'l is the Young frame obtained from T, by interchanging
rows and columns. The integer v is the dimension of the irrep T'y. The internal state label u, for the symmetric and

antisymmetric irreps obtains a single value and was, therefore, suppressed in the CG coefficients in Eq. (11.2).
Using the L and S N — 1 to N cfp’s, we write the state in the rhs of Eq. (11.1) in the form

[ ¥ T uh Lis" Ty S )
= ¥ [IY"= &' Ty_LYIL [ HY'TWL 1 [s"~ '(a"Ty_,5")sS |}s*a T3S |

a'L'a’s’

XY@ Ty iy LI~ (@ Ty - 1 pty 18 )sS ). (11.3)
Substituting Eq. (11.3) in Eq. (11.1), setting T4,u’, = (I'yu%,)T, and using the CG coefficient for the totally antisymmetric
state in (11.2), we obtain
|(Is)Na'aTh (T4 )Y (AM)LS')

= 3 Ay 11 Tl Lisa (T V'S )
‘/’11—;’ “y
1 ! ] —_ 15 !
= z x Ap g [1V (@' T LYIL HYaTHL | [s"~ @ (Ty_ )'S")sS | }s*a(TH)S |

nF’V yﬁva'L'a'S'

XN N @' Ty_puly L)LY~ (@ (Ty_ ey )18 )sS). (11.4)
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In order to introduce the LS coupled cfp’s we have to write the L-S coupled N-particle function in terms of L—S coupled
(N — 1)-particle functions. We recall that the L and the S cfp’s for all the states spanning the same irrep of the (N — 1)-
particle system are equal. Using this property we split the sum over ), in Eq. (11.4) into a summation over the irreps '}, _ |
belonging to I'y;, and over their internal labels ), _,. Each N-particle CG coefficient can be written as an (N — 1)-particle
CG coefficient multiplied by a factor which depends only on the N- and (N — 1)-particle irreps and not on their internal

labels. Using the factorization, we obtain

|(I)Y'aTH(TTAMLS Yy = Y

’a”L’S'I‘;J_ .

()M TH (TIHTAMLS 1| Us)V ' 'a Ty _ (T _, )IL'S (1Y~ M))IsLS ).

[Us)¥— Yo" 'a" Ty _  (TX¥_ )TL'S' (17~ ")isLS |}

(11.5)

In this expression the N-particle L-S state is written as a linear combination of (N — 1)- to N-particle L-S coupled cfp’s
multiplying appropriate N-particle wave functions. The L-S coupled cfp’s are related to the L and S cfp’s by

[U)¥ @@ Ty, (T4 )'L'S" (1N~ 1))isLS |}(Js)

= ,nr,’v’f./nl‘kArhrﬁA, [~ "a'Ty_ L)L | H aTHL 1 [s"~ (@*(TH_ )" )sS |}sa’(T))1S ).

HereA ., .
CI€Arir_,

est Yamanouchi symbol in '} to the highest Yamanouchi
symbol in the subset of the I'y; basis which spans the T’} _,

is the parity of the permutation from the high-

irrep. In obtaining the phase factor in Eq. (11.6) we use the
straightforward relation

Ay, =A
The phase factor A, 1

Assume that the Young frame corresponding to I'},_, is
obtained from that corresponding to I'; by deleting a box in
row a. The set of N-particle Yamanouchi symbols with a as
their leading index spans a basis set for I}y, _ , . The parity of
the permutation from the highest symbol in that set to the
highest symbol in I}, is equal to the number of indices larger
than a, or, equivalently, to the total number of boxes in rows
a + 1 and down, in either I}y or T}, _,.

As a simple example of the determination of the phase
factor Ap, ., consider the two-dinensional irrep I

= (2,1). The Yamanouchi symbols spanning the basis set
for this irrep are (211) and (121). The first spans the I'}
= (2) irrep and the second spans the I’} = (1?) irrep upon
deletion of a box from the row denoted by the leading (left-
most ) index. Since for the symbol (121), the index of the box
deleted first is a = 1, there is one box with a > 1, so that the
phase of this state relative to the state (211) (whose Yaman-
ouchi symbol is the largest) is — 1. Similarly, the three-
dimensional irrep (3,1) is spanned by (2111), (1211), and
(1121). The first state, whose Yamanouchi symbol is the
largest of the three, spans the irrep (3) upon deletion of the
leading index, and the other two span the irrep (2,1). Of the
two (2,1) states, (1211) is higher, and it can be obtained
from (2111) by one transposition, i.e., A3,y = — 1.
To illustrate the evaluation of the L-S coupled cfp’s for
a totally antisymmetric state, consider the three-particle
state with /=s=1, L =S =1, and '} = (2,1). Substitut-
ing the appropriate L (S) cfp’s [Eqgs. (10.8) and (10.12)] in
Eq. (11.6), we obtain the following L-S cfp’s:

[ADH@0(1H (1) 11]}
(1)3(2,1)(2,1) (1) 11] = V2/3,

=A (11.7)

] 1 1 ‘AL !
Ly ¥ I VY 75 Ly ¥ S b VYT VO

is easily evaluated as follows:

(11.8a)
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Na'a'T y (T)T(IM)LS |
(11.6)

(
[ADX(2)2(1) 1)(11) 11}

(1D3(2,1)(2,1) (1) 11] = —5/3v2, (11.8b)
[AD (1)) 11|}

(D32, 2,1 (1) 11] = —v2/3, (11.8¢)
[ADX(H12)ynanin} .

(D32, (2,1)(1*)11] =/5/3v2. (11.8d)

The factorization of the N-particle CG coefficient of the
symmetric group into a product of an (N — 1)-particle CG
coefficient and a factor which only depends on the N- and
(N — 1)-particle irreps holds for arbitrary total symmetries
[Ref. 11, Eq. (7-226)]. This enables the immediate general-
ization of Eqgs. (11.5) and (11.6) to introduce L-S coupled
cfp’s for arbitrary total permutational symmetries. These, in
turn, can be used to construct L—-S-T coupled states and to
calculate their cfp’s.

Xil. THE COMPUTATIONAL PROCEDURE

A computer code implementing the formalism de-
scribed above for the evaluation of the L(S) and L-S cou-
pled cfp’s was developed. The input parameters accepted by
the code are the number of particles N and the individual /
and s values. As a preliminary step the program constructs
all Young frames with up to N boxes. The Young frames are
ordered according to the number of particles. For a given
number of particles, we follow a reversed lexicographic or-
der, i.e., a Young frame precedes any other Young frame
with a smaller number of boxes in the first row in which they
are not equal. This ordering is illustrated in Fig. 3. For each
Young frame the dimension of the corresponding irrep of Sy
is evaluated. The eigenvalues of the quadratic Casimir oper-
ators of the special unitary and symplectic or orthogonal
groups are also evaluated, using Eqgs. (8.1)-(8.3).

The following steps are indicated in Fig. 1. First, the
cfp’s are calculated for L and S separately. The procedure
employed in this step is recursive, starting from the one-
particle cfp [°(0)j, j|}/'j] = 1, where j =/ or 5. Assuming
that all the cfp’s up to N — 1 particles were calculated, the
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FIG. 3. Branching diagram for the Young frames, up to four particles. The
arrows indicate Young frames connected by the addition of one box. The
ordinal numbers of the Young frames, explained in the text, are written
below each frame.

program calculates the (N — 1)- to N-particle cfp’s as fol-
lows: For each (N — 1)-particle state, labeled by its angular
momentum J’, permutational Young frame, and seniority, it
constructs sets of N-particle states with specific total angular
momenta J = L or S, obtained by coupling of one more par-
ticle. For each such set of states the code constructs and
diagonalizes the matrix of the operator C*[SU,;, , (V) ],
using Eq. (6.14). The eigenstates obtained belong to well-
defined irreps {4}y of SU,; , | (N). The SU,, , , (V) irrep of
each eigenstate is identified by comparison of its eigenvalue
with the list of eigenvalues of C? [SU, 1 ()] for all the
frames which can be constructed from the original (N — 1)-
particle frame by adding one box. This is facilitated by the
fact, demonstrated in Sec. VIII, that each of the eigenvalues
in the above list is unique.

The step of the computation described above exploits
the following two features.

(1) The diagonalization of the matrices for the quadrat-
ic Casimir operator of the special unitary group generates
states that belong simultaneously to the irreps
{1}, {4} 5_ ., {41} of the realizations

C?[SU, ., (1)],...C*[SU,,  (N—-1)],

C?[SU, ., (M].

(2) The Weyl duality between the special unitary and
the symmetric group, discussed in Sec. II, enables the identi-
fication of these states with states which belong simulta-

neously to the irreps T,,..,I'y_,,['y of the symmetric
groups SpreesSn_ 15585 where Ty ={1}y,
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N'=1,..,N— 1,N. We are primarily interested in the per-
mutational symmetry properties of N-particle states—these
are extracted from our knowledge of their properties under
the special unitary group.

In the procedure as so far described we start from a set of
states belonging to a particularirrep I' y_, and obtain a state
belonging to the irrep I',. While the original irrep I'y,_,
could have a dimension larger than 1, all the cfp’s connecting
the states spanning that irrep to the irrep I", are equal (cf.
Sec. VI). If, however, the dimension of I, is larger than that
of I'y,_,, then the procedure described in Sec. X for the
generation of a complete set of cfp’s with mutually consistent
phase relations is invoked.

The N-particle states obtained at this stage have definite
total angular momenta and belong to definite irreps of
SU,;, | (N) [as well as of all the realizations SU,,, , (N')
with N' = 1,2,..., N — 1]. Each one of these states is a linear
combination of ¥ — 1 to N cfp’s multiplied by appropriate
N-particle states, of the form of Eq. (5.1). These states are
assembled into sets, each containing all the states with the
same total angular momentum and the same irrep of
SU,; , 1- The further classification by means of the seniority
quantum number is accomplished by diagonalizing the ma-
trix of C2 [Ry; 1 (N)] within the set of states with a particu-
lar T,y _, and using the transformation matrix generated for
all the other sets of states with the same I',, as well. The
identification of the irrep of R,; , ; () for the newly formed
eigenstates is achieved by an analogous procedure to that
described above for the SU,, , , irreps. The group theoretical
basis of this procedure is presented in Sec. VIII for the sym-
plectic and the orthogonal groups. The states generated at
this stage are of the form of Eq. (5.2).

In Appendices A and B we present the renormalized
cfp’s computed using the code described above, for up to
three particles, for j = 1 and j = }, respectively. The states
generated for each value of j are numbered consecutively,
starting with the one-particle state. Each state is labeled by
its total angular momentum, the Young diagram specifying
its irrep with respect to SU,; , ; (and Sy ), its seniority index
and the Young diagram specifying its irrep with respect to
R,; , 1. Each cfp is labeled by a set of quantum numbers for
the (N — 1)-particle state, analogous to the set of quantum
numbers specifying the N-particle state. The appendices list
renormalized cfp’s as defined in Eq. (6.15). The cfp for each
I"y_, is listed once.

The last step in the code is displayed in Fig. 2. It involves
the enumeration of the L-S states and the evaluation of their
L-S coupled cfp’s. The L-S coupled cfp’s are obtained by
means of Eq. (11.6), using the L and S cfp’s calculated be-
fore. For totally antisymmetric L-S states the limitation on
the number of rows in the Young diagrams for / imposes a
limitation in the number of columns in s, and vice versa. Our
procedure allows the inclusion of these limitations, so as to
calculate only the L and S cfp’s required.

Appendix C lists the cfp’s for the totally antisymmetric
L-S states obtained from the states in Appendices B and A,
interpreted as L and S states, respectively. Each L—S state is
labeled by the sets of L and S quantum numbers mentioned
above. So is each cfp.
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The computer code (which is available upon request)
has so far been tested on a VAX-750 computer and has been
optimized. It has been demonstrated to be very rapid in com-
parison with existing state-of-the-art codes. A comparison
with the improved GENESIS code® was carried out for / = 3/2
and s = 1, for four- and five-particle systems. For the four-
particle case, our program yields all the L-S cfp’s in less than
1 min CPU time on the VAX-750, compared to about 15 min
with the GENESIS code. For five particles the respective times
are 3 and 90 min. These results suggest that the relative im-
provement achieved with the present code increases with
increasing number of particles, and also for higher values of /
and s. It follows that the present code offers the possibility to
considerably extend the size and complexity of the systems
that can realistically be studied.

Xlil. CONCLUSIONS

In the present article we present a procedure for the
evaluation of the cfp’s for systems consisting of N identical
particles with arbitrary permutational symmetry. This pro-
cedure is a generalization of the very efficient and powerful
method proposed by Bayman and Lande’ more than 20
years ago for symmetric and antisymmetric N-particle
states.

The procedure presented is recursive, generating the
symmetrized N-particle states using symmetrized (N — 1)-
particle states. It involves a fortunate combination of a nu-
merical method for the computation of the cfp’s and an ana-
lytical method for the identification of the corresponding
irreps. The numerical method consists of the diagonalization
of the matrices of the special unitary and symplectic or or-
thogonal quadratic Casimir operators, and the analytical
method provides an identification of the irreps of the rel-
evant groups.

The identification of the irreps of both the special uni-
tary and the symplectic or othogonal groups is achieved us-
ing the eigenvalues of the above matrices and a group theo-
retical result guaranteeing the uniqueness of these
eigenvalaues for the set of N-particle irreps accessible from
any particular (N — 1)-particle state. This is a remarkable
circumstance because in general the quadratic Casimir oper-
ator is not sufficient for the identification of the irreps. In
addition, the state classification achieved is more detailed
than is common in similar contexts, because the seniority
label we use is the full irrep label of the symplectic or orthog-

onal group, rather than an index specifying only the total
number of boxes in the corresponding irreps.

The computational efficiency of the procedure devel-
oped here has been demonstrated by means of a computer
code implementing it for the evaluation of the L-S coupled
cfp’s for totally antisymmetric states. Further extensions, to
L-S coupled states with arbitrary total permutational sym-
metry as well as to L-S-T type coupling states, etc., are feasi-
ble and relatively straightforward.
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APPENDIX A: cfp’s FOR j=1 UP TO THREE PARTICLES

A slightly edited copy of the computer output for the
states and cfp’s for j = 1, up to three particles, is presented
below. The states are numbered consecutively and each one
of them is labeled by its total angular momentum quantum
number J, its permutational Young frame I' i, which is de-
noted in the output by Y, its seniority index v denoted by SE,
and the corresponding Young frame v denoted by YSE. The
Young frames are numbered consecutively (cf. Fig. 3).
These numbers, along with the explicit symbols for the
Young frames, appear for Y and YSE.

The list below presents the renormalized cfp’s defined
by Eq. (6.15). For each N-particle state, the cfp’s from all
theirreps 'y _ , obained from I, by subtraction of one box
are listed. Each cfp is labeled by the ordinal number of the
(N — 1)-particle state, denoted by INIT, and the quantum
numbers of that state: its angular momentum INITJ, the
ordinal number of its permutational Young frame, YINIT,
its seniority index SINIT, and the ordinal number of the
corresponding Young frame YSINIT. In this edited version
of the computer output, the squares of the cfp’s are presented
under the heading CFP**2 in terms of rational fractions. An
asterisk denotes that the negative square root has to be taken.

J
THE STATES FOR 1 PARTICLE
1) Js 1 Y= 1 ( 1) SE= 1 YSE= 1 [ 1]
CEFP**2 INIT INITJ YINIT SINIT YSINIT
1 0 [+} 0 [+} /]
THE STATES FOR 2 PARTICLES
2) J= 0 Y= 2 ( 2 SE= 0 YSE= 0 [ ]l
CEP**2 INIT INITJS YINIT SINIT YSINIT
1 1 b 1 1 1
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3) Js 2 Y= 2 ( 2) SE= 2 YSE= 2 [ 2]

CFP**2 INIT INITY YINIZ SINIT YSINIT
1 1 1 1 1 1
4) Ju 1 Y= 3 ( 1 1) SB= 1 YSE= 1 ([ 1]

CFP**2 INIT INITJ YINIT SINIT YSINIZ
1 1 1 1 1 1

THE STATES FOR 3 PARTICLES
5) Js 1 Y= 4 ( 3 Sg= 1 ¥YSR= 1 [ 1)

CFP**2 INIT INITT YINIT SINIT YSINIT

*5/9 2 o 2 0 0

*4/9 3 2 2 2 2
6) J= 3 Y= 4 { 3) SE= 3 YSE= 4 [ 13)

CFP**2 INIT INITJ YINIZ SINIT YSINIT
1 3 2 2 2 2
7) Ja 1 Y= 5 ( 2 1) SE= 1 YSR= 1 [ 1]

CEP#*2 INIT INITJ YINI? SINI? YSINI?

*2/9 2 0 2 0 0
5/18 3 2 2 2 2

*1/2 4 1 3 1 1
8) Js 2 Y= 5 ( 2 1) SE= 2 YSE= 2 [ 2]

CFP**2 INIT INITT YINIT SINIT YSINIT
1/2 3 2 2 2 2
1/2 4 1 3 1 1
9) J= 0 Ys 6 ( 1 1 1) Sg= 0 YSE= 0 { ]

CEP**2 INIT INITJ YINIT SINIT YSINI?
1 4 1 3 1 1

APPENDIX B: cfp’s FOR j=3 UP TO THREE PARTICLES
A slightly edited copy of the computer output for the states and cfp’s for j = 3, up to three particles, is presented below.
For the notation used see Appendix A.

THE STATES FOR 1 PARTICLE
1) J= 3/2 Y= 1 ( 1) SE= 1 YSE= 1 < 1>
CEP*#*2 INIT INITT YINIT SINIT YSINIT
1 0 0 0 0 [}
THE STATES FOR 2 PARTICLES
2) Jes 1 Y= 2 ( 2) SE= 2 YSE=» 2 < 2>
CEP**2 INIT INITS YINIT SINIT YSINIT
1 1 3/2 1 1 b
3) J= 3 Ym= 2 ( 2) SR= 2 YSB= 2 < 2>
CEP**2 INIT INITS YINIT SINIT YSINIT
1 b 3/2 1 1 1
4) J= 0 Y= 3 ( 1 1) SEB= 0 ISE= 0 < >
CEP*=2 INIT INITS YINIT SINIT YSINI?T
1 1 3/2 1 1 1
5) J= 2 Y= 3 ( 1 1) SE= 2 YSE= 3 < 1 1>
CFp*®»2 INIT INITJS YINIT SINIT YSINIZ
1 1 3/2 1 1 1
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THE STATES FOR 3 PARTICLES

€) J=3/2 Y= 4 ( 3) SB= 3 YSE= 4 < 3>

CFp**2 INIT INITJ YINIT SINIT YSINIT
*7/10 2 1 2 2 2
3/10 3 3 2 2 2

7)) J=5/2 Y= 4 ( 3) SEm= 3 YSE= 4 < 3>

CFp**2 INIT INITJ YINIT SINIT YSINIT
*8/15 2 1 2 2 2
*7/15 3 3 2 2 2

8) J= 9/2 Y= 4 ( 3) SE= 3 YSE= 4 < 3>

CEP#*2 INIT INITJS YINIT SINIT YSINIT

9 Js 1/2 Y= 5 ( 2 1) SE= 3 YSE= 5 < 2 1>

CFP**2 INX? INITJ YINIT SINIT YSINIT
1/2 2 1 2 2 2
*1/2 5 2 3 2 3

10) J= 3/2 Y= S5 ( 2 1) SE= 1 YSE= 1 < 1>

CFp**2 INIT INITJS YINIT SINIT YSINIT
/20 2 1 2 2 2
7/20 3 3 2 2 2
5/12 4 0 3 0 0
1/12 H 2 3 2 3

11) J= 5/2 Y= S ( 2 1) SE=s 3 YSE= 5 < 2 1>

CFPw*2 INIT INITJ YINIT SINIT YSINIT
*7/30 2 1 2 2 2
8/30 3 3 2 2 2
*1/2 5 2 3 2 3

12) J= 7/2 Y= S ( 2 1) SE= 3 YSR= 5 < 2 1>

CFP**2 INIT INITS YINIT SINIT YSINIT
172 3 3 2 2 2
1/2 5 2 3 2 3

13) Jgm 3/2 Y= 6 ( 1 1 1) SE= 1 YSE= 1 < 1>

CEP#**2 INIT INITJ YINIT SINIT YSINIT
*1/6 4 0 3 0 Y
5/6 5 2 3 2 3

APPENDIX C: L-S cfp’s FOR /=3, s=1 UP TO THREE PARTICLES

A slightly edited copy of the computer output for the L-S coupled states and cfp’s for / = 3, s = 1, up to three particles is
presented below. The states are numbered consecutively, and each one is labeled by the ordinal number and list of quantum
numbers for both the L and S factors, as defined in Appendix A. So is each cfp. The notation used is the logical extension of

that described in Appendix A.

THE STATES FOR 1 PARTICLR IN L-S

1) I=1 1L=3/2 Y=1 ( 1) SE=1 Y¥YSE=l ; I=] S=] Y¥Y=1 ( 1) SE=1 YSE=l

CEP*#2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 0 (] 0 0 0 0 0 0 0 0 0

THE STATES FOR 2 PARTICLES IN L-S

2) I=2 L=1 Ys2 ( 2) SE=2 YSE=2 ; Im4 S=l Y=3 ( 1 1) SE=l1 Y¥YSE=l
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CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 1 1 3/2 1 1 1 1 1 1 1 1
3) I=3 L=3 Y=2 ( 2) SEw2 YSE=2 ; I=4 S=l Y=3 ( 1 1) SE=l YSE=l
CFP**2 INITLS ; INI?T INITL YINIT SINIZ? YSINIT ; INIT INITS YINIT SINIT YSINI?
1 1 1 3/2 1 1 1 1 1 1 1 1
4) Im4 Lm0 Y=3 ( 1 1) SE=0 YSE=Q ; I=2 S=0 Y=2 ( 2) SE=0 YSE=O
CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 1 1 3/2 1 1 1 1 1 1 1 1
S5) I=4 1l=0 Y=3 ( 1 1) SE=0 YSE=0 ; I=3 S=2 Ye2 ( 2) SE=2 YSE=2
CEFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 1 1 3/2 1 1 1 1 1 1 1 1
6) I=5 Lmw2 Y=s3 ( 1 1) SE=2 YSE=3 ; I=2 S=0 Y¥Y=2 ( 2) SE=0 YSE=0
CFP#*#*2 INITLS :; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 1 1 3/2 1 1 1 1 1 1 1 1
7) I=5 Lm=2 Y=3 ( 1 1) SE=2 YSEm3 ; I=3 L=2 Y=2 ({( 2) SE=s2 YSE=2
CEP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 b8 1 3/2 1 1 1 1 1 1 1 1
THE STATES FOR 3 PARTICLES IN L-S
8) Im6 L=3/2 Ys=s4 ( 3) SE=3 YSE=d4d ; I=9 S=0 Y=6€ ( 1 1 1) SE=0 YSE=0
CEFP#**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
*7/10 2 2 1 2 2 2 4 1 3 1 1
3/10 3 3 3 2 2 2 4 1 3 1 1
9) Im?7 ImS5/2 Ym4 ( 3) SE=3 YSEwmd ; I=9 Sw0 Y=6é ( 1 1 1) SE=0 YSE=0
CEP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
*8/15 2 2 1 2 2 2 4 1 3 1 1
*7/18 3 3 3 2 2 2 4 1 3 1 1
10) I=8 1=9/2 Y=m4 ( 3) SERw3 YSE=4 ; I=9 S=w0 Y=6 ( 1 1 1) SE=0 YSE=0
CEP#**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1 3 3 3 2 2 2 4 1 3 1 1
11) Iw9 L=l/2 Y=5 ( 2 1) SEBm3 YSE=S ; I=7 S=l Y=5 ( 2 1) SE=l YSE=l
CEP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
*1/2 2 2 1 2 2 2 4 1 3 1 1
*2/9 6 s 2 3 2 3 2 0 2 0 (1]
5/18 7 L 2 3 2 3 3 2 2 2 2
12) I=9 L=1/2 Y=5 ( 2 1) SE=3 YSE=S5 ; I=f8 S=2 Y=5 ( 2 1) SE=s2 YSE=2
CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1/2 2 2 1 2 2 2 4 1 3 1 1
1/2 7 s 2 3 2 3 3 2 2 2 2
13) I= 10 L=3/2 Y=5 ( 2 1) SE=1 Y¥YSEsl ; I=7 S=1 Y=5 ( 2 1) SE=l YSE=l
CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
*3/20 2 2 1 2 2 2 4 1 3 1 1
*7/20 3 3 3 2 2 2 4 1 3 1 1
§/27 4 4 [} 3 o [} 2 [} 2 0 0
*25/108 S 4 0 3 0 0 3 2 2 2 2
1/27 6 5 2 3 2 3 2 "] 2 0 0
*5/108 7 L] 2 3 2 3 3 2 2 2 2
14) I= 10 L=3/2 Y=S ( 2 1) SE=l YSE=sl ; Im8 S=2 Ya§ ( 2 1) SE=2 YSE=2
CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
3/20 2 2 1 2 2 2 4 1 3 1 1
1/20 3 3 3 2 2 2 4 1 3 1 1
*5/12 5 4 0 3 0 0 3 2 2 2 2
*1/12 7 H 2 3 2 3 3 2 2 2 2
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1§) I= 11 1L=5/2 Y=§ ( 2 1) SEm=3 Y¥YSE=5 ; I=a7 S=1 Y¥Y=5 ( 2 1) SE=1 YSE=l

CFp*#2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
7/30 2 2 1 2 2 2 4 1 3 1 1
*4/15 3 3 3 2 2 2 4 1 3 1 1
*2/9 6 5 2 3 2 3 2 0 2 0 0
5/18 7 5 2 3 2 3 3 2 2 2 2

16) I= 11 L=5/2 Y=5 ( 2 1) SE=3 YSE=5 ; I=8 S=2 Y=5 ( 2 1) SE=2 YSE=2

CFR**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
*7/30 2 2 1l 2 2 2 4 1 3 1 1
8/30 3 3 3 2 2 2 4 1 3 1 1
1/2 7 5 2 3 2 3 3 2 2 2 2

17) I= 12 L=7/2 Y=S§5 ( 2 1) SE=3 YSE=5 ; Ia7 S=1l Y=§ ( 2 1) SE=1 YSE=l

CFPw*2 INITLS ; INIT INITL YINIT SINIY? YSINIT ; INIT INITS YINIT SINIT YSINI?
*1/2 3 3 3 2 2 2 4 1 3 1 1
2/9 6 5 2 3 2 3 2 0 2 0 0
*5/18 7 -] 2 3 2 3 3 2 2 2 2
18) I= 12 1I=7/2 ¥Y=5 ( 2 1) SE=3 YSE=§ ; I=8 S=2 Y=5 ( 2 1) SE=2 YSE=2
CEFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
1/2 3 3 3 2 2 2 4 1 3 1l 1
*1/2 7 S 2 3 2 3 3 2 2 2 2

19) I= 13 L=3/2 Y=6 ( 1 1 1) SE=1 YSEsl ; I=5 S=] Y=4 ( 3) SE=l YSEs=l

CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
5/54 4 4 0 3 0 ] 2 [*] 2 Q 0
2/27 s 4 0 3 0 0 3 2 2 2 2
*25/54 6 S 2 3 2 3 2 0 2 0 0
*10/27 7 S 2 3 2 3 3 2 2 2 2

20) I= 13 1I=3/2 Ys6 ( 1 1 1) SE=l YSE=l ; I=6 S=3 Y=4 ( 3) SE=3 YSE=d4

CFP**2 INITLS ; INIT INITL YINIT SINIT YSINIT ; INIT INITS YINIT SINIT YSINIT
*1/6 4 4 1] 3 0 0 3 2 2 2 2
S/6 7 5 2 3 2 3 3 2 2 2 2
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Solutions of a linear harmonic oscillatorlike second-order differential equation in a set of
complex variables are investigated. This equation has an invariance group homomorphic to the
inhomogeneous Lorentz group, IG ;. Because of this, it has solutions with particlelike
properties—mass, energy, momentum, and spin. These results are interesting for an equation

without space-time variables.

I. INTRODUCTION

We will investigate solutions of the linear second-order
“harmonic oscillator” differential equation

oY =0,

g _( Jd d a4 4
Ju,; vy, dv,; du,;
a d _ a 4 )
duy; dv,;  dvy; Juy,

+ (g — Vyitey; + By, 0y — Uyily;). (n

A summation is implied over repeated indices, with / run-
ning from 1 to n. The u,,;, v,; (b=1,2) are complex vari-
ables, with the bar denoting complex conjugation. This
equation has a large group of transformations, with a sub-
group ISL(2) being homomorphic to the inhomogeneous
Lorentz group, IG ;. The infinitesimal generators of the ho-
mogeneous Lorentz group SL(2) (homomorphic to G)
are

Ni= % (""" afb,. + O af,,,. i agbi Ui ag,,,.) ’
2= é (""“ ai,,,. Mo ai,. + 0 ag,,,. o ag,,,. ) ’
% "%(“’"a ., b af,,, e a?b,. O a(';,,, ) 2
Ki=3 (""' v, TV aj,,,. + e Hg,,i B ag,,,) ’
a

K= % (ubi c?li,,. T ai,. B 33}»‘ e ag”‘ ) ’
and those of translations are
Py= — ”“aaz,. + ””aii +E“aii — 852,- ’
P, = i(u"agz, o agz,. +a” aii o ai,- ) ’
-4 _ 4
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These infinitesimal generators obey the usual commutation
relations of IG }:
[Ji;] = i€pdis  [JiK;] = i€y Ky,
[KiK; ] = —iepdi, [JiP] = i€ Py,
[Ki.P;] =i6;P, [P,,F;] =0,
[Pod;]=0, [Py,P;]1=0, [P,K,]= —iP,.

(4)

One reason we are interested in Eq. (1) is that it has two
of the primary properties of the theory of quantum mechan-
ics: linearity and Lorentz invariance. This has interesting
consequences. We know that solutions of linear equations
can be classified according to the irreducible representations
of the invariance group of the equation. We also know that
the irreducible representations of /G ; are classified accord-
ing to their mass and spin, and that basis vectors for the
representations can be chosen as eigenfunctions of the P,.
Thus we expect to, and indeed do, find solutions of Eq. (1)
with particlelike properties—mass, spin, energy, and mo-
mentum.

A second reason for examining this particular operator
is to emphasize that it is not necessary to have space and time
as independent variables in order to have Lorentz invariance
(and the resulting mass, momentum, etc.). This leads us to
consider what roles space and time play, if they are not inde-
pendent variables. We find that there are two possible ways
in which they can be used. In one usage, the x, clearly serve
as labels. In conventional quantum field theory, for example,
the x,, in the field operator ¥* (x,, ) is simply a label telling us
which operator we are looking at. The same is true for the
functions ¢, (x,, ) [see Eq. (16)] in Sec. III. The other usage
is one in which the x,, are functions of the independent vari-
ables which are conjugate to the P,,. This role is discussed in
Sec. VI.

But the most important reason for considering Eq. (1)
is that it provides us with a simple example from which we
hope to generalize. We find here that solutions of the equa-
tion possess a few of the characteristics (mass, etc.) of our
quantum mechanically described physical world. This sug-
gests we consider the hypothesis that there exists a more
complex linear equation from which a// of quantum mechan-
ics follows. Such an equation, if it exists, would have the
following properties.

(1) It would be invariant under ISL(2), so that it would
have particlelike solutions.
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(2) It would have a solution with the properties of the
vacuum state.

(3) The vacuum and particlelike states, closed under
the linear operator, could be used to form a vector space in
which field operators would be defined.

(4) Because of closure the linear operator would be
reexpressible in terms of the field operators and would ap-
parently correspond to the action integral in conventional
quantum field theory. The linear equation would force the
particlelike solutions to interact in such a way that the field
operators would have equations of motion identical to the
usual equations of quantum field theory.

Another way to state the thesis is to say that the equa-
tions of quantum mechanics as we know them are represen-
tations of a particular linear equation. The vector space used
for the representation consists of particlelike functions of the
independent variables (analogous to the u, v of our exam-
ple), so that the kets and bras, in terms of which quantum
mechanics is given, are to be thought of as representing func-
tions of the independent variables. Our motivation for sug-
gesting this is the observation that in the momentum repre-
sentation, all the “variables” of quantum mechanics can be
viewed as Jabels on group representation basis vectors. Mass,
spin, energy, momentum, and parity are labels associated
with ISL(2); color, charge, hadron number, and lepton
number with SU(5) (Ref. 1); and flavors with a flavor
group. This suggests that one should at least entertain the
hypothesis that the variables of quantum mechanics—the
labels—are labeling solutions of a linear equation (which is
given in terms of independent variables whose nature is not
currently known).

There are two further general points to be made about
this proposal. First, the underlying theory we are searching
for is not to be viewed as being in competition with conven-
tional quantum mechanics. It is a theory from which the
usual quantum mechanics is to be derived. The usual prob-
ability interpretation is still to hold. That is, the average val-
ue in state |¢) of the quantity associated with operator 4 is
(|4 |¢);and theaverage valueof 4, (¢|4 |¢) = |{¢]i) |?,for
the particular case when it is a projection operator,
A = |i) (|, for state |}, is to be viewed as the probability that
the system is observed in state |i). We also note that this
theory is not a “hidden variable” theory in the sense that the
phrase is normally used. That is, the independent variables
are not variables that would determine the outcome of an
experiment if their values were known. They are simply vari-
ables such that the vectors representing physical states are
functions of them.

Second, this hypothesis forces one to consider the rela-
tionship between the physical world—or our mental picture
of the physical world—and its mathematical description.
This is not the proper place to fully consider this question,
but we would like to point out what may be obvious. Our
scheme is apparently not compatible with the metaphysical
position that particles “exist independently” in space and
time, with quantum mechanics being the best possible math-
ematical description of their behavior. We maintain, how-
ever, that the incompatibility is not troublesome because the
“independently existing particle” mental picture does not

1390 J. Math. Phys., Vol. 29, No. 6, June 1988

appear to be a necessity; it does not add anything to the
interpretation of quantum mechanics which is not already in
the mathematics.”

The search for the underlying equation—assuming one
exists—will almost certainly prove difficult. This paper is an
early phase of that search in which we consider simple exam-
ples to see what the possibilities are. Several single particle
equations (i.e., equations with no interactions) were de-
scribed in a previous publication.> However, they all used
space-time-like independent variables. The absence of such
independent variables here—in what is also a single-particle
equation—allows us to see more clearly how the group prop-
erties enter. In Sec. II, we give a solution to Eq. (1) which
has just the Gaussian form we would expect from a harmon-
ic oscillator problem. Then in Sec. III, we show how to ob-
tain momentum eigenfunctions from the solution of Sec. II
by the use of momentum projection operators. This allows us
to build up the basis for a mass-m, spin-0 representation of
ISL(2). In Sec. IV, we show how to construct a basis for
spin-( #0) representations from the spin-0 basis functions
by the use of raising and lowering operators. We look briefly
at the construction of vacuumlike states and the attendent
normalization problems in Sec. V, and show how to con-
struct x,, in Sec. V1. Finally, we summarize in Sec. VIL.

We now start our investigation of solutions of Eq. (1)
by considering a single simple solution.

Il. A SIMPLE SOLUTION

There is one solution of Eq. (1) that is relatively easy to
find. It is

Yo=rc exp(z Zzom): c= (_2_)2" ,
v T T )

Zopi = UpUp; + VD,

where ¢ is a normalizing constant. It can be verified that this
is a solution by simply putting it into Eq. (1) and performing
the derivatives. This solution was found by separation of
variables. Let

ui+ = (ul,- +l_)2,-)/\/§, u,-_ = (u“ —‘62,-)/\/59

vt = (v — 521)/\/5’ v =(v; + ‘72.')/\/5-
Then [with Ru = (u + u)/2, Ju= (u—u)/2i]

az 82
6=Y]—
Z[ (a(mu,-+>2+a<3ui+>2
2 2
N 3 3 )
ARv )2 (v )?
+ (Ru )+ () + R )+ (7))

(6)

2 2
+( 3 + d
A(Ru ) (Su)?

a9 a2
+ +
ARv ) v )2)
— ((Ru;7 )+ (Ju7 )+ (Ro7 )2+ (v~ )2)] .

N
Since & factors, it is easy to find product solutions. If we use
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exp( — x*/2) as the solution to the eigenvalue problem for
each single-variable problem, then the total solution is a
product which, when translated back to u,,;, v, variables, is
just 1}0.

As an aside, we note that the form of Eq. (7) makes it
easy to find the full invariance group of . It is the real group
G 4" (where, to illustrate the notation, G ; is the set of all real
transformations which leave 2 — x> — y® — 22 invariant).

It is necessary to have a scalar product for functions of
the u,;, v,;,. We use

+ oo 2 n - _
=] T[T Mdwde=|aufe  ®
— oo b=1i=1
where
d*u =d(Ru)d(Su)d(Rv)d(Sv). 9)

The c of Eq. (5) is found by requiring that (g|¢) = 1 un-
der this definition of the scalar product. If we make a trans-
formation from SL(2) on the dummy variables of integra-
tion from u to v/,

(=G 2a)C): 10
v yy A/ \U

det(A) = a,a; — ap,a,, =1,
then

d*u' =d*u, (11)

so that the scalar product is invariant. We find that it is also
invariant under translations, exp(iP-x), so that it is invar-
iant under the full ISL(2).

In the next section, we need to know how z,,; behaves
under the Lorentz transformations of Eq. (10). We find that
it is invariant under the unitary subgroup, SU(2), of SL(2),
and is one of four vectors in a (J, }) representation of
SL(2). These four vectors transform in the same way as the
P, of Eq. (3); their form, without subscripts, is

Zo= Ul + VU, Z3=ull — UV,

- PO (12)
zZ,=uv+vu, z,=i(vi — uv).

We will show how to construct solutions of Eq. (1)

which are basis vectors for irreducible representations of

ISL(2) by modifying the ¢, of Eq. (5).

Iil. SPIN-0 BASIS FUNCTIONS

The particlelike irreducible representations of ISL(2)
are labeled by mass and spin. Basis vectors for these repre-
sentations can be chosen as eigenfunctions of P,,

P,yY(p) =p,¥(P), (13)
where the p,, are numbers. If our functions form a basis for a
representation of mass m, then

PuDy =P'P =P(z> —pp= m?, (14)
The spin is defined using the p = 0 vector by
JJY; (po = mp =0) =j(j + 1)¢;(m,0), (15)

where the J are defined in Eq. (2). An alternative way of
specifying zero spin is to say that (m,0) is invariant under
the transformations of Eq. (10) when 4 belongs to SU(2).
The ¥, of Eq. (5) does not obey Eq. (13), so it is not a
particlelike solution. In order to construct such solutions
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from it, we first define “position” functions,

Po(x) = eiP.X'Z'o- (16)
These functions obey the equations
Pyt = — i S
o (17)
Pox) = +i 20X
Ix

7
because d[exp(iP-x)f(u,0))/Ix = iP exp (iP-x) f{u,v).
Since P, and therefore exp(iP'x) commute with &, the
¥o(x) are solutions of Eq. (1).

Next, we form the set of functions

Yo(p) =fe_ip'x¢o(x)- (18)
Then

P vo(p) = fd4x e_ipvxPu'ﬁo(x)

=+ ifd ‘xe~ i (X)

xl‘
_Ti j d4x("e“""”)¢o(x>
dx,
= Pu¥o(P); (19)

provided that taking the derivatives with respect to u, v (in
P, ) within the integral sign and the integration by parts can
be justified. Thus we have momentum eigenfunctions; and
since they are linear combinations of solutions, they are also
solutions of Eq. (1).

If we combine Eqgs. (16) and (18), we see that what we
have done is to define projection operators,

2 (p) =Jd“xe"”“’"", (20)
which project out momentum eigenfunctions from an arbi-
trary function (provided their action on the function is well
defined).

The conditions under which we can take the derivatives
associated with P, are that i,(x,u,v) is an integrable func-
tion of x for each value of u, v, and that the partials with
respect to u, v exist and are continuous functions of x, u, v
(Leibniz’s rule). To see that these properties hold, we note
first that because P, is a first-order differential operator,

e P fuy = fle="*u), (21)

where u stands for all the variables u,,, v,;. As an example of
the action of the translation operators,

—iP-x

e Uy = Uy; — IV X + iU ;X — UyXy — 10 X5. (22)

We see from this example that the exponent in ¥,(x) will
continue to be quadratic in the u, v, and will contain terms
linear and quadratic in the x,,. This function is certainly
integrable and derivatives with respect to u, v exist and give a
continuous function.

The integration by parts is justified if ¥, (x) -O0as x — oo
in any direction. In order to see that this holds, consider the
part of the exponent quadratic in the x,,. It has the form

2(z'x)(c'x) — (z°¢) (x-x), (23)
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where ¢, = 1, ¢ =0, z, = Z,z,,;. By means of a linear non-
singular change of variables from x to x’, we can put this
quadratic part in the diagonal form

— (uy ;) (xg + %72+ x57) — (0,7, (x> + 72 + x32).
(24)

Now when x, — o in any direction, at least one of the X,
must go to oo. This implies ¢,(x) -0 as x - oo if the coeffi-
cients on the x are nonzero. Thus the functions ¢, (p,u,v) are
eigenfunctions of P, at all points in (u, v) space except
where u,,;4,; or v,;U,; equals zero. .

We have considered the action of translations on ), and
must now look at transformations from SL(2). Define an
operator U (A) such that

U f(up) = fu' ), (25)

where the matrix 4 and the ', " are given in Eq. (10). We
can show that

U(A)(P-x) =A"'P-x=P-Ax,

(26)
UAd)(cz) =cA™'z=Ac'z,
so that
U(A) = e~ **=9(Ac), (27)

again, with ¢, = 1, ¢ = 0. The A are real 4 X 4 matrices from
the homogeneous Lorentz group G} (with a 2 to 1 mapping
of the set of 4 ’s onto the set of A’s). Note also that A belongs
to & (3) when A4 belongs to SU (2).

We see from these formulas that

U(A)o(p) = fd“x e~ "AP'}’U(A)eiP-x‘ZO

=fd4xe—iAp.yeiP-ylz(Ac)’ (28)

with y = Ax and d %y = d *x.

Now suppose that p, = m, p = 0 and that 4 belongs to
SU(2). Then U(A)y(m,0) = 1y(m,0). Since spin is defined
for the p = O basis functions of an irreducible representation,
we see that we are building a basis for a spin-O representa-
tion.

Next, we define a standard A, (p) such that

A (p) [m0] =[Ep], E={ym"+pp. (29)
This A is defined as the product of two Lorentz transforma-
tions in the following way: First, there is a unique A, involv-
ing only the 0 and 3 components, such that
A[m,0] = [E,0,0,p]. Then there is a unique rotation about
an axis perpendicular to both the z axis and p that takes
(0,0,p) into (p,.p,,p,). Here A (p) is the product of these
two transformations, with 4,(p) being the 4 which gives
A, (p). [ The choice of 4, (p) is not unique because of the 2 to
1 mapping. It can be made so by requiring that 4,(p) be a
continuous function of p which goes to the identity matrix as

p goes to 0.]
Consider now the set of functions
U(A;(p))¢o(m,0) =y (Ep)=9(p). (30)
They are eigenfunctions of P, with eigenvalues E, p, since
PUAP))=U(A4,(p))(A(PP),. (31)

This set of functions is also closed under SL.(2) because
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UA)Y(p) = ¥(A=p,), (32)
where A is the G, matrix associated with 4. Thus these
vectors form the basis for a mass-m, spin-0 irreducible repre-
sentation of ISL(2). They are also solutions of Eq. (1), since
exp(iP:x) and U(A4) commute with Z.

Finally, we consider the scalar product of these func-
tions, using Eq. (8), with the two masses not necessarily
equal:

@'lp) = (W) |¥(p))
= (U (4,(p) ) ¥o(m,0)|U (4,(p) ) tho(m,0))
= (1 (m",0) | U(A4) thy(m,0)), (33)

where A = A 7 (p')4,(p), and we used the Lorentz invar-
iance of the scalar product. We can further reduce this re-
sult:

(P' |P> = J-dufd 4y d"y’ m&”yem-'}’w@(l\c)

= J.d diy” M- AMY fdu e Yodhy(Ac),

(34)
where M’ = [m',0], M = [m,0],y" = Ay’. Now
M'y— AM-y" = (M'—AM)-(J’—“;}’—)
M’ + AM ]
+(——;—’-(y—y ), (35)

so that if we change variables to (y +")/2, w=y —y",
then [remembering that §*(p) = §*(Ap)]

(&'|p) = m)*6* (M’ — AM)f(m)
= (2m)*8*(p' — p)fim), (36)

fim)y = fd"w M0 (ole =0 o). (37)

In order to examine the behavior of f(m), we note that

#oe ~ "F“i, is an exponential in u,v. Thus the function and

the scalar product will factor, with an identical factor for
each value of /. We therefore need to do the scalar product
only for n = 1. Since the exponent is quadratic, we can
change to a new set of %, v in which the exponent is diagonal,
and then easily perform the integrals. The details are not
interesting. The result is

(Dole = F#|9) = c/(4 + (wo — 14 + (wo + 1Y),
r=\ww, (38)

where c is a constant of no consequence. For n > 1, the}”( m)
is just that of Eq. (37) raised to the nth power.

For n > 1, f(m) is a well-behaved function of m. But for
n = 1, the scalar product goes to zero sufficiently slowly in
wy, 7 that one has problems with the Fourier transform. We
conclude from this that the functions in the » = 1 case can-
not be considered a good set of basis vectors. The reason is
that, in the # = 1 case—and only in that case—the four-
momentum operators are not independent, but satisfy
z*P = 0. Since the P, are linearly dependent, we do not ex-
pect to be able to construct valid basis functions.

The result of Eq. (36), that (¢(p) |¢(p’) ) is proportion-
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alto 8*(p — p'), is not what one expects. The scalar product
of basis vectors for a given irreducible representation (fixed
mass, spin) is normally taken to be proportional to
&8 (p — p’). The reason we get the &* here is that Eq. (1) has
a continuum of possible mass values associated with its solu-
tions, rather than having a discrete spectrum. The cause of
this, in turn, is that there is a part of the total invariance
group G §* which does not commute with the ISL(2) invar-
iant operator P-P.

We have seen in this section how to construct functions
which serve as basis vectors for mass-m, spin-O representa-
tions. We turn now to the construction of bases for represen-
tations with nonzero spin.

IV. NONZERO SPIN REPRESENTATIONS

We will expand the problem to be solved from that of
Eq. (1) to the eigenvalue problem
ﬁ'ﬁ/l = /11!’/{ . (39)

Solutions with m = 0, spin#0 exist, but there is not addi-
tional insight to be gained by treating this special case, so we
confine ourselves to m #0. It is easiest to obtain nonzero spin
solutions by using raising and lowering operators. That is,
we find operators A4, such that

[£.4,]=21'4;.. (40)

Then if we have one solution, ¥, of Eq. (39), we can obtain
another, A,.¢,, which has eigenvalue A + 4';

OA, ¥,)=(A+A)4,.¢,. (41)

The 8n raising operators, having A = + 1, for & can be cho-
sen as

R(l,i)=ul,-— 9 ,
2 I,;

Oy,
1 = d 1 — a
R 2,—)=U,+ s R(Z,—-—):—u,+ s
( 2 ! du,; 2 l vy,
1 d ( 1 ) d
R 3’_' = Uy, ¢ R 39__ =VUy; ——,
( 2) ut ,; 2 g du,,;
R(4,i)_z72, A R(4,—i)= g, -2
2 au],' 2 aﬁli
(42)
The lowering operators, having A = — 1, are obtained from
L(m;jz) =R*(m1 _jz)’ (43)

where the asterisk indicates the Hermitian adjoint operator
[u*=1u, (3/3u)*= —a3/du)].

Consider now the construction of basis vectors,
¥,(m, j: p,j,) for a j =} mass-m representation associated
with A = 1. The zero momentum vectors can be chosen as

¥ (m,4:0,7,) = R, j; ) (m,0), (44)
where ¥,(m,0) is the zero spin and momentum # of Eq.
(18),and/ = lor2 [R(3), R(4) donot commute with P, |.
The ¥, (m,}: 0, £ 1) form a two-dimensional, spin-§ repre-
sentation of SU(2). If we want ¥_,, we use L instead of R.
There are no A = 0 spin-} basis vectors.

The p7#0 basis vectors are obtained by using a Lorentz
transformation in the same way as they were for spin 0;
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¢/1(m9j:p’jz) = U(As(p))¢l(m’]09]z)9 (45)

where here j=1, j, = +4, A = £ 1, but the equation ap-
plies more generally for any (allowed) 4, , j,.
Consider next the construction of a spin-1 basis;

¥,(m,1:0,1) = R(LHR(jih)¥(m,0),
¢()(m)1:091) = R(i9%)L(j,%)¢(m70),
¥_(m,1:0,1) = L(;})L(j}) ¥ (m,0)

(46)

(i,j = 1,2) with a very similar construction forj, =0, — 1
The p#0 vectors are obtained as in Eq. (45). Spin-0 basis
vectors can also be constructed from quadratic products of
raising and lowering operators.

If we use the product of three raising and/or lowering
operators, we can, by taking suitable linear combinations,
obtain both spin-} and spin-} basis vectors. Thus there are
many different possible A ’s for each spin. These examples are
sufficient to indicate the possibilities for constructing j#0
representations.

V. AN INVARIANT STATE

In addition to particlelike states, which are specified by
Egs. (13)-(15), there is one other type of state that occurs in
elementary particle physics. It is the ground or vacuum
state, W,, which is an ISL(2) invariant,

J ¥, =K,¥,=0, (47)
P“\I/0=0. (48)

It is possible to construct solutions to Eq. (1) with these
properties. As an example, suppose we have eight sets of
variables (n =4). We construct spin-0 #,(p,) as in Eq.
(30) from the first four sets of variables, and ¢,(p,) from
the second four. From these, we then construct

Vo= fd“Pn 8(py PV (P ( —py),

where g is an arbitrary function of p?. This function is an
ISL(2) invariant; and because ¢, (p,)¥,( — p,) is a solution
of Eq. (1), the linear combination of Eq. (49) is also a solu-
tion. Thus we see that we can construct solutions of Eq. (1)
that have the properties of a vacuum state.

If we take the norm of this state, using Eq. (8), wefinda
difficulty inherent in the construction of vacuumlike states;

(WON’O) =Jd4P{ d4Pl|g|2
XA, (P (= pD ¥ (2 Y (—p1))
=fd‘pi d*p,(8*(p; —p)) gl fim))?  (50)

where f(m,) = f(p, ;) is from Eq. (37). This will be infi-
nite for two reasons. One is that we have two 6 functions with
the same argument, resulting from the translational invar-
iance. The other is that, even if we could ignore the 8%, we
would still get infinity, because fd *p f(p) = o when the in-
tegrand is an SL(2) invariant. Thus we see that the norm of
the vacuum state will always be infinite in a scheme like ours.
This need not be viewed as a weakness of our theory, how-
ever, for when particle states are superimposed on the vacu-

(49)
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um, and the ISL(2) invariance broken, the norm of the par-
ticle plus vacuum state need not be infinite.

It is of interest to build up particle states from this ¥,
instead of the ¢, of Eq. (5), because it shows the beginning of
the construction of a vector space where creation and anni-
hilation operators can be defined. This construction is most
easily done by using a “pseudocreation” operator in the bra—
ket form,

&* (p:1) =Jd“p'|p’ + DA (1],

where |p:1) represents the function of Eq. (30) with variable
set 1 (b=1,2,i=1,2). Here A(p'?) is an arbitrary function
put in so the scalar product will converge. It is a degree of
freedom which will probably not be present when we go to

(51)

interacting  systems. @We note that, because
O|p:1) = {p":]&¢ =0, we have
[Z.,a*(p:1)] =0. (52)

Because of this and & ¥, = 0, the single-particle state
W(p:1) =a*(p:HY,

= fd4p1 ¥(p, +p)g() ¥ ( —p))

X h(p2)f(m,)

is a solution of Eq. (1).
The scalar product of this single-particle state is now
well-behaved provided 4 ? converges sufficiently rapidly, for

(Y D|¥(p:1))
=ﬁ”ﬁd?J@Dﬂmﬁwamhf@h
X (p + P () [ (py + P)a(py))
=5 = p) [@ o0 G PR,
where we expect the §* by analogy with Eq. (36). We see
that Y(E,p=0:1) is an SU(2) invariant, so that if

p-p = m?, then the ¥ (p:1) form the basis for a mass-m, spin-
O representation of ISL(2).

(53)

(54)

VI. SPACE-TIME VARIABLES

We are concerned here with how space and time enter in
atheory where they are not independent variables. One way,
as was mentioned in the Introduction, is as labels on solu-
tions, like those of Eq. (16). A second way they can enter is
as dependent variables, that is, as functions, %, of the inde-
pendent variables (we use the hat to differentiate functional
x,, from x,,’s used as labels) conjugate to the P, , so that they
obey

[POriO] = — [I)],.%J] =i, [P#!'%v] =Os ,u'7év' (55)
We will give an example for the n = 2 (four sets of u, v) case.

To have the correct SL(2) transformation properties, the X,
must have the form of the z, of Eq. (12), so we try

(56)

The sums on i, j run from 1 to 2, we assume the a;; are SL(2)
invariants which donot depend on u,;, v,;, i;;, U,;, ¢.C. means

Xo = aij(uliazj + UliUZj) + c.c.
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complex conjugate, and we have made X, real. To satisfy
Egs. (55), we must have

[P5%0] = a;(uyvy; + vy,uy) —cc. =0,
o . (57)
[Pol = a;( —uyvy; +vuy) —cco =i,
These condtions do not uniquely determine the a’s (and so
the J’EM are not unique). We choose

Ay = i/ [2(u301, — g 015) + 2(8,,0,, — 4,05) ],
(58)

If we define X as in Eq. (56), using the form of the z of Eq.
(12), and the a’s of Eq. (58), we find that they obey all of
Eqgs. (55). So, at least in the sense that they have the correct
transformation properties under ISL(2), these are accepta-
blex,.

One possible use for these X, is in the construction of an
operator ¢ with interactions. Suppose our independent vari-
ables consist of sets of four-set variables, with each set la-
beled by 7. We will have

P, =% Pp.
n

We construct X conjugate to the P, as in Eqgs. (56) and
(58). An ISL(2) invariant form for an interaction is then

Q3= —Qyy, Gy =0ay;=0

(39)

Or= 3 V(x™?),
7#7

where x7% = (x] —x’)(x} —x}’). We note that this
form for the interaction is only one among many possibili-
ties. We will simply have to try the different forms to see if
they give the familiar equations of quantum mechanics.

Also note that the P, of Egs. (3) and (59) is not the
Hamiltonian. Rather, it is identically equal to i(d /dt). The
Hamiltonian is associated with a method of solving ¥ =0
in which W is given on one “constant ¢ ” surfaceand V¥ =0
is used to integrate forward in time. This method is equiva-
lent to using a Hamiltonian; the form of the Hamiltonian is
determined by the form of ¢, and it will contain the interac-
tion. This method is analogous to using the variational prin-
ciple in quantum field theory to obtain a Hamiltonian from
the action integral.*

(60)

Vil. SUMMARY

We have seen that the solutions of Eqgs. (1) or (39)
include functions which can serve as basis vectors for irredu-
cible representations with any spin and (nonzero) mass. In
constructing these representations, we have used methods
that should be applicable to other linear, Lorentz invariant
equations. These include the construction of #(x,) in Eq.
(16); the construction of momentum eigenfunctions by the
use of the projection operator of Eq. (20); the use of stan-
dard Lorentz transformations in Eqgs. (29) and (45) to con-
struct p£0 basis functions from p = O functions; the con-
struction of single-particle states from the vacuum using
Egs. (51) and (53); and the construction of functions iy
from Eq. (55).

The switch to the problem with interactions will be quite
difficult. The most basic difficulty is that we do not know the
form of the linear operator in terms of the independent vari-
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ables (although we have suggested a possibility in Sec. VI);
we will simply have to experiment. The next problem is that
we do not expect an operator which produces interactions to
separate, as does the one here. So there will almost certainly
be no exact solutions. Because of this, the procedure that one
will apparently be forced to follow, in order to carry out the
program outlined in the introduction, is as follows.

(1) Construct an “appropriate” set of particlelike func-
tions from each set of independent variables. These “bare
particle” functions—the same for each set of variables—are
to be closed under the action of the linear operator.

(2) Construct an approximate vacuum state solution to
&V =0 from sums of products of the bare particle func-
tions, in analogy to the construction of Eq. (49).

(3) Introduce single- and multiple-particle states in a
manner similar to that of Egs. (51) and (53). From these
states, construct a basis for occupation number space, and
define creation and annihilation operators for bare particles.

1395 J. Math. Phys., Vol. 29, No. 6, June 1988

From the closure property, we should then be able to reex-
press & in terms of these creation and annihilation opera-
tors.

(4) Finally, we look at the equations of motion of the
field operators and see if they match those used in the cur-
rent conventional quantum field theory. If they do, we have
chosen the correct operator £ and we have derived quantum
mechanics from a single underlying equation.

'See. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974), for an
SU(5)-based theory which apparently unifies the weak, electromagnetic,
and strong interactions. There are other candidate groups, but the idea of
labels remains the same.

2See H. Everett, I11, Rev. Mod. Phys. 29, 454 (1957). He shows that the
state of a system under observation and the states of the detectors of the
results of the observation are, of mathematical necessity, correlated in such
a way that one has the appearance of “independently existing” particles.

°F. A. Blood, J. Math. Phys. 22, 67 (1981).

4S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harp-
er and Row, New York, 1962), Sec. 7g.
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A time-dependent extension of a Morse potential is formulated. Both the bound and unbound
state wave functions are obtained algebraically for the resulting time-dependent Schrodinger
equations, based upon the representations of su(2) and su(1,1), respectively. The method of
R-separation of variables is instrumental in the analysis.

I. INTRODUCTION

The time-independent Schrodinger equation for the
bound states of the Morse potential' has been solved exactly
by a number of authors using symmetry techniques.>~> The
Morse potential has been applied to the analysis of anhar-
monic vibrations, molecular energy transfer, atom surface
scattering, and inelastic collisions.*®’ Recently, a group ap-
proach has also been applied to generate and solve for the
unbound or scattering states of the Morse potential.*~'' The
relationship between the bound states of the Morse oscillator
and the time-independent harmonic oscillator has been well
established.®'>!> A presentation of the unbound states was
generated by the analytic continuation of the compact group
SU(2), describing the bound states, to the noncompact
group SU(1,1).*!! Problems involving time-dependent po-
tentials are useful in the study of reaction dynamics.'*"'” In
this paper, an extension to a time-dependent Morse potential
for the bound and unbound states is made.

There appear to be two distinct classes of evolution
equations for the quantum mechanical Morse potential. The
first type is

[, +E + (i/2)e™*3d, —g,(t)e *¥]¥(p,t) =0.
(1.1)
We call this type of equation a class I Schrodinger equation
for the Morse oscillator. Class II equations have the form

[8, + (i72)3, — {g2()e ™ + go(t)e 7} W (p,t) =0.

(1.2)
The functions g,(¢) and g,(¢) in Eq. (1.1) are piecewise
continuous and differentiable, but otherwise arbitrary func-
tions of time. The authors know of no transformation of
variables connecting the two classes of equations. When g,
and g, are constant, both classes can be reduced to time-
independent Schrédinger equations of similar form. Class I
equations can be derived from a time-dependent harmonic
oscillator equation; class II cannot. In class I equations, the
energy spectrum is given by E,, where E, is a separation
constant obtained by reduction of the dimensionality of the
harmonic oscillator equations by one or more variables. In
class II equations, the energy E; is tied to the quantum
mechanical energy operator i d,.

Although Eq. (1.1) appears to be somewhat more com-
plicated, class I equations are those which extend the time-
independent case and are solved below. Analytic solutions to
class IT equations are, as yet, unknown. Class 1 equations
may prove useful in modeling problems with anharmonic
time-dependent potentials.
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Symmetries of a differential equation map solutions of
the equation into solutions. The set of such symmetries
forms a Lie algebra. There exist explicit methods for finding
the symmetry operators of differential equations. For exam-
ple, the symmetries of the Schrédinger equation with arbi-
trary time-independent potentials have been worked
out.'®2° Methods for time-dependent potentials are more
complicated.?'~>> The symmetries and exact solutions for
the Schrédinger equation for a time-dependent harmonic os-
cillator with a time-dependent field have been calculated by
Truax?>?* and we adopt that approach in this paper.

In Sec. Il we calculate the symmetry operators of the
two equations,

Q(i) ¥(x,?)

2
= [(fihi)ouz z {6,-((6,-h,-)“’2h1,3"ak)} +2i4,

=3
2
—2g,() Y h{kxjxk]‘l’(x,t)zo, i=12,
k=1
’ (1.3)

where the two equations differ in the definition of their met-
rics:

A 10 . 1 0
oely 9 oy )
(A1) 0 1 (h%) o —1]’ 04
6=+1, 6= —1, h =det(h’). )
The symbols used are
_ d _(9 (vl 2
aj—gy 1—5) X~(x,x).

When / = 1, the equation @, ¥ = 0 will lead to the bound
states for the class I Morse oscillator; when i = 2, the equa-
tion Q,, ¥ = 0 will lead to its unbound states.

In Sec. I1I we obtain the bound states of the time-depen-
dent class I Morse oscillator. In Sec. IV we treat its unbound
states. In each case we employ an algebraic approach based
on procedures similar to those of Alhassid et @l.’ The exten-
sion of this method to the time-dependent regime is not auto-
matic, however, since we are dealing with evolution equa-
tions. We develop a novel technique to connect the algebraic
structure of the Morse potential with the evolution equation
(1.1). This treatment leads naturally to R-separation of vari-
ables'®in which time is an ignorable or cyclic variable. Final-
ly, in Sec. V, we compare briefly the algebraic approach that

we have taken to those employed by Gerry?** and Dattoli et
al®
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Il. CALCULATION OF SYMMETRY OPERATORS

A first order symmetry operator L of a differential equa-
tion like Eq. (1.3) can be expressed as a combination of the
first order partial derivatives of the independent variables,'®

L=A(x,t)d, + B'(x,0)d, + B*(x,1)d, + C(x,t) , (2.1)

where each coefficient depends upon the independent vari-
ables. The operator L must obey the commutation relation,

[LOn]=An (xDQ, , i=12, (2.2)

where A, (x,?) is an arbitrary function of x', x%, and t. The
condition on L ensures that if W (x,#) is a solution of (1.3),
then LW (x,¢) is also a solution. The set of all such operators,
L, forms a Lie algebra.'® Indeed the set of operators (1.2)
generate a multiplier representation of the corresponding
Lie group. The set of symmetry operators for (1.3) will be
calculated for the case where/ = 1in Sec. Il A, and fori =2
in Sec. IT B. The symmetry algebra for @, is given the sym-
bol &,. By examining the commutation relations between
the elements of the algebra, the structure of the symmetry
algebra ©; is determined.

A. Symmetries of Q,,

When i = 1, the differential equation (1.3) is the two-
dimensional Schrodinger equation,

QY (xt) = [, + 3y +2id, —2V(x,0)|¥(x,t) =0,
(2.3)

where, for the moment, we have allowed the potential to
have a more general form than in (1.3). We look for symme-
try operators of this equation which obey the commutation
relation (2.2).

When Egs. (2.1) and (2.3) are substituted into Eq.
(2.2), and the coeflicients of like partial derivatives are col-
lected, the following set of coupled partial differential equa-
tions is obtained:

A, =4,=0, (2.4a)
Ay + Ay + 20d, =22, , (2.4b)
2B, =2B% =4, , (2.4¢)
B +B, =0, (2.4d)
B',,+B',, +2iB', +2C, =0, (2.4¢)
B2, +B?%,+2B? +2C,=0, (2.4f)
C,, + Cyy +2iC, + 2B 'V,

+ 2BV, + 24V, + 24, V=0, (2.4g)

where A, = (d4/3x"), etc. Solving for the coefficients
A, B!, B?, and C, we have

A(x,t) = A(2), (2.5a)
B'(x,t) =l4(t)x' + bx* +d (1), (2.5b)
B2(x,t) = 14(t)x* — bx' + d*(2) , (2.5¢)
Cx,t) = — {3 [(x")? + ()]

+d'(Ox' +d* (DX} + A1) . (2.5d)

Differentiation with respect to time of a purely time-depen-
dent term is denoted by a dot above the term symbol.
Substituting Egs. (2.5) into Eq. (2.4g) gives an equa-
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tion that restricts the form of the potential V(x,t),
AV + AV, + (J4x" + bx> + d "}V,
+ {J4x* — bx' + d 2},
= (/DA — [ [(x") + (6)?)]
—d'x'—d*x* —if. (2.6)

The most general solution to Eq. (2.6) is a potential of the
following form:

V(x,t) = V(x,0) + 8"(£) (x")? + g7 (1) (x?)?

+8,'(O)x" + g 2(D)x* + g (1), (2.7)

where V(x,t) solves the homogeneous equation obtained
from Eq. (2.6). The g,(#) terms represent an anisotropic
harmonic oscillator, the g, () terms represent a time-depen-
dent linear potential, and gy(#) is a purely time-dependent
potential. For our purposes, we can set V(x,t) = 0, and take
8" (1) =g,°(1) = go(#) = 0. Thus

V(x,t) =g, (1) (x")? + g2 (1) (x*)?,
and we obtain Eq. (1.3) for i = 1, where

Quy =011 + 0y + 213, — 2{g," (1) (x")? + &2 (1) (x*)*}.
(2.8b)

(2.8a)

Substituting Eq. (2.8a) into Eq. (2.6), and collecting
the coefficients of like powers of x! and x2, we obtain

44g/ +84g/ +A=0, j=12, (2.9a)
d'+2dg/=0, j=1.2, (2.9b)
f= %A . (2.9¢)

Equations (2.9a) imply that either 4 = 0, or g, = g,". Since
the former condition eliminates the time dependence of L, it
is of little interest here. Thus the harmonic oscillator is iso-
tropic. Equation (2.9a) is a third order differential equation,
so the general solution for A can be written as a linear combi-
nation of its three linearly independent solutions ®;,

3
A0 =3 B,

j=1
where the 8 ’s are arbitrary constants. For closure of the alge-
bra @,,

Vi = [®,D — DD, ] (2.11)

must also be a solution to Eq. (2.9a).?2 Furthermore, as
shown in Ref. 22, if y; and y, are linearly independent solu-
tions to Egs. (2.9b), then we can choose

(2.10)

Q= ()% P=()% Pi=2112, (2.12)

where the value of the Wronskian of the solution to Eq.
(2.9b) is

W(XI’XZ) =X1X'2—i’|,1’2= 1. (2.13)
The solutions to Egs. (2.9b) are then
d’ =By, + By, j=12. (2.14)

If the expressions for 4, d ', and d?, Eqgs. (2.10) and
(2.14), are s_ubstituted into Eq. (2.9¢), and the resulting
equation for f(¢) is integrated then

3 .
f=5 3 B +iB.

j=1

(2.15)
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Substituting the relevant expressions for 4,d ', d ?, and f
into Egs. (2.5) gives the final expressions for the coefficients
of L. Here, A(t) is given by Eq. (2.10) and

3 1 -
B'(x,t) = > B {?‘I’xl] + By +Bs'y, + b7,
=
’ (2.16)

3 .
B2(x,1) = z B; [% (bxz] + B3y, + By, — bx',

=

(2.17)

Cx) = — i[élﬁ,[% b1+ ()] +1-
+ 1B 21 + Bs'xdx!

+ B2 + B )x? —Bﬁ] : (2.18)

A basis for the symmetry algebra &, can be found by
setting, in turn, each of the nine arbitrary constants equal to
one and all others equal to zero. The resulting basis is

L=, 0, +1&,{x'3, +x*3,}
— /[ + ()] +1d,, j=1,23,

(2.19)
L,=x8,—x'd,, (2.20)
Li=y,8,—ix,x', L¢=y,08, —iy.x',
L,=y,0,—iy,x*, Lg=y,d,—iy,x*, (2.21)
Ly=E=i.
1
[LI"%)II]ZO’ [Lz’y?lllz +~%2l’ [Lzrj/yll]:
[Lw%jlz] =0, [LG%)lz] = + %22, [L,w%)lz] =
(L,B,) = —#,", [Ly#,']=0, (L, 7,'] =
(L, %)= — %2 [L,#,"]=0, (L, %] =

Since the commutation of any element in &, with any ele-
ment in v, generates an element in w,, the Heisenberg—Weyl
algebra w, is an invariant subalgebra of &,. Thus the struc-
ture of the algebra &, can be written as

{sl(2,R) ®0(2)}Om,,

where & denotes a direct sum, while O denotes a semidirect
sum. &, is called the Schrodinger algebra.

Now we have a set of symmetries for the time-dependent
Schrodinger equation for the two-dimensional isotropic har-
monic oscillator. Note that each of the operators in Egs.
(2.19)-(2.21) is skew-adjoint. It is more advantageous to
work with a subalgebra®® S, of &, namely
{M,J, J_'J, 2T %I}, where the elements of S, are a
complexified form of the symmetry operators, Eqs. (2.19)-
(2.21):
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The algebra &, is nine dimensional.

To determine the structure of algebra, the commutation
relations must be examined. The operators {L,,L,,L,} satis-
fy the commutation relations,

[LuLz] =L3 s [L1:L3] = 2Ll ’ [Lz»L3] = - ZLz »

(2.22)

forming an sl(2,R) Lie algebra.'®?° Note that for the case
where g, = 0, these generators can be interpreted as a space-
time dilation, a conformal symmetry, and time translation.??

The generator L, belongs to 0(2), representing symme-
try with respect to rotation. Since

[L;j L] =0, j=123, (2.23)
the structure of the algebra includes the direct sum of

sl(2,R) with 0(2).
It is convenient to define the generators,

#,'=— (119, _ii/lxl) = —L;
%' =+ (x. _ii’2xl) = + L,
BiP=— (10— iillxz) = —L, (2.24)
B=+ (Xzaz_i)'(zxz) = +Lg.

The new operators obey the commutation relations,
[%1],-%21]=E, [%12"@22]=Es (2.25)

[@11,@12] = [‘@21:%22] =0.
The generators {#,',%,",% *,% ,%,E} with commutation
relations (2.25), form a two-dimensional Heisenberg—Weyl
algebra m,. With respect to the operators {L,,L,,L,,L,}, the
commutation relations are

_'@II» [L47'%II]= +‘&/‘?I2’
- (@12, [L4)<OZ]2] = - ygll’ (2.26)
+ By, [Lo#,'l= + 87, '
+ A7, [LoB) = -3, .
[
M3=i(L1+L2)
=i d, +1plx' 9, + x* 3,}
— (/D@ [(x) + ()] + 19},
J1= 2_1/2{%14_1-'%1}:_ *a+i-*xl’
+ =Q7NZ, 2 ERHA R

J ' '=Q ") {—-RB,'+iB,}=£3, — itx",
J2= QB+ iBY = —E* D+ i,
J2=Q VY —B2+iB}=¢£09,— iEx?,
I=—iE=1,

where

£ = Q27" (i (0) +ixa(D),

EX() = Q27 (1 (D) — iy (D), (2.28)
e=25¢* WEWME*U))= —i.
A. E. Kondo and D. R. Truax 1398



With this choice M, is now Hermitian, and each pair J %,
k = 1,2, are adjoints.
The commutation relations are

My ¥]1=+JT.%
[J 5T _*1= —-1, k=12,
[J+19J+2] = [J+1:J_2] = [J+2s']—-l] =0.

(2.29)

Also, we shall need the Casimir operator ¢ ,,, of the
subalgebra S,. It is defined as

Gy =I N HIT—Myl = — (@0 +2) .
(2.30)

The Casimir operator has the property that it commutes
with each of the elements of the subalgebra S;.

B. Symmetries of Q,,
When / = 2, the differential equation (1.3) is

0, ¥Y(x,t) = [d,, — 3, +2i 7,

— 28,0 [(x")? — (¥*)*]1¥(x,1) =0,
(2.31)

where the spatial form of the potential has been specified.
From Eq. (2.1), a symmetry operator of Eq. (2.31) has the
form

L= A(x,1)d, + B'(x,£)d, + B*(x,0)d, + C(x,t), (2.32)
and obeys the commutation relation
[LQ0) | =4 (x.0)Q, . (2.33)

Block letters have been used here to distinguish the symme-
tries of Q,, from those of @, . Substitution of Egs. (2.31)
and (2.32) into Eq. (2.33) generates the following set of
coupled partial differential equations:

Ay=A,=0, (2.34a)
Ay — Ay, + 2A, = 2id,, (2.34b)
2B, =2B%, = A, , (2.34c)
B?, —B', =0, (2.34d)
B',, — B'y, + 2B, + 2C, =0, (2.34¢)
B?,, — B, + 2iB°, + 2C, =0, (2.34f)
Gy — €y +2iC,

+ 4B'g,x" — 4B%g,x? + 2A4,[ (x')% — (x?)?]

= —2g,[(x")* — (x)?14, - (2.34g)

Following a procedure similar to the one in Sec. IT A, the
solutions to these coupled equations are
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3
A=Y B9,

j=1

1 .
B'(x,t) = ) S B®x' +bx* + By + Bs'ya

J
B2(x,1) = % S B + bx' + By, + B
’ (2.35)
Clx) = — ’[2 Bl el - o+ (L) ]
+ {ﬂ4li/l +le,l.’z}xl

- {342,1"1 + Bsz/l.’z}xz - B{)] .

The &, are solutions to a differential equation for A identical
informto Eq. (2.9a). Furthermore, y, and y, solve the same
homogeneous equation (2.9b), with Wronskian (2.13) and
we have, as in Egs. (2.12),

Q= (x1): L= L3=2xz- (2.36)
A basis for &,, the symmetry algebra of Q,, , is
L =®; 9, +19,[x' 9, + x* 3,]
— (/8D [(x)? — ()] +1®;, j=123
(2.37)
L,=x*8,+x'4,, (2.38)
Ls = x1 91— ixx', Le=1x,0, —ixx", (2.39)

L7=X132+ii/,x2, Ls=X232+i)'(2x2’ Ly=E=i.

The operators {L,,L,,L,} satisfy the commutation relations
(2.22) and so form ansl(2,R) Lie algebra; {L,} is a basis for
o(1,1) and {Ls,L,L,,Lg,E} is a basis for a two-dimensional
Heisenberg—-Weyl  algebra, w,. We have &,
= {sl(2,R) ® 0(1,1)}0w,, and as Lie algebras, &, is not iso-
morphic to &,.
As above, we confine ourselves to the subalgebra
S, of a complexified symmetry algebra
{M,,H, H_\H *H_ I},

M, = i(L, + L)

=d{@d, + 1@ [x' 3, + x*3,]

— (/P [(x"H? — (x1)?] + 4¢3,

H '=Q V) (—Ls+ils) = —£*3, + iE*x',
H_ '=Q V) (+Ls+iLg) = £9, — iéx',
H=Q ") (=L +ily) = —£*3, — £ *x?,
H_ 2= Q7 V) (+ L, +iLg) =&, + iéx?,
I= —iE=1,

where £(¢),£ *(¢), and @ are defined in (2.28). The commu-
tation relations are

[MyH,*]= +H,*% k=12,

(2.40)

(H.'\H_'|\= —1I, [H>H *1=+1, (2.41)
[H+',H+2] = [H+‘,H_2] = [H+2,H_‘] =0.
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The operator M, is self-adjoint and the H | * are adjoints.
The Casimir operator of S, is

Coy=H,'H'-H’H *>—MJ= —}(¢Q, +2).
(2.42)

lll. THE BOUND STATES

A procedure®® for generating the one-dimensional
Schrddinger equation with a time-independent Morse poten-
tial is to select a pair of creation, a, b !, and annihilation a, b,
operators that obey the commutation relations

[atal=—1, [bthH]=—1,
[atb]l=[b'a] =[b%a'] =0.

The operators are realized on a two-dimensional harmonic
oscillator space,

a= Q7 VH)(x'+48), at=Q2 V)x'-4),
b=Q27")(xX*+3), b= VH(* -3,

and then recast in such a way that linear combinations of
their bilinear products generate the group SU(2). In their
analysis, Alhassid et al.° look for simultaneous eigenfunc-
tions of one of the generators of SU(2), and of a fourth oper-
ator, the number operator .#". In the realization of su(2)
which they use, the Casimir operator € = L4 (A" +2),
and so .4~ commutes with each of the elements of su(2).
However, note that.#"is not amember of su(2). A change of
variables in the eigenvalue equation for .#” produces the one-
dimensional time-independent Schrédinger equation for a
Morse potential.

To derive the Schrédinger equation with a time-depen-
dent Morse potential, we use an analogous procedure to that
of the time-independent case. From the calculation of the
symmetries of Q,, in Sec. II A, we have the operators
{7, 7, %J_"J_?}, which will serve as the creation and
annihilation operators {a',b',a,b}. From Eq. (2.29), the
J . “satisfy the same commutation relations as in Eq. (3.1).
Infact, wheng, =}, £ = (27"%)e", £* = (27"?)e~ ¥, and
from Eq. (2.27),

J+l — (2-—-1/2)e—it(xl _al) ___e—ita'r,

J_'= Q27 )e'(x! + 9,) = é'a,

J+2 — (2—1/2)e—ir(x2 _ 32) — e—itbf ,

J_z — (2—1/2)eir(x2 +52) — ei:b .
In the limit when ¢ 0, the operators J _ * agree with defini-
tion (3.2).

According to Alhassid et al.,’ the combinations of the
generators J |, %,

F,=1J, JV?2+J, 27"

= — @0, + B@p(x? 3, + x' 3,) + 2£E *x'xY),
F,= —(/)(J, T 2=J TN

y

3.1

(3.2)

(3.3)

= —(/2)(x'd,—x*3)), (3.4)
F,=1(J,U_'=J, .Y
= — (@/2)(3), — ) + (i/2)p(x' 3, — x* 3,)
+EEF (D)2 — (D),
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lead a realization of the su(2) Lie algebra, with commuta-
tion relations
[F..F,] =iF,,

[F,,F,] =iF,, [F,F,]=iF,.

(3.5)
For the time-independent harmonic oscillator with g, =1,
the function ¢ = 2££ * = 1 and the time dependence of these
three operators vanishes.
The number operator .4~ commutes with each element
in su(2), and may be expressed as

N =T T " +J T
= — (9/2)(3y + ) + 2E*E
+ (i/2)p(x' 3, + x2 3;)
+ EEX (XY + ()] . (3.6)

Using the definition of ¢ and the Wronskian, Eq. (2.28), the
following substitutions can be made in Eq. (3.6):

U= (p/2) +i, EEr=(p/D+ap. (BT)
Thus
N = —(¢/2)(y; + 85)
+ (i/2)¢ — 1 + (i/2)@(x' 8, + x* 3,)
+{(¢/8) + g@} (x")* + (x*)?] . (3.8)

Following the procedure of Alhassid et al.® we construct
simultaneous eigenvalue equations for the operators .#” and
F,. Let their eigenstates be denoted by |n,m), where n is an
integer, and

An,m) = n|n,m) , (3.92)
F,in,m) = m|n,m), — (n/2)<m<(n/2). (3.9b)
Transforming to polar coordinates,
x'=rcosf, x*=rsinf, 0<r<oeo, 0<O<2rm,
(3.10)
the two operators of interest become
A= — (@/2){(1/18,(r3,) + (1/7)3e}
+ (i/2)¢p — 1+ (i/2)¢r 3,
+{(¢/4) + g:9}7, (3.11a)
F,= —(i/2)d, . (3.11b)
Next, make the substitution
P=(n+1exp(—p), —ow<p<o, (3.12)

into the first eigenvalue equation (3.9a). Then we obtain
[—(@/2){4(n+1)7'e¢ 3, + (n+1)7'e" go }
—ipd, + (/) —1
+ (n+ D{(p/4) + g, pre*1¥,,. (p,0.0)

=n¥,, (p,0,0) . (3.13)

Taking into account Eq. (3.11b), the second eigenvalue
equation (3.9b) permits ¥, (p,6,t) to be written as

W, (0.0,0) = (p,6,t |n,m) = ¥R, "(p,t). (3.14)
Using this form of the wave function in Eq. (3.13), and mul-
tiplying through by (2¢) ~'(n 4+ 1)e —*, we have
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One can easily show that Eq. (3.15) reduces to the standard
time-dependent equation by setting the coefficient g, = 4. In
this case, Eq. (3.15) becomes

[-d,+ (n+1)H{e > — 2¢e~}|R,™(p:1)
= _manm(P,t) s

(3.15)

(3.16)

which has the form of the Schridinger equation with a
Morse potential as given by Alhassid et al.’

We are now faced with the task of solving Eq. (3.15).In
the time-independent case, the two eigenvalue equations
(3.9) allow full separation of the wave function into p-de-
pendent and 6-dependent functions. Equation (3.16) is solv-
able in terms of confluent hypergeometric functions. How-
ever, the time-dependent equation (3.15) is a complicated
mixture of p- and ¢-dependent variables. Normally, one does
not view an equation like Eq. (3.15) as an evolution equa-
tion. The evolution equation can be obtained by making the
variable substitutions of Eqs. (3.10) and (3.12) into Eq.
(2.8b); thus

[8,, —m* + (i/2)(n+ 1)e~ 73,

— (g/2)(n+ 1)?e~%*]R,m=0. (3.17)

We have called Eq. (3.17) the Schrodinger equation for a
class I time-dependent Morse potential.

To make the connection between Eqgs. (3.15) and
(3.17) we must deviate from the procedure outlined by Al-
hassid et al.” We need to remove the explicit time depen-
dence in Eq. (3.15). To do this, we find a similarity variable
£, which depends on both p and ¢. This change of variables
will permit both Eqgs. (3.15) and (3.17) to be transformed
into the same ordinary differential equation in {. We can find
such a similarity variable by exploiting the relationship
between .#" and Q,, . Recall from Eq. (2.30),

N +MI= —lgQ,, — 1, (3.18)
where we have used Eq. (3.6). Furthermore, we have
[A49Qu,]=0. (3.19)

Since .#"and Q;, commute, we can require that they have
common eigenfunctions R,™(p,t). Thus R,™(p,t) lies on
the solution space of @, :

04, R, "(p,t) =0.
From Eqgs. (3.92), (3.18), and (3.20) we can write

('/V‘+ %¢Q(1) )an(P’t) = - (MS + l)an(pat)

(3.20)

=nR,™(p,t) . (3.21)

We have replaced the second order differential operator .4~
with a first order symmetry operator M, which contains the
partial derivative with respect to time. Explicitly, Eq. (3.21)
is
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{—ipd, + (i/2)p—1
+3(n+ D@e~? +ip 3, 3R, (p,1)
=nR,"(p,t) . (3.22)

Now, we have a first order partial differential equation
that may be solved by the method of characteristics (see Ref.
23). The similarity variable is

§=(1/p)e™?*, (3.23)
and the solution has the form,
R,"(p,t) =a,({)e™, (3.24)

where a,, is a function of the similarity variable {. Here, R is
defined by

R=ijlnp+in+ D@L — (n+ DT, (3.25)
where
Y= l=i1n(§—'). (3.26)
¢ 2 3

Equation (3.21) implies that the time variable is an ignor-
able variable. Integration of Eq. (3.22) leads not only to the
similarity variable { but also to the R-factor R in Eqs. (3.24)
and (3.25). Thus the differential equation (3.17) is R-sep-
arable.'®

Expressing J in terms of the similarity variable {, we
have

NR= =2+ 1) Y3, +¢% 9, —m*} +ips 3,
+(n+ D{(p/4) + g@¥o + (i/2)p—1. (3.27)

Substituting Eqgs. (3.24) and (3.27) into the eigenvalue
equation (3.9a), and multiplying from the left by e ~ * gives

e %W e™a, (&)
= [ —2(n+ 1)—1§_1{§za;; +§a; ___m2}
+in+ 15290 + 88,9 — 7} — 1]
Xa,(§) =na,(§) . (3.28)
Then by the definition of ¢ and the Wronskian, Eq. (2.28),
the explicit time dependence vanishes since
2@ + 89> —p*=4. (3.29)
Rearranging Eq. (3.28) and dividing through by
—2(n+ 1)7'¢ ~ ' leaves
[£%d; +6d, —m? —Y(n+ 1){§{?— 26} ]a,(8) =0.
(3.30)
We have a second-order ordinary differential equation in

one variable . Equation (3.30) can also be obtained from
the relationship

e %0 ,,e™a, (&) =0. (3.31)
If we let
a, () ={n/(n+ D)} exp{ — in}W(x),
N (3.32)
n=(n+1){,
then the equation reduces to
{n0,, + (@, —m)3, —6,}W(n) =0, (3.33)

a,=2m+1, &, =m—(n/2).

Equation (3.33) is Laplace’s equation, and the solutions

A. E. Kondo and D. R. Truax 1401



W(n) are confluent hypergeometric functions which de-
pend implicitly on time through the variable
n=(n+1§{=(n+1)e~*?/@(t). Combining Eq. (3.32)
and the solution to Eq. (3.33), we get

a,(§)=¢mexp{ — (n+1)(£/2)}
XW(m—(n/2)2m + 1,(n+ 1){). (3.34)
The wave function R, ™((,t) is then
R,™(5,0)
=Qexp {(i/2)Ing +}(n+ D@5 — (n+ )Y}
X¢&mexp{—(n+1)(£/2)}
XW(m— (n/2),2m + 1,(n + 1)¢). (3.35)

The constant {2 can be determined by normalization of the
wave function.

Observe that Egs. (3.30) and (3.33) are identical in
form to those obtained by Alhassid ef al.’ for the time-inde-
pendent case. However, in contrast to these results, the wave
function (3.35) contains not only the time-dependent factor
e™, but the confluent hypergeometric functions W are impli-
citly time dependent as well. In the event that g, =1, we
recover the usual time-independent Schrodinger equation
for the Morse potential and its solutions.

In the time-independent case, the depth of the well de-
termines the number of energy levels, n. See Eq. (2.25) of
Ref. 9. In the time-dependent case, the depth of the well is

D= — [(i/2)p —n—11%/[8p{(p /4) + g-p}] .
(3.36)

Therefore, the depth of the well varies with time, as does the
number of energy levels.

IV. THE UNBOUND STATES

To generate the Schrédinger equation for the unbound
states of the time-independent Morse potential, Alhassid et
al.? recast the bilinear products of the creation and annihila-
tion operators, {a',b',a,b} to form the generators of the
su(1,1) Lie algebra. The unbound states form a representa-
tion space of su(1,1) algebra, viewed as the analytic continu-
ation of su(2).

In the time-dependent case, we shall work with the ele-
ments {H, ' H_"H *H_?} from Eq. (2.40). If we set
g=4E=27")e", and £* = (27"/?)e ", we can com-
pare the operators H . * to the time-independent creation
and annihilation operators {a',b ,a,b} as follows:

H.'=Q2 ")e *x'—09,)=e""a",
H_'= (@27 "")e"(x' 4+ 9,) =¢é"a,

H+2 = — (2_”2)9_”()‘2 —_ az) = — e_”b ,
H?= —27")e"(x*+8,) = —e"b?.
Following the procedure of Ref. 9, we construct the prod-

ucts,
K.={H,'H*+H/*H "),
K,=—(/2)(H,'"H*—H.’H "),

K,=\(H 'H_'+ H.*H ?).

(4.1)

(4.2)
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The operators {Kx,Ky,Kz} with their commutation rela-
tions

[K..K,]= —iK,,
[K,.K,]= —iK

x

[K. K] = K, (4.3)

form the algebra su(1,1). In this realization, the Casimir
operator € = {(Z + 1)(Z — 1), where & is called the
difference operator and & commutes with each of the ele-
ments in su(1,1). Here, & is not a member of su(1,1) and
has the form

DP=H'H'-HH>+1. (4.4)

Now we construct the simultaneous eigenvalue equa-
tions

Duk) =pluk), (4.52)
K |uk)=kluk). (4.5b)

Since su(1,1) is noncompact, the spectra of the operators &
and K|, are continuous. In Cartesian coordinates, the opera-
tors of interest are

+ (i/2)¢(xlal +x2 az)
+ {1¢ + L@} (x")? — (xH)?],
K,=(—i/2)(x*3, +x'3,) .

Instead of transforming to polar coordinates, we transform
to hyperbolic coordinates

(4.6)

x'=rcosh8, x*=rsinhf, 0<r<ow, 0<O< .
4.7)
In these coordinates,
= —(@/2)8,, + (1/r)8, — (1/r)34,)
+ (/D)@ + (i/12)¢rd, + {§¢ + g0},  (4.8a)
K,=(—i/2)d. (4.8b)

Substituting Eq. (4.8a) into the eigenvalue equation (4.5a),
and making the transformation

P=pe *, —wo<p<w, (4.9)
we have
[ = (@/2{(4/1)e 8,, + (/i) Boo} — iip 3,
+ (/2)¢ — 1 + plip + g.p}e ~F1¥ . (p,6,0)
=uW¥,, (p,0:1) . (4.10)

From Eq. (4.8b), the second eigenvalue equation (4.5b)
permits the wave function ¥, (p,6,7) to be written as

V.. (p:.0,0) = {p,6,t [u.k) = %R *(pt) .  (4.11)

Using this form of the wave function in Eq. (4.10) and rear-
ranging, gives

ol S, .
[ — _g [@e £d, +/‘(%+82‘P) e~
i .
+ (o=l l|Rten
= + k7R, p.1) . (4.12)
If g, =1, then @ = 1, and Eq. (4.12) reduces to the time-
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independent Schridinger equation describing the unbound
states of a Morse potential,

[ =3, + W /4 (e~ —2e"")]R, (p)
= +k’R,*p). (4.13)

Analogous to the procedure of Sec. III, we can solve
(4.12) by taking advantage of the relationship between the
difference operator & and Q,,, . From the Casimir operator
of the subalgebra S,, Eq. (2.42),

{2 + (9/2)Qu) IR, *=M,R,*.
In p and ¢ variables, Q,,, is

Qo) =0, + k> + (i/2)pe™° 3, — (g/2)’e .
(4.15)

(4.14)

Furthermore, since

[2.90,]=0, (4.16)

we can require that R,*(p,¢) lies in the solution space of
Q,- Thus

Q(z)Ruk=0, (4.17)
and, from Eq. (4.14) and the eigenvalue equation (4.5a),
M3Rﬂ" =,uR#". (4.18)
Explicitly
[—ipd, +ipd, + (ip/2) + %@#e—p]R,‘k=ﬂ§,‘k-
(4.19)

Solving Eq. (4.19) by the method of characteristics,?
we obtain the similarity variable

(/ple f=¢, (4.20)
and the #-factor,

Z (L) = (i/2)Ingp + (u/4)p6 —uY, (4.21)
where Y is defined in Eq. (3.26). Hence

R 50 =e"a,(5), (4.22)

where a,, ({) is a function of . To determine the specific
form of a, ({) we perform the transformation

e ¥ De%a, ()
= [ _2(”§)—1{§Za§§ +§ag +k2}

+ (u/2)¢1a,(8) = pa, (£) . (4.23)

Rearranging Eq. (4.23), we have

(€264 +£0; + k> — (/{¢? — 26}Ha, () =0.
(4.24)

We have a second order differential equation in one variable
& with solutions
a,(§)=¢ *exp{ — (/DIW . (), n=u¢,
(4.25)
where W(7) solves

{nd,, + (ay— 13, —8}W, (1) =0,
(4.26)
a,= +2ik+1, 8,={+2ik+1—p}.

Thus
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a, () = Us*exp{ — (u/2)E3W .,
X (1{2ik + 1 — p},2ik + L,ul)
+ V¢ ~*exp{ — (u/2)$IW_

X —2ik+1—pl, —2ik+ 1,u8) .  (427)

The ratio of constants ¥ /U can be determined by imposing
the boundary condition that a, ({— o) = 0, since as { — o,
p— — o, and the Morse potential goes to infinity. Thus
¥ _ TQik+ DI = 2ik +1—p})
U T(—2k+ )2k +1—pu})’
The reflection coefficient is (|V|*/|U}?) = 1.
As we found in Sec. I1I for Eq. (3.17) for the bound

states, Eq. (4.15) for the unbound states is also R-separable.
The time variable is ignorable because of Eq. (4.18).

(4.28)

V. DISCUSSION

It is of interest to compare the approach we have adopt-
ed to algebraic methods employed by others**? in solving
time-dependent problems.

The evolution of a quantum system?® may be given by
[9(2)) = U(t,ty) |(,) ), where U(1,t,) is the evolution op-
erator and is usually expressed in terms of the system Hamil-
tonian. If the Hamiltonian can be written as a linear combi-
nation of SU(1,1) or SU(2) generators, in which the
coefficients are time dependent, then the technique of Dat-
toli et al.* or the propagator approach of Gerry?* are appro-
priate. In the method we have used, the Schrodinger equa-
tion for the Morse potential of both the bound states is
related to the Casimir operators for su(2) and su(1,1), re-
spectively, and is not realized as a linear combination of the
group generators. The finite number of bound states for the
Morse oscillator are described by the irreducible unitary rep-
resentations of su(2). The spectrum of unbound states is
described by the continuous series'® C, /2, one of the contin-
uous irreducible unitary representations of su(1,1). The dis-
crete series for su(1,1) in which the spectrum is bounded
below, does not play a role in our approach. However, the
discrete series is the irreducible representation exploited by
Gerry?* and Dattoli et al.>> The common ground of the two
approaches is an interesting area for possible future research.
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Nonlinearly coupled oscillators in quantum mechanics: A normal form

approach

Martin Kummer and Raghuramaiah Gompa
University of Toledo, Toledo, Ohio 43606

(Received 25 September 1987; accepted for publication 3 February 1988)

Quantum mechanical Hamiltonians of the form of » harmonic oscillators coupled via an
interaction of the form € times a polynomial in the position and momenta variables are studied
in a rigorous Hilbert space setting. In particular, normal form theory is used to define the mth
approximation to the associated Schrddinger initial value problem and it is shown that it
deviates in norm from the exact solution by a term of order €™ *'|¢ | (# = time) provided only
that the initial vector is confined to an appropriate dense subspace. The main concentration is
on the case in which there exist no resonances of order <m between the frequencies of the n
oscillators, but the case of two oscillators in 1:1 resonance is also taken up.

|. INTRODUCTION

In recent years normal form theory has become a very
versatile tool in the study of the flow that a classical Hamil-
tonian induces in those regions of phase space in which it is
predominantly deterministic (e.g., periodic or quasiperiod-
ic) rather than “chaotic.” Pioneered by Birkhoff' and Siegel
(e.g., see Ref. 2) normal form theory has been the subject or
tool of investigation in so many works in recent years that it
is impossible to quote all of them. Besides mentioning some
we feel are representative®® we refer to the recent works by
van der Meer’ and Sanders and Verhulst® and the bibliogra-
phies contained therein.

It seems that the study of the corresponding quantum
mechanical theory, although known on a purely formal level
[see Ref. 10(a) 1, has not been given the attention it deserves
in the mathematical literature. The present paper attempts
to fill this gap. Our work was stimulated by the pioneering
work of Lemlih and Ellison® who, by presenting a rigorous
analysis of the time averaging method in a quantum mechan-
ical model problem, set the stage for an elevation of quantum
mechanical normal form theory from a purely formal theo-
ry'® to a rigorous mathematical theory (see, however,
Ref. 11).

Rather than developing the theory in the framework of
an abstract Hilbert space formalism, as has been done by one
of the present authors,'? in the present paper we confine our
discussion to the class of quantum mechanical Hamiltonians
that describe n harmonic oscillators with polynomial inter-
action. Working within the framework of the Heisenberg
algebra 7, of creation and annihilation operators a;, ¢,
(k= 1,2,...,n) a Hamiltonian of our class has the following
explicit form:

H=H°+ ¢V, (L)
where
H0= 2 wk (Ckak +'l_) (1.2)
K=1 2

and Vis a polynomial in the @,’s and ¢, ’s.
In Sec. II we bring the interaction into a “standard”
form, which is characterized by the property that each ¢, is
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paired off with the corresponding a, to yield the number
operator N, : = ¢, a, whenever this is possible and the opera-
tors that stay “single” in the process are moved to the left.

In Sec. III we discuss normal form theory, first abstract-
ly and then in the context of our class of Hamiltonians, under
the assumption that the perturbing interaction potential Vis
already in standard form. As in the corresponding classical
theory (see, e.g., Refs. 6 and 13) we find that the theory of
graded Lie algebras provides an adequate setting for our dis-
cussion.

Using the coefficients in a formal € expansion of the
normal form as well as those of the normalizing transforma-
tion we define the mth-order approximation ¢,, (¢) to the
exact solution #(#) of the Schrédinger initial value problem

iv=(Hy+ N, ¥(0) =1y, (1.3)

and in Sec. IV we formulate conditions under which an esti-
mate of the form

g (8 — #(D)|| = OCe™* |2 ])

holds for € varying in some small interval [O,¢,).

It turns out that an appropriate framework for the rigor-
ous study of our family of Hamiltonians is provided by a
certain Hilbert space of analytic functions described by
Bargmann'#'® (see, also, Ref. 17). The simplest case for
which this approach allows us to obtain estimates of the form
(1.4) is the case in which the frequencies w, (k = 1,2,...,n)
of the harmonic oscillators are subjected to some nonreso-
nance condition. Of course, as in the time averaging tech-
nique, studied by means of a model problem described by
Lemlih and Ellison,’ the validity of an estimate of type (1.4)
requires that the initial vector ¥, be confined to a suitable
dense linear submanifold of our Hilbert space. This subman-
ifold will be referred to as “initial domain.”

Quite different from the nonresonant case are the low-
order resonances, in particular the resonance in which the
frequencies of the n harmonic oscillators all agree. In the
case of n = 2 this is called the 1:1 resonance and the classical
counterpart has been studied by one of the present authors in
Ref. 5 (see, also, Ref. 18). We briefly sketch this case at the
end of Sec. IV by exhibiting a suitable initial domain. The

(1.4)
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one remarkable feature of this case, however, is the fact that
the Hilbert space under the time evolution operator of its
normal form breaks up into invariant subspaces exactly the
same way as under the natural representation of the group
SU(2) (see Ref. 16), namely, into a direct sum of (2j + 1)-
dimensional invariant subspaces (j = 0,4,1,...).

Finally, in Sec. V we touch upon an alternative method
of approximation also based on the normal form technique:
The difference consists in the form in which we write the
normalizing transformation. Whereas in the first normal
form method we write the normalizing transformation as an
infinite product of exponentials, in the alternative method
we write it directly as a formally unitary transformation.
There is a trade-off between these two methods. Whereas in
the alternative method the explicit expressions for the ap-
proximants are much simpler than in the first normal form
method, the initial vector ¥, in the alternative method has to
be restricted more severely.

The reader might question how our rigorous approach
to time-dependent quantum mechanical perturbation theory
fits in with those approaches existing in the literature, nota-
bly with the extensive work of Kato'’: It appears to us that
Chap. IX, Sec. 6 (p. 506) of the second edition of his work
bears some relationship to our work. However, since
Kato’s'? asymptotic formulas are based on straightforward
perturbation theory rather than on normal form theory, they
are already different in the first approximation. It would be
an interesting task to make a detailed comparison between
Kato’s' and our approaches. However, such a comparison
would lead us in a different direction and could be the subject
of a separate study.

Il. PREPARATION OF THE HAMILTONIAN

Our goal is to find approximate solutions of the Schro-
dinger equation associated with the quantum mechanical
Hamiltonian

SN NN U NP
H= +— M, o €P(q.p),
kgl M, 2 kzl x@x g + €P(q,p)

(2.1)

which describes n nonlinearly coupled oscillators. Here
P(q,p) is a polynomial in the position and momentum vari-
ables (g,,p, ) (k= 1,2,...,n) and the coupling parameter € is
sufficiently small so that we can view the interaction term as
a perturbation of the Hamiltonian H ° which results from
(2.1) by setting € = 0 and which describes # uncoupled har-
monic oscillators with frequencies o,,w0,,...,, .

The position and momentum variables (g.)%_,,
(pe)i_, satisfy the Heisenberg commutation relations.
This means that they all commute, with the exception of g,
Pr (k= 1.2,...,n) which are subjected to the commutation
relations

[Prsqr] = —i. (2.2)
The well-known transformation of variables

@ = 2M,0,) _‘lz(ak + ),

P = My, /2)V? (1/i) (a, — ¢i) (2.3)

transforms our Hamiltonian into the form
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n

H=H°+eV(ac), H°= Y o (Nk +%),
k=1

where N,: =c¢,a, (k=1,2,...,n) and V is a polynomial in
the noncommutative variables c,,z,. The latter are com-
monly known as creation and annihilation operators and the
particular combination N, = ¢, 4, is known as k th number
operator. As a consequence of the Heisenberg commutation
relations the a,’s commute among themselves, and so do the
¢y’s, whereas the commutation relations

[axsc;] =6k; (Kj=1,2,..,n)

hold.

In the following the free algebra over C, generated by the
2n + 1 elements a,,a,,...,a,, ¢,,C,,...,¢,, 1 modulo the com-
mutation relations (2.5) will be denoted by #°,, and referred
to as Heisenberg algebra (for a quantum mechanical system
of n degrees of freedom). Clearly, the complex conjugation
extends to the involutive antiautomorphism denoted by the
dagger which interchanges a, and c,, i.e.,

(24)

(2.5)

al =¢,, ct=a, (k=12,..n). (2.6)
We find it convenient to introduce the notation
ci, for I>0,
bi =11, for /=0, 2.7)
a; ', for 1<0.

Here on the rhs ¢} is the / th power of the variable ¢, , whereas
a;' is the |/|th power of the variable a,. For

a = (a;,a,,...,a, )EL", we set

b*=bg-b- - b, (2.8)
Note that since in b * for k = 1,2,...,n either a,, or ¢, but not
both, occur, there are no relations between the b “’s so that
the Heisenberg algebra contains the free right module over
the ring C[N] of polynomials in the number operators
N = (N,N,,...,N, ), generated by the b *’s, i.e., elements of
the form

V=73 b°P,(N), P,C[N], (2.9)

acld

where A is a finite subset of Z". In fact, it is not difficult to see
that every element of the Heisenberg algebra #°, has a
unique representation (2.9). In order to see this we simply
use the commutation relations to pair off the operators a, , ¢,
in any product of annihilation and creation operators and
move all those operators that remain “‘single” in the process
to the left. The fact that there are no relations among the
b *’simplies that the representation (2.9) is unique. We now
list some formulas that help to bring a given algebra element
into the form (2.9), which we shall call “standard.” For this
purpose we first confine ourselves to the case # = 1, taking
up the case of general n later.

By induction we easily prove the following pairing off
formula:

a"c"=2,(N)
(m>0), where Z,, (N)eC[N] is the polynomial

Z, (N):=(N+1),=F(N+14+mITN+1)""
(2.11)

(2.10)
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Here (N+1),,:=(N+1)(N +2)---(N+m) is the
Pochhammer symbol. Using our definition (2.7) we can
write (2.10) in the form

b-"bm=2Z,(N) (m>0). (2.12)

Formula (2.11) remains valid for m<O0 if we extend the def-
inition of Z,,, (N) as follows:

Z,(N)=[F(N+1+mT(N+1)"']=m, (2.13)
where
1, m>0,
Sgnm:[—l, m<O0.

Wenote that Z _,, (N) for m > Ois also a polynomial, name-
ly,

Z_,(N) =N(N—1)'-'(N—m+l):=m!(]’:) (2.14)

in obvious notation. Also, for all meZ we have

Z_ ,(N+m)=2Z,(N). (2.15)
In bringing a given element of the algebra into standard form
the following formula, whose verification we leave to the
reader, turns out to be useful:

b*b!'=b**'b, ,(N). (2.16)
Here the polynomial b, ,€C[N] is given by the following
formula:
1, for kI>0,
Z,(N+1), for k<0 and |I|3]k|, (2.17)
Z,(N), for kl<0 and |k|>|/|.
If the nonlinear part of the potential ¥(a,c) happens to be a
Hermite polynomial its standard form is especially simple.

This follows from the Weyl identity of formal power series,
valid on the Heisenberg algebra 57,

expl — €2/2]exple(a + ¢)] = exp(ec) -exp(ea),

bk,l(N) =

(2.18)

which can be written in the form
St () )
o mt " 2 V2
I O S L)
razo s
Here b, _, was defined in (2.17) and A,, is the Hermite

polynomial of order m. Comparing terms of order m, we
have

€r+ s
rs=0 st

(m!)—lhm((Mw)llzq)z—m/Z

— -'—zm ' b k b(rn—+—k)/2,(k—m)/2 (N) . (219)
ko ((m+ k) /2N (m — k) /2)!

On the rhs of (2.19) the prime following the summation
symbol indicates that the sum has to be extended only over
all those values of the running index which have the same
parity as the upper limit. This convention will be in force
throughout this paper.

We now turn to the standard form of a simple power of
g, or what is the same up to a numerical factor of a power of
(a + ¢). For this purpose we abbreviate expression (2.19)
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by C,, and then verify that by comparing equal powers of €in
the relation that results from multiplying (2.18) by exp(€?/
2) we obtain

wvor-m e (=) ()
(2.20)

Inserting expression (2.20) into (2.19) and changing the
order of the two sums we obtain

@+om= 3 "b*PpuV), (221)

k= —m

where the polynomial P }'(N) is given by the expression
m 1 (m-—r)/2
5
rg;tn 2

<))

2 /1 A+ k2N =R
For k>0 we set §(r — k) =p, }(r+ k) =p + k>p and we
realize that, in view of (2.14) and (2.17), byin_p(N)
=Z_,(N) = p!(}). Hence, for k>0,

(m —Efc)/Z( 1 )(m —k)/2—p

PY(N)

b(r+ k)/2,(k —ry/2 (N)

P (N) >

p=0

m!
“Tm— 72—l + R (;v) (2:22)
For k <0 a similar argument shows that
PZ(N)=PT" (N+k).
Example:
(@+¢c)*=b""Pi{(N—4)+b?P3(N—2) + P3(N)
+ b?P3(N) + b*PL(N).

(2.23)

Here
P{(N) =1,
1 1— 1
rion= () "t )
p=0\2 aA-ple+2)! \p
1 4
= — N=6+4N,
2 2'+3' +
2 2— ]
rion= 3,3 4 ()
p=0\2 2—-p)ipt \p
1 4! 1 4 NN-1
=— - —4+— 4Ny - —
4 2'+2 +2! 2
=34+ 12N+ 6N?2—_6N=3+6N+6N2
Hence

(@a+c¢)=a*+d*(4N-2)

+ (34+ 6N+ 6N?) + 36+ 4N) + ¢*.

Another useful formula for bringing an expression into
standard form is that for any meZ and any polynomial
PeC{N] the identity

b"P(N+m)=P(N)b™ (2.24)
holds. In the proof of formula (2.24) one has to treat the
cases m>0 (i.e,, b =c) and m <0 (i.e., b = a) separately.
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In both cases the proof proceeds by induction on m, as well
as on the degree of the polynomial P(N).

Thus far we have worked within 7. Generalizing to
the case of #°, we introduce in Z" a partial order by means of
the definition

a<B iff a;<B, (i=1.2,.,n).

Accordingly, Q" : = {@€Z" a>0} is the set of n-tuples of
non-negative integers.

For a,BeZ" we define

Z,(N) = 1] Zz.,(N), (2.25)
=1

b,g(N) = H ba,5,(Ny). (2.26)
I=1

Formulas (2.15), (2.16), and (2.24) generalize to

Z_,(N+a)=Z,(N), (2.27)

bbP=b*Pb, 5(N), (2.28)

b*P(N+a)=P(N)b“. (2.29)

Also, formula (2.21) has an obvious generalization to 7,
namely,
(2.30)

(@a+o)*= Y '"b"PI(N).

—agy<a
Here P (N) is just the product of the polynomials P 7 (N, )
(k=1,2,..,n).

An element of the algebra is called formally self-adjoint
if it is invariant under the involutive antiautomorphism *.
Applying this automorphism to the element (2.9) in stan-
dard form yields

Vt=3 P, (M b-°=3b-*P (N—a)

ach achA

= 3 b*P_,(N+a).
ac — A
(2.31)

Hence V is formally self-adjoint iff A= — A and
P__(N+ a) =P, (N).Clearly, g™ is formally self-adjoint
and it is this property which underlies the symmetry relation
(2.23) of the associated polynomials of its standard repre-
sentation.

From now on we shall assume that our Hamiltonian
(1.1) has the form H° + €V, where

H'=% (Nk +%)= (o,N) + &

k=1

(2.32)

Here ( , ) is the usual inner product of R" and
&: =12} _,w,. Moreover, we shall assume that the poten-
tial ¥is in standard form and is formally self-adjoint. Explic-
itly, this means that there exists a finite reflection invariant
subset A of Z" so that V" has the form = __, V,,, where

V,=b°P,(N)=b"P__(N+a). (2.33)

We also find it convenient to introduce the subalgebra
& (V) of the Heisenberg algebra J7°, generated by the V,,’s
(ael), as well as the Lie subalgebra .¥" generated by the
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V,’sand H °. These definitions are meaningful since #°, can

be viewed as an associative algebra as well as a Lie algebra,
with the Lie bracket the commutator. In order to indicate
that /#°, or an (associative) subalgebra .« is viewed in this
fashion the letter L is attached to the symbol as a superscript.
Notice that . = ., @ . (V), where .¥, = span H° and
L (NC A (VT isanidealin .. Both .¥ (V) and & (V)
are graded by the natural numbers, with .7, (V) and
«/ , (V) being the linear hulls of all monomials of order p in
the V,’s (acA). In formulas,

MP(V) :=span(Va,a2...a )s

P

Z ,(V): = span((ad Maaya, Va,)s

P

(2.34)

where a,,@,,...,a, range over A and where we have set
Voaray=VaVa," " Va, » (2.35a)
(ad Mg, ..a, =2d V, -ad V, - -ad ¥, . (2.35b)

(We adhere to the common usage of the symbol “ad,” ac-
cording to which it associates to each element ¥ of the Lie
algebra the linear map defined by the brackets; in formulas,
ad VA = [V,4].)

We also present the formula that expresses the Lie mo-
nomials in terms of the ordinary ones, written in the form

(ad V)a.a,»--a,, V,

—1 »
oVt = {a,,da,,....
oNr=¢

(=DM - (2.36)
)

p—1

Here the summation is over all subsets & of a,,a,,....a, _,
arranged in the natural order of the corresponding sub-
scripts, whereas T denotes the complementary set, arranged
in the reverse order. Finally, || denotes the order of the
subset 7.

Since the operation ad is a homomorphism of a Lie alge-
bra into its Lie algebra of linear endomorphisms its applica-
tion to formula (2.36) yields

ad[ (ad M gaya,_ Vi, |

oUT = (a),ay,.., a, 0
oNr=¢

The claim made above, namely, that . is a graded Lie alge-
bra, is immediate from formula (2.37).

Note that the vectors V, ,,...o , as well as the vectors
(2.35), are eigenvectors to the eigenvalue

(wa, +a,+ - +a,)

of the operator ad H °, which thus is exhibited as an operator
of degree 0. Moreover, if we introduce the submodule Y,
(over Z) of Z" by means of the definition

(= D"(ad Mgy s - (2.37)

Y, = {a€Z": {a,w) =0} (2.38)
and let Y| be its complement in Z" then we see that each
homogeneous subspace of .£° (V) [or &7 (V)] splits under
ad H,into kernel and image, with the former spanned by all
vectors (2.35) for which the sum a, + a, + *-- + a, be-
longs to Y, and the latter spanned by those vectors for which
the same sum belongs to Y,. Summarizing, we have
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L WN=ANeod, (2.39)

where /"= Kerad H®, .# =1Im ad H®, ad H° being re-
stricted to .Z° (V). Notice, also, that on account of the Jacobi
identity, /" is a Lie subalgebra of .¥ and .# is invariant
under .#.

Before we close this section we give the standard form of
a general element (2.35a), which is

__patat o ta,
Va.az-uap - b P

(V) (2.40)

aa,a

where
P
Pooya,(N) = ] by, (N +B,,)Po (N+B;,)  (241),
J=1

and we have used the abbreviations
vi=aitay+a_y, B,=a..+ " +a,

which possess the special values ¥, = B, , = 0. The proof of
(2.40) is based on the formula

beP(NYbPQ(N) = b**Pp, ,(NYP(N + B)Q(N),
(2.42)

which expresses the product of two given elements in stan-
dard form again in standard form (here P,QcC[N];
a,BeZ). Clearly, formula (2.40) is valid in the case p = 1.
Assuming its validity for a given p we invoke (2.42) to show
that

P, . (N)

@y,

=b (NP,

Yo+ 1% 41

(N)Pa,a2~~-ap(N+ a,, ).

(2.43)
However, the rhs of Eq. (2.43) agrees precisely with what
we obtain if we split off in (2.41),, , | the last term and ex-
press the remainder in terms of the lhs of (2.41) .

+1

lil. PERTURBATION THEORY

In the following we develop a perturbation theory for
the Schrdodinger equation

= (Hy+ V)¢ (3.1)

based on normal form theory. Here we may think of H° as
being{w,N } + £ and of V being an element of 7, in stan-
dard form.

However, we find it convenient to formulate our ap-
proach to peturbation theory within the framework of an
algebra ¥ which is either associative or Lie depending on
the context. We also introduce the algebra ¢ = of a formal
power series in the parameter € with coefficients in Z. An
element Ce¥ = will be written in the form

C=73 CV¢, CUe. (3.2)
ji=o
Moreover, we will use the notation
CM=3 CcOe, CM= S CcYe  (33)
j;() j=;+l
so that
C=Clm 4 cim, 3.4)

Correspondingly, % '™ will denote the subspace of polyno-
mials in € of degree <m with coefficients in %, whereas ¢ ™
will denote the ideal in ¥ = of a formal power series starting
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with a term on the order of at least m 4 1. We also note the
formula

A[m]'B[m]—(A’B)(m]=€'"+lpm(A,B,6), (3_5)
where
m—1 m
Pm(A,Be) = 2 € z AWPBmF1+r=b (36
r=0

I=r+1
which will play a crucial role in the following discussion.
Note that for 4,5€% = the expression C = exp(eS)4 is
well defined in terms of the usual power series as an element
of ¢ = since each coefficient C * involves a finite sum only.
In case € :=.% is a Lie algebra, exp(eS) is written as
exp(€ ad S) and is easily seen to be an automorphism of € =.
If € : = o/ is an associative algebra and .77 is the corre-
sponding Lie algebra (with the commutator being the Lie
bracket) then

exp(€ ad S)A4 = exp(eS)A4 exp( — €S) 3.7

holds for Ae.&Z . In particular, exp(€ ad S) is also an auto-
morphism of the algebra .o/,

Like normal form theory of classical mechanics (see
Refs. 10 and 13) our approach to quantum mechanical per-
turbation theory is best formulated within the framework of
an abstract Lie algebra .# that splits under ad H:

L =HeN, (3.8)

with.# = Im ad H%and.#" = Ker ad H°.If4c.#, Aand 4
will denote the components of 4 along .# and ./, respec-
tively. The splitting (3.8) obviously carries over to the Lie
algebra .¥” = of the formal power series in € over .%°; the same
holds for the associated projections, which we will continue
to denote by tilde and caret.

Our perturbation theory is based on the idea of bringing
the perturbation €V into normal form, i.e., into a form in
which it commutes with H © by means of a suitable transfor-
mation. For our purpose we find it best to write the normal-
izing transformation as a product of exponentials, each of
which transforms the next higher order term into normal
form.

If §\€.Z is any solution of the commutator equation

[H O,S 1] = T/,
then by comparing terms of order € on both sides of

exp(ead S\)(H°+ eV) =H® + eH" + €V,

Ve?~, 3.9)

we obtain HV =7 Assuming inductively that
815825098 _ 1 and HOH®@, H™— belonging to . and
V..€.Z = have been constructed, we let S,, be a solution of

[HS,] =V (3.10)
and we verify, by comparing terms of order €™ on both sides
of

exp(e™ad S, ) (H" = 4 eV, ) =H'"™ 4+ e+,
(3.11)

with suitable V,, , €. =, that H "™ = V' holds.
Combining these transformations into a single one we
may write
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H+eV=%,(S)H"™ +e"*'V, ., ), (3.12)
where
R, (S):=exp( —ead S))exp( — & ad §,)
X exp(—€™ads§,,). (3.13)

Setting for 7 = (17,,935.-s7, YEQ™ ( = m-tuples of non-neg-
ative integers),

|77| = Z '”rl’ ’)7*: z m,, n'=171|7]2|7,m|

r=1 r=1

and

(ad §)" = (ad §,)" - (ad S,)™ -+~ -(ad S,,)™",
we can write the / th coefficient of %, (S) in the form

(=1
RBLS)= 3 ———(adS)". (3.14)
neQ™ 7!
=1

Comparing terms of order €” ' (m>1) on both sides of
(3.12) we obtain the formula

m+1
Viii=— > AQEOH™I=0, (3.15)

=1
which expresses the coefficient of €’in ¥, , | in terms of H°,
HY, . H™, and S,,5,,...,S,,. A similar formula could be
derived for the higher order coefficients of V,, , |, but since
they are not needed we refrain from presenting them here.'?
For m = 1 we obtain

VO = - RP(HH" — RP(SHC,

where Z{V(S)= —adS,, Z{*(S)=1L(adS,)’ and
therefore

VO =adSV +ad S;(V — ) =1ad S,(V + V)

and H® = V. Since on account of the Jacobi identity .#
is stable under .#” we may write

H?=1(ad 5,7, (3.16)
provided only that we normalize S, to lie in .#. (Compare
with Ref. 10.)

The foregoing development is all valid in the abstract
framework of a Lie algebra .% and its power series extension
£ . We now return to the situation of our quantum me-
chanical problem in which .# is realized as a Lie subalgebra
of 2%, generated by H° and (V, )., - Since Ve.Z (V) it
follows from an easy induction argument based on formuia
(3.15) thatinfact S, and H  arein . , (V) C o, (V), i.e,,
they lie in the linear hull of vectors V., ..., (@,a,...,@,€A).
Moreover, if we normalize .S by the requirement S = 0, an
induction argument based on formula (3.15) shows thatif V'
is formally self-adjoint so is iS, and H ©.

We now proceed to show how the transformation of
H, 4+ €V into normal form can be used to define approxi-
mate solutions to the Schrodinger initial value problem

= (Hoy+ €N, $(0) = ¢, (3.17)

Moreover, we shall describe a procedure that allows us to
estimate the associated error. Finally, we shall take up the
task of making these constructions rigorous. For the present
we assume that our Heisenberg algebra is realized as the
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subalgebra of an operator algebra over some function space
on which also the operator

U, (1) =exp( —iH!™t) (3.18)

makes sense. The mth approximant to the initial value prob-
lem is defined by means of the formula

G (1) = [RU U, (D ] ¢ (3.19)
Explicitly, for m = 0,1,2,3, the approximations are

¢o(t) = Uo(’)’ﬁ(»

$,(1) =(1—€eT))U (1), (3.20)

$,(1) = {1 — €T, + €T - Tz]}Uz(f)'/’o,
$:(t) = {1 — €T, + €[4T} — T,]
+ €[ -4} + T\, — T3] }U; (D) s -

Here we have abbreviated T, = ad S, (k = 1,2,3).

Proceeding informally at first, we assume that we can
differentiate ¢,, (t) and that the derivative is the expected
one. Introducing the quantity

m—1 m
()= 2 6’1 3 BPSHH™HHTOUL (D)W
r=0 =r+1
(3.21)

we find, in view of (3.5),
i, = RLN(S)H™U,, (),

= [Z.(S)H'"™U, (O] + €+ 'u,, (2).
(3.22)

Here we view U, (¢) as being of order €°. Since exp (¢’ ad §),
for Se7,, j>1, is an automorphism in the algebra of a for-
mal power series with coefficients in the given operator alge-
bra, we may write

i = [P (SYH'"™R, (YU, ()] + €™ 'u,, (1)
=[(H°+eNZ (U, (O] + € ', (1)
=(H°+ eV, (1) + €+ (u, —r,),

where r,, (1) = V[#S7(S)U,, (1) |4 Summarizing, we
see that ¢, satisfies the initial value problem

i, = (H® + €N, +€" g (1), ,(0) =1
(3.23)

which differs from the Schrédinger initial value problem by
the presence of the term g,, (¢). Explicitly,

m—1 m

g.(D= 3 € 3 ALSHHEH" U, (D

r=0 I=r41
—V[Z(S)U, (1) ] (3.24)

In Sec. IV it will become clear that these derivations can be
Jjustified rigorously in a Hilbert space setting. It then follows
from an argument similar to the one of Lemlih and Ellison®
that @, (#) deviates in norm from the exact solution ¥(z) of
the Schrodinger initial value problem by a term of order
€"* 1t | for €10, i.e.,

6 (6) — (O]} = O (™ * 't ]), (3.25)
provided only that the initial vector g, is confined to a suit-
able dense subspace of the Hilbert space.
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V. RIGOROUS DETERMINATION OF THE INITIAL
DOMAIN

In order to make the foregoing development rigorous we
introduce the space &, of entire functions of 7 complex vari-
ables z: = (2,,25,...,2, ) and realize the algebra elements a,
and ¢, as operators over &, of partial differentiation with
respect to z, and multiplication by z,, respectively, i.e.,

(a.f)(2) = I (2), (e f)(2) =2z.f(2).

dz,

(4.1)

On the space &, we introduce a pseudonorm by means of
the definition

11 = [ 1@ P d @,
where the measure du,, (z) on C" is given by the expression
du,(z) =m""e " **d"xd"y.

Here

(4.2)

Zz= Y 2% 2 =Xk + s
K=
d"x =dx, dx, --dx, ,

etc. Obviously, & , contains elements of infinite norm. How-
ever, it is well known that the linear subspace

F o ={fe8: | Sl <ew}

of &, is a Hilbert space. In fact, Bargmann'*'® has amply
demonstrated that the Hilbert space % , is better suited for
many applications in physics than the more conventional
Hilbert space L 2(R") (see, also, Ref. 17).

Moreover, Bargmann'4'¢ has demonstrated that there
exists a unitary integral transformation from L *(R") to % ,,
whose kernel essentially agrees with the generating function
of the Hermite functions. Explicitly, the transformation is
given by the formula

4.3)

1) = [ 4,zar0@ars, 4.4)
where
A4,(z9) =7 "*expl — 42+ ¢*) +22q]
=Y u,(2)P,(9). 4.5)

70
The symbols in expression (4.5) have the following mean-
ing:
(4.6)

is a complete orthonormal system of functions in % , and

q)n(q) — (2|7l|17!)—1/27r—-n/4 exp( _ %qz) ﬁ hq,(%)
=1
4.7

[A.. () = Hermite polynomial of order m] is such a system
in L%(R").

The Heisenberg algebra 5%°,, as well as the subalgebras
A (V), £, now appear in the disguise of algebras of differ-
ential operators over & ,,. By restriction these operators be-
come unbounded operators on the Hilbert space & ,,. In fact,

u, (z) : = (1) """, 5eQ”,
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any differential operator A over &, restricts to an operator
with natural maximal domain

DAy ={feF,: AfF,}. (4.8)

Since the complete orthonormal system u, (z), 7ef}” [see
(4.6) ], is contained in & (A) the linear hull of these vectors
constitutes a dense invariant domain for all our operators.
This implies in particular that & (4), as defined in (4.8), is
dense in & .

Notice that if A4,Be7, then

D(ANY (BYCD (A + B).

Hence, if for 8: 1" [0, .0 ) we associate the domain

S [ fu,) 200 < oo] . (49)

7en”

#(0): = [fe?,,:
then the domain

NABO,) with 6,(7) =Z,(m|Pa ()’ (4.10)

is contained in the maximal domain & (V) of the operator
V=3_,,b°P,(N).
We have seen in Sec. II that the operators

V=Zb“Pa(N), W=a€2_Ab"‘ P__,(N+a) (411

a€A

are formally adjoints of each other. In fact, it turns out that
they are adjoint of each other as operators on the Hilbert
space . ,,, i.e., we shall prove the following theorem.

Theorem: If ¥ and W are as in (4.11) then V* = Was
operators over .% .

Remark: Remember & (V*) ={fe5 ,: g—{f,Vg) is
a continuous linear functional on & (¥)} and V *f is by de-
finition the unique vector in ¥ ,, so that

(fiVg) =(V*g),

for all geZ (V).

The proof of this theorem is based on the following
lemma.

Lemma: For any fe% , we have

(4.12)

Wf = Z (Vu,, fu,. (4.13)
7e02”
We first deduce the theorem from the lemma.
Assume feZ (V*). Then from (4.12) for all e,
(Vu,, [) = (u,,V*).
Hence, from (4.13), Wf= V*f&% ,. This proves V*C W.
Now, assume fe& (W). Then, by definition of & (W),
Wfe# , and from (4.13) we deduce
(Vu,,,f) = (u‘q’Wf)

for all neQ)”. Now, let geZ (V). Since g is an entire function
we have

Ve= Y (gu,)Vu,e#,.
7eQ”
By continuity of the inner product we find
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Ve fr= Y (gu,)(Vu,,f)

net”

= 3 &Y, W) = @),

e

It follows that feZ (V' *) and V*f= W}, ie., WCV* By
combining this result with the converse inclusion the deduc-
tion of the theorem from the lemma is complete. Finally, the
statement of the lemma follows from the following computa-
tion:

Wi=3 S u,NZ o] Pig~a) u,_,

acl peQ”

= Z Z (u”+a!f)[za(7’)]l/2 Pa(n) u'r]

acld ne”

= 2 (Vu,,,f)u,,.

net”

Corollary I: All elements of 77, define closed operators
over ¥ .

Corollary 2: An element of 77, defines a self-adjoint
operator over .% ,, iff it is formally self-adjoint.

Notice that by our definition of the domain of an opera-
tor Ae5%°, neither & (BA) C Y (A) nor AZ (BA) CZ (B)
need to be true. In the following we shall denote the maximal
domain of ¥, ..., simply by D (a,a, “*a,). According to
what we have just ‘stated it need not be true that
D (i a,) (k=12,.,p) is a chain of domains,
each contained in the next one, nor need it be true that V,,P
maps & (a,a,*"a,) into Z (a,a, "-a,_,). However, if
we define

V4
§laa, ra,) =k91@(akak+1-"ap) (4.14)

then these statements are true with & replaced by 8. The
first statement is a consequence of our definition and the
truth of the second is seen as follows. Assume
fe Vap5(a1a2- *-a,). Then there exists

geb(a,ay - a,) Co(aa, ') C Y (a,)
sothat V, g= [ Hence &% ,, and
Vakak+,~-ap_1f= Vakak+,---a gejﬂ’

and therefore fe& (a,a; , * v, ), fork=12,...p— 1.
This is exactly what we wanted to show.
Notice that, according to (2.40) and (4.9),

p - 19%p

D(aaya,) = H( S B (4.15)
where
Gal,,:...ap(n) =2y oy +ap(n)[Pa.az"'ap(7])|2‘
(4.16)

Moreover, we introduce the domain
D(a,ay - )= ‘@(Va,az'--apHOO) = e@(eg,a,~--ap),
4.17)
where H® = (@,N ) and therefore
Gglaz...%('r}) = I(w,n)[zeal.,up(n).

Finally, we set

(4.18)
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Olaay ) = D(a,, ) NS, ).
(4.19)
For any r = 0,1,2,...,p, we have
Voroa Vo oo, = Vaaya, (H® + £2),
where £2 =&+ 2¢_ ., {a;,w). Since, for any 4,Be%,,
D(A+BYNY(A) = D (BYND (A),
it follows that
DV a HV,, 0 )N D () )
=2%a,q,)ND (a, a,)
and therefore
DV s HV,

=8(aay - a,).

‘...ap)ﬂé(a,a2~ a,)

Setting r = Oin the last relation and reasoning as above in the
case of 8(a,a," - a,) we also have

V, 8y, ) C8% iy a, ).
Finally, we introduce the domains

5,(A)= N

@, aeh

Ma,aya,) (4.20)

and similarily 6°(A). Notice that

Vapép(A)CVap N dlaay e, a,)

C(sp‘ 1 (A)

and similarily for 5. More generally, if p, ¢ are two natural
numbers such that ¢ < p and if AeZ, (V) then

45,(8)C8,_,(A), AS(A)CSE_,(A). (421

Our fundamental estimate is based on the following
Gronwall-like lemma (compare with Ref. 9).

Main Lemma: Let % be a Hilbert space. Let I be an
open interval containing 0. Assume ¢, ¥ are two continuous-
ly differentiable functions defined on [ with values in the
domain & (4) of a symmetric operator 4 over %. Assume
further that ¢, ¥ satisfy the differential equations

id=Ad +g, ih=AY,

where g: I » % is a continuous function. Then the following
estimate holds:

[66) — b <160 — 9O + | [ gt las
0

(4.22)

(4.23)

In order not to interrupt our main argument we relegate
the proof of this lemma to the Appendix. Of course, for the
application we have in mind the symmetric operator is
A = Hy+ €V, ¢ = ¢, [defined as the mth approximation in
(3.19) ] and the error term g,,, is defined in (3.24). In order
to state the main theorem of this paper we need the concept
of nonresonance of order m.

Definition: The potential ¥ is called nonresonant of or-
der m with respect to H° if

A+ A+ - +ANY,={0}

k

(1<kgm). (4.24)
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Using this concept our main theorem can now be stated as
follows.

Main Theorem: Assume V is nonresonant of order m
with respect to H °. Then the approximate solution ¢,, [de-
fined in (3.19)] satisfies an estimate of type (3.25) provided
only ¥, is restricted to the domain

82m (A)NES, (A).

The proof of the main theorem is broken up into a series of
lemmas.

Lemma 1. If V is nonresonant of order p with respect to
H° then §,(A) is invariant under U, (t€)
: = exp( — iH ' (€)t).

Proof: Since by assumption Vis (formally) self-adjoint
an easy induction shows that the same is true for each ele-
ment H ®, p>1, hence also for H ') and € real. However, we
know that formal self-adjointness implies genuine self-ad-
jointness on the maximal domain. By Stone’s theorem
exp( — iH P't) is unitary. In case Vis nonresonant of order p
H 7! ig seen easily to be a function C(N,€) of the number
operators N, (k= 1,2,...,n) and € only. Since §,(A) is the
intersection of sets of type % (8) [see (4.9)] it is sufficient
to prove that such a set is invariant under exp( — iC(N,€)¢).
However, in view of the identity

(u,,exp( — iC(N,€)t)f) = exp( — iC(7,€)t){u,.f)

this is self evident.
Lemma 2:

6. ():i=3 & 3 (— 1 BIN g oy,
=0 oa*=1 a!

is well defined for ¥,€6,, (A).

Proof: Evidently, it is sufficient to prove that
(ad $)2U,, (¢,€) 1, with a* = lis well defined for 1/,€5,(A).
Remembering that

(ad $)* = (ad S,)*(ad S,)*---(ad S;)™

it is clear that

(ad S)*U,, (t.€)
=3 (;) S°PU, (1e)SP(—1)P,
0<B<a

where 8= (8,8, »-B,). Since S? maps 8,(A) into
8,_ g+ (A), which is left invariant by U, (¢,€) and mapped
into 8,_ . (A) =8,(A) =%, by §°°% Lemma 2 is
proved.

Lemma 3: Let (y, )nen,, be a set of continuous complex
valued functions defined on an open interval J about 0, each
of which is bounded by a positive constant M, . If
2 oM, <wthenZ ..y, (k) is well defined and contin-
uous on J. In particular,

lim 3, (1) = 3 ,(0).

7et” 7eQ”
Proof: By adding
n
S ta=te S m=M. (=3 n)
neQ” nef)” i=1
Inl =k Int =k
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the general case is reduced to the case n = 1, in which it is an
immediate consequence of the Cauchy criterion.

Lemma 4: The formula v(t) = A exp( — iH “°t)y, for
Aes/ (V) and ,c67 (A) is differentiable, with the expected
derivative v,(¢): = — iAH % exp( — iH®t) 4y,

Proof: By linearity it is obviously sufficient to prove
Lemma 4 for the caseof A =V, , .. ay Since

[v(t+h) —v()1/h —v,(2)
=Va..a, exp( — iH®D) [ (™™™ — 1) /h + iH*] ¢,

we find

_ 2

u(t+h})1 v(t) —u,(8)
= S [ty ) P60 (M)
neQ”
e—i(ﬂ,m)h —1 . 2
P +i{no)| . (4.25)

From e~ — 1= —ia ffe~"dt we conclude that

|e~* — 1|<|h ||a|. Hence the 7 term in the sum (4.25) is
bounded by the constant

M, = 4 Yo) 6., (D | (0,0) |
Since by definition of &) (A):Z"EnnM,, is convergent the
statement of Lemma 4 follows from Lemma 3.

Lemma 4(a): The expression 4 exp( — iH "t) By, with
Adest ,(V),Bed ,(V), $o€b,, (M) NS, (A) (p+g=m)is
differentiable with respect to ¢ and the derivative is the ex-
pected one.

Proof: Wehave , = Byed,(A)NS,, . ,(A). Now pro-
ceed as in Lemma 4 (with ¢, replaced by ¢,).

Lemma 5: The function g,, (), defined in (3.24), is con-
tinuous for ¢,€8,,, (A).

Proof: Apparently it is sufficient to prove that
Aexp(—iH'"™1)By, is continuous for Aeo,(V),
Be% ,(V) with p 4+ g = 2m. Since under our assumption
¥, = By, belongs to §,(A) it is sufficient to prove that
u(t):=V, € i”"""://, is continuous for ¥,&6,(A).

12" a

However, this follows from Lemma 3 in view of the formula

”U(t + h) - v(t)HZ = 2 |(uq’¢l>‘26a,a2"-ap(1’)

7eQ”

X lexpl — iH™ (n,€)h ] — 1]~
Here we have used the fact that H "™ is a function of N, €
only.

Proof of the Main Theorem from the lemmas: Each term
of ¢, (t) is of the type described in Lemma 4(a) with
p + g<m. Hence the argument sketched at the end of Sec.
II1is valid, i.e., &, satisfies the Schrédinger equation modu-
lo an error term g,,, (¢), which according to Lemma 5 is con-
tinuous. Since the operator H® + €V is self-adjoint on its
maximal domain it is symmetric on 62, (A) N8S,,, (A) so that
the hypotheses of our Main Lemma are satisfied. Its conclu-
sion implies the result of our Main Theorem.

Corollary: The domain 82, (A)N&,,, (A) for which the
conclusion of our Main Theorem is valid can be simplified to
read as
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D%,(8)NS,, (B), (4.26)
where
2%0)= N D%aa, - a,)
a,\as,...,x,, €0

Proof: Clearly, the domain (4.26) contains the domain
&% (A)NS,,, (A); we only have to show that (4.26) is also
contained in it. However, obviously

Srm (M) Ty, 0@y, ),y
for all a,,a,,...,a,,€A. Hence
S (MNDaa, e, ) C8(aa, a,,).
Forming the intersection over all a,,a,,...,,, €A yields
8,m (A)NDT, () TS, (D).

The conclusion follows. This simplification of the initial do-
main is achieved without sacrificing precision. Still, the de-
scription of the initial domain given thus far may appear too
unwieldly to be of practical use. For this reason we now
proceed to construct a subdomain of the initial domain
(4.26) which bears a simple relationship to the potential
V=23_.V,. For this purpose we note that there exists a
positive constant C(A) and a positive integer r(A) so that,
for all aeA,
0<6, (1) = Z, () |P, () [><C(A) (7] + D",
(4.27)

where || = =, _ ;. Here the integer
r(A) : = max [2deg P, (1) + |a|]

is nothing but the degree of ¥ viewed as a polynomial in the
creation and annihilation operators. Going through the con-
struction of the initial domain (4.26) with the estimate
(4.27) in mind we see that under the assumption mr(A)>2
our initial domain contains the simple subdomain % ,,, (A),
where, for integral p,

B,(A):= {fe.?‘_,,: z |(f;u,,)|2(|~,7| + 1)Pr(A)<oo] .

ne”
(4.28)

Remark: In the case n = 1, |77| + 1 may be replaced by
7.

It turns out that the domain (4.28) is sufficiently small
to be a candidate for the initial domain even in case of some
resonances. In order to illustrate this point and also in order
to discuss a case which in a certain sense is quite opposite to
the nonresonant case, we take up the case of the 1:1 reso-
nance, which one of the present authors has studied pre-
viously within the context of classical mechanics.’ In quan-
tum mechanics this system is described by a Hamiltonian

HO=N|+N2+1

and a potential interaction in standard form

V=3 bibLP,(N,N,), (4.29)

(k,hHeA

where A is a finite reflection invariant subset of Z* and

Pk,l(Nl’Nz) = P—k,—l(Nl +k,N2+l)
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are polynomials in the number operators N, =c,aq,,
N, = c,a,. Notice that since Y, is the submodule (over Z) of
77 generated by (1, — 1) any potential (4.29) with A #{0}
is resonant with respect to H °. As in the classical context the
normal form is a polynomial in the Hopf ‘“‘variables™ which,
however, in the quantum mechanical context are bilinear
forms in the creation and annihilation operators, namely
(see Refs. 5, 6, and 16),

M = ({(c,a, + c;a,),(1/2i) (¢\a — c,a,),4(N, — N,)),
J=4N,+N,) M =J(J+ 1],

which generate the U(2) action over .¥ ,. Accordingly, the
Hilbert space .% ,, under the action of the evolution opera-
tor, associated with the normal form, breaks up the same
way as under the action of SU(2), namely, as follows:

.72229?21-.
j>0

Here & ,; is the space of complex homogeneous polynomials
of degree 2j in two complex variables z,, z,. Notice that the
domain (4.28) with p = 2m in the present case becomes

‘@ZM(A)

= +j
=lf a-n: b3 ! |(f,e,{)|2(2]+ 1)2mr(A)<w] ,
j=0p=—j
(4.30)

where e{; =M, uj_ - Notice that this domain, and, more
generally, each domain of this type with 2m replaced by any
positive integer p, is invariant under the evolution operator
of the normal form. For this reason our arguments carry
over from the nonresonant case to the 1:1 resonance and
show that (4.30) is a valid initial domain for the mth approx-
imant in the 1:1 resonance.

V. A SECOND METHOD OF APPROXIMATION

Finally, we will describe an alternative method of ap-
proximation to the solution of the Schrodinger initial value
problem

i¢ = (Hy+ €V)g, $(0) = thy,

This method is also based on the normal form technique.
However, instead of writing the normalizing transformation
in the form of a product of exponentials, as has been done
previously, we simply write it in the form of a power series
S(€) (compare with Ref. 11). The method is best described
in the setting of an abstract associative algebra ./ an its
formal power series extension . *. Assuming that Hy, Ve.o/
we look for a transformation Se.o/ * so that

(H°+ eV)S=SH, S%=1, (5.2)

and H = H® + H"'} commutes with H °. A sufficient condi-
tion to make this construction possible is precisely the split-
ting assumption made in Sec. II, except that «/” takes over
therole of .¥°. Again this splitting assumption extends to the
algebra of a formal power series and the components of an
element in the kernel 4" and image .# of ad H,, will again be
denoted by a caret and a tilde, respectively. Comparing

5.1
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terms of order €™ on both sides of Eq. (5.2) yields

—adHSS™ 4+ H™ =V, (5.3)
where
m—1
Vo=— 3 SOH™=D L pgm=, (5.4)
=1
In particular, ¥, = ¥, SV is a solution of
ad HOSW = — 7, (5.5)
and H = V. Also,
V,= —SWH® 4 pSO = [7,SD] + TSP (5.6)

and S? is a solution of

ad HOS? = -7,
and H? = ¥,. If we normalize SV by the condition sv=p
then [ V,5"]" = 0 and the expression for H * simplifies to

H®? — ('I'}S(ID)A.

Although H @ is still formally self-adjoint if ¥ and H*
have this property the normalization S = 0 in general is not
the correct one to guarantee the formal self-adjointness of H
for real €. This will be achieved as follows.

We normalize Sin such a manner that S'is formally self-
adjoint and for m>1 satisfies

A 1 ™= 1 A~

S(m)= - [S(l)(S(m_'))T].
2 2
In order to see that this normalization achieves the desired
result we first recognize that (5.2) implies the relation

ad HoSSt=S(H—-H)SY+e[SST,V].
Clearly, (SST)® =1 and H°= (H')?. Now assume
(SStYUm—1U =T and H'"~ = (HT)!" 1, Then it fol-
lows that

ad HO(sz)(m) = Hm _ (H("'))*.

Since the rhs belongs to.#”, whereas the 1hs belongs to .4 we
see that (SST)™e 4" and H'™ = (H")!"™. Hence

(SST)('") —_ [(SSt)(rn)]A
A m—1 A
=25+ 3 [SPS"MTT =0
=1

and therefore (SST)™ =1. In particular, SW— 0,
SO _ %[S(l)s(l)T]A’ etc.

We define the mth approximant ¢,, by means of the
formula

G (1) =S exp( — iH ™) Ty,
On account of (3.5) we have
3., (0) =+ € 'p,,. (S, T,€)

ie., ¢, satisfies the desired initial condition only up to a
factor of order €™+ . Again invoking (3.5) we find

T=S" (5.7)

S[m]H[rnl — HOSml _ cpgim
=e"*p, (SHe) —VS‘™].

The terms in brackets on the rhs will be abbreviated by
g, (2,€). We use this relation in order to show that ¢,, ()
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again satisfies the Schrodinger equation modulo a term of
order € * . Indeed, formal differentiation yields

i@, =S H "™ exp( — iH "t) Ty,
=(H°+€V)d,, +€"7'g,(L€).

It can be shown'? by a similar analysis, as presented in Sec.
IV, that in a rigorous Hilbert space setting the appropriate
initial domains for our alternative method take the form

53m (A)n'@gm (A)’

with the simple subdomain % ,,, (A) [see (4.28)]. More-
over, for ¥, restricted to this domain, we obtain an estimate
of the form

|6 (6) — P(D]|<€™* 'M(1 + ).

Notice that this method, although formally simpler than the
method described in Sec. I1I1, leads to smaller initial domains
and an error term that does not vanish for = 0.

Of course, the cause for this behavior of the alternative
method is the presence of the operator 7! in the definition
of the mth approximant (5.7). Its function is to guarantee
that ¢,, does not only satisfy the Schrodinger equation, but
also the initial condition modulo a term of order €™ * .
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APPENDIX: PROOF OF THE MAIN LEMMA
Set u = ¢ — 1. Then we compute

gt_ (uu) = —2Im{Au + gu) = — 2 Im{g,u).

Here we used the symmetry of the operator A.
Setting vs(¢) = [(u,u) + 8]"/? for § >0 and using the
Schwarz inequality, we find

— g l|<is (D<|Ig(D)]].
Integrating, we obtain

[ etsryas
0

The conclusion of the lemma follows in the limit §.0.

vs (8)<vs(0) +
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A new approximation for solving the time-dependent Schrédinger equation is proposed. It
improves the time-dependent Hartree approximation by including time-dependent unitary
operators acting on the Hartree product. This allows for the approximate description of the
correlation between the various degrees of freedom. The mathematical structure of the new
approach is analyzed and an alternative Lie algebraic derivation is presented. By adopting two
different time-dependent variational principles two different sets of equations are obtained.
Differences between the two resulting methods are discussed.

I. INTRODUCTION

Time-dependent methods in solving quantum dynamics
have become increasingly popular during the last decade.
Many severe problems of the time-independent formulation
do not exist in a time-dependent picture, e.g., the treatment
of continua and of the rearrangement and breakup processes
in reactive scattering. Averaged quantities may be computed
directly since one does not necessarily project the wave func-
tion onto final states. Hence time-dependent methods are
particularly well suited for describing nonfully resolved ex-
periments. Besides of the technical advantages, the time-de-
pendent formulation often leads to a better understanding of
the physical mechanism under discussion.

The applications we have in mind are (a) collisional
vibrational excitation of a polyatomic molecule, e.g.,
HCN(v) + He—-HCN(v') + He, where v and v’ denote the
quantum numbers of vibration prior and post collision, re-
spectively; (b) photodissociation, e.g., H,O(v) + hv
-H+ OH(v'); and (c) reactive scattering, e.g.,
HCl + D - HD + Cl. The nuclear dynamics performs in all
these cases on a single Born—Oppenheimer surface, i.e., the
electronic motion decouples from the heavy particle motion
(to a very good approximation). The former motion is as-
sumed to be solved by quantum chemistry and the latter one
is what we want to investigate.

Adopting a time-dependent formulation one has to
choose among different numerical methods for solving the
time-dependent Schrodinger equation. The best methods
are, of course, the numerically exact ones.'~® However, the
use of a numerically exact propagation scheme is limited to
problems with a very small number of degrees of freedom
(two or three). A considerable reduction of the computa-
tional effort is gained by resorting to approximate methods,
e.g., to the mean field approaches. These are in particulat the
time-dependent Hartree (TDH) and time-dependent Har-
tree-Fock (TDHF) methods for treating distinguishable
particles and fermions, respectively. In nuclear physics
TDHEF is one of the most popular time-dependent meth-
0ds.'® In the field of molecular physics TDH has been used
less. However, semiclassical approximations to TDH have
recently been investigated and applied.!'~'?

» Permanent address: R. Boskovic Institute, Zagreb, Yugoslavia.
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Another approach to solve the time-dependent Schro-
dinger equation approximately is the parametrized wave
function method. In this method one adopts an ansatz for the
wave function that contains a set of time-dependent param-
eters. The equations of motion for these parameters are de-
termined by a time-dependent variational principle (VP). A
thorough discussion of the mathematical structure of the
parametrized wave function method can be found in Kramer
and Saraceno.'* A well-known example out of this category
is the Gaussian wave packet propagation of Heller.'>-'7

Somewhat similar in spirit to the parametrized wave
function method is the exponential operator approach. One
writes the propagated wave function #(z) as

Y(1) = U ¥(0). (1.1)

The time-evolution operator U(¢) is written as an exponen-
tial or as a product of exponential operators. The exponen-
tial form guarantees unitarity although the propagation may
be approximative. The first use of exponential time-evolu-
tion operators goes back to Magnus.'® Using the Magnus
formula one writes

U(t) = exp (i > M,,),
n=20

where the Hermitian operators M, are given as time inte-
grals over i” times the n-fold commutator of H(¢,),....H(t, ).
Depending on the problem there may be only a finite number
of nonvanishing operators M,,. Otherwise the series must be
truncated. However, if the Hamiltonian H(¢) belongs to a
finite-dimensional Lie algebra then all M, also belong to this
Lie algebra and the infinite sum may analytically be reduced
to a finite one. In this case the time-evolution operator be-
comes

U(t) =exp (z‘ i a,,A,,) )

n=1

(1.2)

(1.3)

where the operators {4, } form a basis of the m-dimensional
Lie algebra. The parameters @, may be determined by solv-
ing a set of differential equations. In a nice paper Pechukas
and Light'® have demonstrated the usefulness of the Magnus
approach for solving certain model problems.

The Magnus formulation has two serious drawbacks:
(i) the matrix elements of the time-evolution operator are
often very hard to compute; and (ii) it can only be shown

© 1988 American Institute of Physics 1417



that Eqs. (1.1), (1.2), or (1.3) establish a local solution to
the time-dependent Schrodinger equation (i.e., up to some
finite ¢,). A global solution may not exist! These two difficul-
ties are overcome in the formulation of Wei and Nor-
man.’*?' They write the time-evolution operator as a prod-
uct of exponentials

(1.4)

where a,,...,a,, are real time-dependent parameters and
where the Hermitian operators 4,,...,4,, are assumed tobe a
basis of some Lie algebra. (Actually Wei and Norman did
not require 4,,...,4,, to be Hermitian and a,...,2,, to be real
and they considered a larger class of problems than just the
time-dependent Schrodinger equation.) If the Hamiltonian
H(t) is in the Lie algebra then one can find parameters
ay,...,2,, yielding an exact solution. Wei and Norman de-
rived differential equations for the parameters and showed
under which condition the solution is global. These condi-
tions, in particular, concern the ordering of the product
(1.4).

The Wei and Norman approach is not of too much prac-
tical use in the general case. This is because one generally
cannot find a Lie algebra which on one hand contains the
Hamiltonian and which on the other hand has a small sized
basis of simple operators such that exp(ia;4;) can be evalu-
ated. If one approximates the Hamiltonian by a member of
the Lie algebra, then this approximation is often very poor.

In this paper we shall combine the TDH and the Wei
and Norman approaches yielding the time-dependent rotat-
ed Hartree (TDRH) formalism. By “rotated” we here de-
note a generalized rotation, i.e., a unitary transformation of
the wave function; we do not restrict ourselves to physical
rotations of the coordinates. In TDRH the unitary operators
act on the Hartree product rather than on ¢(¢ = 0). Hence
the unitary transformations have only to account for the
correlations between the different degrees of freedom and
not for the full motion of the wave packet. Since TDRH is
derived from a VP it is necessarily an improvement over
TDH.

The TDRH was recently applied successfully to a model
problem.?> Here we devote ourselves to the formal deriva-
tion of the new method. In Sec. II we shall derive the equa-
tions of motion from time-dependent VP’s. In Sec. I1I we
discuss the TDRH approach in terms of the Lie algebra for-
malism and introduce the new concept of a A algebra. The
algebraic approach leads to the same equations of motion as
derived in Sec. II. The Lie algebraic formulation, however, is
of great importance because it illuminates the mathematical
structure of the method. It shows a way how to determine
the optimal ordering of the exponential operators and allows
us to name the conditions under which a global solution
exists. In Sec. IV we shall discuss the two-dimensional har-
monic algebra as an example and in Sec. V we finally summa-
rize our results.

U(t) = explia,,4,,) -exp(ia,A,)exp(ia,A4,),

il. THE GENERALIZED HARTREE METHOD
A. The ansatz

The goal of the present work is to solve the time-depen-
dent Schrodinger equation
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i, = Hy,, (2.1)

in an approximate but systematic fashion. Here H denotes
the Hamiltonian that may or may not depend on time and
Y., is the exact wave function depending on n coordinates.
We shall assume # = 1 throughout. In the TDH formalism
the wave function is approximated by a separable product

Yoy (X150esXs) =P (X, X50000X ) = H ®,(x;,1). (2.2)

ji=1
The single-particle functions ®; are assumed to be normal-
ized,
<¢j|¢j> =1, (2.3)

and their time evolution is given by the mean field equa-
tions®?

i, = (HY — [(n— 1)/n)(H))®, 2.4)
where the total energy reads
(H) =(P|H|®) (2.5)
and where
HO =(P,,..0_,,2,,,,.,9,
H|®,.,®,_,,®_ ,,.,.2,) (2.6)

is the mean field Hamiltonian describing the motion of the
particle j in the mean field spanned by the other particles.
The phase factor [(n — 1)/n]{H ) is often removed from
the mean field equation (2.4) and the sum of all phase fac-
tors is treated separately.?®

The Hartree ansatz can be improved by enlarging the
space of the trial functions. Qur ansatz for the trial wave
function ¢ reads?*

Y(t) = U ®(n), 2.7
where U(t) is a unitary operator. This operator is written as
a product

o= fj ve=v, -

k=1

U,U, (2.8)

with
U, (t) = explia, (£)A4) (2.9)

(Note that we order products from right to left!) The «,
denote time-dependent real parameters and the A, are Her-
mitian operators.

The unitary transformations performed by the exponen-
tial operators can be considered as generalized rotations.
Hence we shall refer to the method which follows from the
ansatz (2.7)-(2.9) as the time-dependent Hartree method
with generalized rotations or briefly time-dependent rotated
Hartree (TDRH).

Some remarks on TDHF and its generalization to
TDRHF are in order. In TDHF the trial function ® is not of
product form but is a Slater determinant. When generalizing
TDHF to TDRHEF one has to be careful not to destroy the
antisymmetry. The natural way to achieve this is to restrict
the generators of the rotations 4, to be second quantized
operators, i.e., Hermitian combinations of fermion annihila-
tion and creation operators.
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B. Variational principles

The equations of motion for the parameters a, as well as
for the single-particle functions ®; are obtained by applying
a time-dependent VP to the ansatz (2.7)-(2.9). In the fol-
lowing we shall discuss two different VP’s. The first VP we
discuss is due to McLachlan.?? It states

8|liy — Hyp||*> =0, (2.10)

where ||-|| denotes the Hilbert space norm. Only the time
derivative ¢ is varied. This demand follows from the phys-
ical picture that, at each point of time, ¥ is given as the initial
value and the optimal approximation to ¥ is desired. The
McLachlan VP defines “optimal” as the smallest error in the
norm. If the space of allowed variations of ¢ is equal to the
space of allowed variations of ¢, i.e., if

{69} = {6v}, (2.11)
then one finds that Eq. (2.10) is equivalent to
Im<51// l'gt-—H‘l/’>=0. (2.12)

Our ansatz (2.7)-(2.9) implies that (2.11) and thus (2.12)
are valid.

The other VP of interest is thoroughly investigated by
Kramer and Saraceno.' It starts by introducing the Lagran-
gian

o -

where ¢ is assumed to be normalized. As usual one requires

(2.13)

5f2Ldt=0 (2.14)

subject to the boundary conditions 8L(#,) = 8L(t,) =0.
Performing the partial integration leads to

Re<5¢ (2.15)

.d ! >
—_——H =0.
'ax 4

The two VP’s lead to surprisingly similar equations.

If for each allowed variation &y the variation i8¢ is also
allowed then both VP’s reduce to

<5¢’ii_H ¢> —o, (2.16)

ot

which is known as the Dirac—Frenkel VP.?*?* The variation-
al parameters a,, however, are restricted to be real and
hence the two VP’s are inequivalent and produce different
equations of motion. The VP due to McLachlan will be de-
noted as NVP (norm VP) and the second VP by LVP (La-
grangian VP). The NVP and LVP fulfill the imaginary and
real parts of the Dirac~Frenkel VP (2.16), respectively. The
Dirac-Frenkel VP itself is not applicable since it requires
complex parameters a,. The parameters «, have been cho-
sen to be real because otherwise the operators U, are no
longer unitary. The use of nonunitary operators leads to un-
traceable difficulties. Returning to the usual Hartree ap-
proach (2.4) we remark that in this case all three VP’s
(NVP, LVP, and Dirac~Frenkel) are equivalent and hence
yield the same mean field equations. This is because the vari-
ational quantities ®; are complex.
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C. Equations of motion

As for the TDH approach both VP’s yield in our TDRH
the same mean field equations of motion for the single-parti-
cle functions ®,. They read*

ib, = (o - 2=1 )

+ 3 a (2,9’- ”;1 <2k))] @, (217

k=1
where H denotes the rotated Hamiltonian
H=U'HU,

and where 4  denotes the partially rotated generator

A~ k—1 t k—1
Ak = [ H exp(ia,A,)] Ak H eXp(ia,A,)] . (2.19)
I=1

I=1

(2.18)

The expectation value (X' ) and the mean field X ¥ of the
operator X are defined analogously to Egs. (2.5) and (2.6),
respectively. One recognizes that the first part of Eq. (2.17)
is just the TDH formula except for the use of the rotated
Hamiltonian. The second part arises because the mean field
equation must account for the change of the wave function
introduced by the change of the parameters a, . This part is
proportional to the velocities &, .

Before we discuss the equations of motion for the pa-
rameters «, we find it convenient to introduce the super
operator A which is defined by

AB=B+(n—1)(B)—2BU’. (2.20)
j=1
The super operator is idempotent, i.e.,
A(AB) = AB, (2.21)

and it produces operators with vanishing mean fields and
vanishing expectation values

(AB)V =0, (AB) =0. (2.22)

The meaning of AB is simple. It describes that part of B
which is nonseparable. The equation AB = 0 holds if and
only if B is a sum of single-particle operators.

The super operator A enables us to separate the set of
operators into two classes. We shall call an operator B a
mixing or a separable operator according to whether AB #0
or AB = 0, respectively. Although the value of AB obviously
depends on the choice of the Hartree product with respect to
which the mean fields are defined, the distinction mixing/
separable is independent of this choice! Finally we note two
very useful rules, namely

((A4)B) = (A(AB)) = (A4AB) (2.23)

and
A(B;B;) = (B; — (B;)) (B, — (B))), (2.24)

where B; and B, denote single-particle operators operating
on the jth and / th coordinate, respectively.

We now vary—according to the rules of NVP and
LVP—the parameters «, to obtain their equations of mo-
tion. This leads to*?

(B|[FA4, ], |P) =0, (2.25)
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where the auxiliary operator F'is defined as
F == AE + Z dk Agk.
k=1
In Eq. (2.25) one has to use the anticommutator
[4,B] . = AB + BAifoneadopts NVP and the commutator
[A4,B]_ = AB — BA if LVP is used. Equation (2.25) can
easily be rewritten by assuming a matrix notation
Ba =b,

Ca =g,

(2.26)

(2.27a)
(2.27b)

where & = (&,&5,...,¢t,,,) 7. The matrices B and C possess
the elements

By = ([A4,04,.],), (2.282)

Ckk' =i<[AAk,AAkv]w> 9’ (2-28b)
and the elements of the vectors b and ¢ take the following
appearance:

by = — ([Ad,0H L), (2.29a)

o= —i([A4,AH] ). (2.29b)
Equations (2.27a), (2.28a), (2.29a) refer to NVP and Egs.
(2.27b), (2.28b), (2.29b) to LVP. All quantities appearing

in these equations are real. The matrices B and C are sym-
metric and antisymmetric, respectively; i.e.,

B” =B,
C’'= —C,

(2.30a)
(2.30b)

D. Comparison of the variational principles

The most striking difference between the two VP’s lies
in their treatment of constants of motion. In particular, the
LVP conserves the total energy of time-independent systems
whereas NVP does not. Let I denote some time-independent
constant of motion, i.e., I /9t =0 and [I,H] =0. The
time derivative of its expectation value is

d . 7
— (W19 =i(@|[ALF]_|®).

This result is independent of the VP used. It also holds for
TDH for which Fand Al simplify to AH and AJ, respective-
ly. Setting I = H and using Egs. (2.26) and (2.29) one finds

(2.31)

E=2 (WH ) = a'e. (2.32)
This expression is valid independently of how & is deter-
mined. Using the LVP one finds that E = ¢"Cé = 0 vanish-
es because of the antisymmetry of the matrix C [cf. (2.27b),
(2.30b)]. We now let J become again an arbitrary constant
of motion. Using the LVP one then finds that the time deriv-
ative of (¢|7 |¢) vanishes if AT is a linear combination of the
AA, [cf. (2.25) and (2.31)]. This requirement is fulfilled if
Iis in the maximal embedding Lie algebra. (The embedding
algebra will be introduced in the next section.) The NVP, on
the other hand, does neither conserve the total energy nor
the expectation value of a constant of motion (except for
trivial ones with AT=0; I = 1 is usually the only constant of
motion with this property).

The constraint of conservation of total energy can easily
be added to the NVP. This leads to the equations of motion
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a=(1—dcHB™'b, (2.33)
where
d=B '¢/(c"Bl¢). (2.34)

We have derived these expressions to show that LVP is not
just NVP plus the constraint of conservation of energy.
From the above considerations one may get the impres-
sion that the LVP is superior over the NVP. However, if one
investigates the error introduced into the wave function then
the NVP seems to be the superior method. To discuss the
error we introduce the effective Hamiltonian H,; which pro-
pagates the approximate solution . We define H . by

ith = H 1. (2.35)
One can easily show that

H;=H— UFU" (2.36)
and hence

i — HY|| = ||F| (2.37)

holds. This shows that || F®|| is a measure of the error. Equa-
tions (2.35)—-(2.37) are valid for both VP’s as well as for
TDH for which F simplifies to AH.

The NVP is equivalent to requiring

[|F®||*> = Min, (2.38)

where the @, are to be varied. Hence the NVP tries to make
||F®|| as small as possible. This is very reasonable because—
as seen above—|| FP|| is a measure of the error introduced in
the wave function. We note that both VP’s yield the same
(exact) result, if the &, can be arranged such that F® = 0.
In general, however, the results obtained by employing the
NVP or the LVP will be different. It is not clear to us in
which sense the LVP provides an optimal result if an exact
solution is not accessible.

We have shown under which conditions the new meth-
ods yield an exact solution (i.e., if ||F®|| =0). We have,
however, not yet proved that a global solution exists. A glo-
bal TDRH solution requires a global solution of the differen-
tial equation (2.27). Such a solution may not exist, e.g., if the
matrices B or C become singular in the course of the integra-
tion. In the next section we shall investigate the origin of
possible singularities of B or C and discuss how to avoid
them.

Ill. USING LIE ALGEBRAS
A. General remarks

In Sec. III B we shall somewhat colloquially describe
the Lie algebraic approach to TDRH. The algebraic ap-
proach offers an independent route to the equations of mo-
tion of TDRH. This way is more difficult to follow but it
provides a considerably deeper understanding of the meth-
od. We start the discussion by assuming that the Hamilto-
nian belongs to a so-called embedding Lie algebra, i.e., by
assuming that an exact solution is accessible. In Sec. ITI C we
discuss how to proceed if the Hamiltonian is not a member of
the embedding algebra. We shall find that the equations of
motion, as derived in Sec. II, are recovered by the algebraic
approach for both of the VP’s. In Sec. III D we essentially
repeat and extend the second part by using more mathemat-
ical rigor.
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When discussing the algebraic approach we shall con-
centrate on the equations of motion for the parameters c.
With respect to the mean field equations (2.17) we only
remark that their solution exists and is unique, provided the
velocities &, remain bounded. One then finds that the ||, |
are bounded which guarantees the existence of the solution.
The mean field operators appearing in (2.17) can be differ-
entiated with respect to the single-particle functions ®;.
Hence the Lipschitz condition can be satisfied yielding the
uniqueness of the solution.

B. Outline of results

The basis of a Lie algebra has often been used'*'*2%?! to
serve as generators of the generalized rotations describing
the time-evolution operator. Such a choice of generators al-
lows for a rigorous and transparent theory. In the following
we briefly discuss the properties of Lie algebra. For our pur-
pose it is sufficient to define a Lie algebra as a complex linear
space of linear operators which is closed under commuta-
tions, i.e., the commutator of two operators out of the alge-
bra belongs to the algebra. From this property it follows'®
that the Lie algebra is invariant under rotations, i.e., if
A and B belong to the algebra then A rotated by B,
exp( — B) A exp(B), also belongs to the Lie algebra. Hence
if the Hamiltonian is in the algebra, then the rotated Hamil-
tonian H is still in the algebra. All operators of the Lie alge-
bra can be expanded in the finite basis and the exact quantal
solution of, e.g., the Wei and Norman formulation becomes
equivalent to solving a finite set of first-order differential
equations, '*!820-2!

In the TDRH approach the situation is more complicat-
ed. The time evolution operator acts on the Hartree product
which itself is a fairly good approximation to the exact wave
function. Hence to yield an exact solution (we suppose the
Hamiltonian being such that an exact solution is accessible)
the unitary operator has only to account for the nonsep-
arable parts of the wave function. Therefore only the mixing
parts, AH and AA x> Of the rotated Hamiltonian H and the
partially rotated generators A x appear in the equations of
motion for the parameters o, [cf. (2.27)~(2.29)]. This new
situation leads to the introduction of the new concept of a A
algebra. The A algebra & is defined as a linear space of
mixing operators, i.e., & contains no separable operator ex-
cept for the zero operator. In order to be a A algebra, & must
be invariant under rotations (so called A invariance, see
Sec. III C). For each A algebra there exist embedding Lie
algebras. A Lie algebra . is called an embedding algebra of
the A algebra & if  C.¥ and A.Y = AY; i.e., the super
operator A projects any operator of .¥° onto AY. (& and
AZ are isomorphic. One merely distinguishes between the
two sets because A is defined only with respect to the Har-
tree product.)

Let the generators of TDRH, A,, be a basis of some m-
dimensional A algebra &. Because of the A invariance one
may expand the partially rotated operators Vi « by the unro-
tated ones, i.e.,

A2k=ZDkk'AAk" (3-1)
r'E
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The matrix D is called “structure matrix.” It depends on o as
well as on the ordering of the generators. Now suppose that
AH is in the A algebra, i.c.,

Aﬁ: Z ilkAAk. (3'2)
K=
By satisfying the linear equation
h= —D7a (3.3)

the velocities ¢, are arranged such that the operator F [cf.
(2.26) ] vanishes indentically. Hence TDRH yields an exact
solution if AHeAZ . As known from the theory of differen-
tial equations,?® Eq. (3.3) has a global solution if

(i) D is nonsingular for all a,
(i) [|D~'"hi|<e, + ellal,

where ¢, and c, are some constants and where ||-|| denotes
the Euclidean norm of the R™. It is one of the major results of
the algebraic approach to TDRH to emphasize that one has
to avoid a singular structure matrix by choosing an optimal
ordering of the generators 4, (see Sec. IV).

The requirement that AH lies in the A algebra is usually
not easy to check. One has to consider the A projection of the
rotated Hamiltonian H rather than of the Hamiltonian itself
(the A invariance does not help because HeD although
AHeA2 ). However, if H belongs to an embedding Lie alge-
bra . of the A algebra & then we can conclude
He¥ ~He¥ —~ AHeAZ . Hence we arrive at the easy to
check condition that TDRH yields an exact solution if H
belongs to an embedding Lie algebra of &.

(3.4)

C. Hamiltonians not belonging to the Lie aigebra

In most of the problems which one wants to solve, the
Hamiltonian A does not belong to an embedding Lie algebra
or, more precisely, AH¢A 2D . In this case one constructs an
approximation AHapp which belongs to the A algebra. The
strategy now is to seek an exact solution to the approximate
Hamiltonian which in turn establishes an approximate solu-
tion to the exact Hamiltonian. [By the way, the effective
Hamiltonian for which we obtain the time evolved wave
function is given by H. = H — U(AH — AH,,,)U",
Eq. (2.36).] The most obvious construction of AH,,
making the difference between AH and AHapp as small as
possible, where the measure is the norm with respect to the

Hartree product, i.e.,

|(AH — AR,,,)P|* = Min. (3.5)
We write
AH,, = Y h.Ad,, (3.6)
k=1

where now 4, are to be determined and are not given a priori
as in Eq. (3.2). The solution to the problem (3.5) yields

Boh = — b, (3.7)
where

bow = — ([AM,0H ), (3.8)

Bower = ([A4,,84,. ], ) - (3.9)

The differential equation for the parameters (3.3) now reads
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a= —D"'Th=D"'"B; 'b,
= (DB,D7)~'Db,=B"'b (3.10)

with obvious definitions for B and b. It is easy to see that the
quantities B and b of Eq. (3.10) are exactly the ones defined
by Eqgs. (2.28a) and (2.29a). Hence the prescription (3.5)
to determine the A-algebra approximation to AH is strictly
equivalent to the NVP.

Another way of finding a A-algebra approximation to
AH is by requiring that AH and Aﬁapp have the same expec-
tation values of the commutators with the A-algebra ele-
ments; i.e.,

([ABA4,]_) = ([AH,,, A4, ]_) . (3.11)
This condition is motivated by the fact that the structure of a

Lie algebra is determined by its commutators. The condition
(3.11) has the solution.

pp?

Coh = — ¢ (3.12)
with

Cor: = I{[DA4;,84,.]_) (3.13)
and

cor = — i([A4,, AH|_) . (3.14)
Similar to Eq. (3.10) one finds

C=DC,D” (3.15a)
and

¢ = De,, (3.15b)

where C and c are given by Egs. (2.28b) and (2.29b). This
proves that the construction (3.11) isequivalent to the LVP.

We will now discuss the origin of the possible singulari-
ties of the matrices B and C. Equations (3.10) and (3.15)
show that these matrices are singular if D or if B, (C,) are
singular. The matrix D is entirely defined by the structure of
the A algebra and by the ordering of the generators. It is
independent of the Hartree product ®. The matrix elements
of D can be derived explicitly (see Sec. IV). By a proper
choice of the A algebra and of the ordering of the generators
one can ensure that D is nonsingular once and for all.

The singular points of B, and G, on the other hand, do
not depend on the ordering. They are even independent on
the choice of the basis of &. They do, however, depend on
the Hartree product ®. A singularity of B, indicates that Eq.
(3.5) has no unique solution. (The existence of a solution is
clear.) In fact, it is easy to show that By is singular if and only
if there exists a Hermitian operator 4, A 0, with

AAD = 0. (3.16)

A Hartree product P satisfying Eq. (3.16) is called a singu-
lar point of B,. At a singular point one may add AA4 to
Af],pp with an arbitrary A and still satisfy Eq. (3.5). From
Eq. (3.16), on the other hand, it follows that the time evolu-
tion of the wave function ¥ is not changed by the above
mentioned change of Aflapp. Hence the singularities of B,
are irrelevant physically. The (spurious) difficulty raised by
the singularity of B, can be overcome by replacing B, ' by
the pseudoinverse B{.

Before we continue we shall briefly discuss the defini-
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tion and the properties of a pseudoinverse.”” Let M be a real
matrix which does not need to be square and let P denote the
projector on those eigenvectors of MM which have vanish-
ing eigenvalues. The pseudoinverse M’ is defined as

M = (M™ 4 AP) M7, (3.17)
where 4 denotes some positive constant. (M’ does not de-

pend on A.) The pseudoinverse has the following proper-
ties?’:

MMM = M, (3.18a)
MMM = M/, (3.18b)
(MY =M, (3.18¢)
(M) = (MHT, (3.18d)
MM=1_P, (3.18¢)
MM =1— P, (3.18f)

where P’ denotes the projector on the null space of MM, (To
put it differently: 1 — P and 1 — P’ denote projectors on the
row and column spaces of M, respectively.) If M~ exists
then M = M~ ', If the equation

Mx=m (3.19)
has a solution (i.e., if P'm = 0) then
X, = M'm (3.20)

is that solution of all possible solutions of Eq. (3.19) which
has the smallest Euclidian norm. If, on the other hand, Eq.
(3.19) has no solution (i.e., if P'ms0) then x, denotes the
solution of minimal norm to the equation

|IMx — m||* = Min. (3.21)

Before we continue, we remark that we shall make further
use of the pseudoinverse when we encounter the singular
matrices D and C, of Eqs. (4.10) and (4.19) (see Sec. IV).

We now return to the equations of motion for the pa-
rameters a as determined by NVP. The equation

h= — Blb, (3.22)

provides a well defined exact solution to Eq. (3.7) [because
P'b, = 0, see Egs. (3.8), (3.9), and (3.16)]. In the present
situation, however, it is not convenient to employ the pseu-
doinverse directly. If the matrix B, is regular but close to
singular then h and hence & may become very large which
causes numerical difficulties as well as obscures the existence
of a global solution. The pseudoinverse Bj—albeit well de-
fined— cannot be uniformly bounded for all times. Guided
by Eq. (3.17) we therefore preferred to replace By ' by

Bs = (BIB, + 1)~ 'BJ, (3.23)

which is a uniformly bounded approximation to the pseu-
doinverse. Here € denotes a small positive number. The com-
puted wave function will depend on €. The convergence of
Y (€,t) as €~0 is discussed at the end of this section. (Note
that B -~ B’ as e—»O/)J

Returning to the LVP we find that the situation is simi-
lar but not quite as pleasant as above. The matrix C, is singu-
lar if and only if there exists a Hermitian operator A%,
A #0 such that

(PI[A,04,]_[®) =0 (3.24)
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holds for k = 1,...,m. This is a much weaker condition than
(3.16) and hence singular points of C, are more likely than
singular points of B,. (A singular point of B, is necessarily a
singular point of C,.) Moreover, Eq. (3.11) may not have a
solution at all (i.e., P'c,#0) if G, is singular and H¢.¥ _,, .
Hence the computed wave function ¥(¢) may depend on
how one determines & near the singularities of C,,. In prac-
tice one removes the singularities of C, by a procedure analo-
gous to that of Eqs. (3.17) and (3.23). The above consider-
ations again show that the NVP seems to yield better results
than the LVP, at least if one considers the error in the wave
function.

D. Mathematical details

In this section we shall give a more extensive discussion
on Lie and A algebras as well as a more rigorous proof on the
existence of a global exact solution. The motivation for all
the definitions and lemmas to follow was provided above.
The proofs of the lemmas are mostly not given here; they are
either straightforward or can be found in the litera-
ture, !8-20.21-28-31 Bor sake of simplicity and brevity we shall
not adopt the most general definition of a Lie algebra but
consider only Lie algebras formed by linear operators. For
sake of brevity we also shall drop the minus sign from the
commutators in the following.

Definition 3.1: A set of linear operators .% is called
closed if for each A,Be.Z follows [4,Ble.”.

Definition 3.2: A set of linear operators .7 is called in-
variant if for each A,Be.¥ follows e ~ 24e®c.Z .

Definition 3.3: A set of linear operators is called a Lie
algebra if it is a closed linear space.

Lemma 3.1: A Lie algebra is invariant. An invariant
linear space is a Lie algebra.

Definition 3.4: Let A be a super operator and .& a set of
operators. The sets A.Y, [.£,, -£,], and Comp(.¥)
(called the completion of .¥") are defined as

A¥ ={AB|Be.%},

[Z,-Z,) =1{[4,B]|4e.¥,, Be.Z,},
Comp(.%) =span(LU[.L,.LVU][.ZL,[.2L,.L]]
ule,lz.l2,2]11]

Ui, Z2L1<,2110:1),

where span (.7”) denotes the complex linear space spanned
by the set ..

Lemma 3.2: Let . be a set of operators. Then
Comp(.7") is a Lie algebra. Moreover, .7 is a Lie algebra if
and only if . = Comp(.¥).

We now introduce the new concept of a A algebra. The
super operator A which projects onto the mixing part of an
operator is defined in the previous section [Eq. (2.20)].

Definition 3.5: A nonzero operator A is called mixing
(separable) if A4 #0 (A4 = 0). The zero operator is by de-
finition both mixing and separable.

Lemma 3.3: The property mixing (separable) is inde-
pendent of the Hartree product @ used to construct the su-
per operator A.

Lemma 3.4: Let & be a linear space of mixing operators
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and let {4, } , k = 1,...,m, be a basis of &. The mapping A:
9 - A isisomorphic and {AA4, }, k = 1,...,m, is a basis of
AD.

Definition 3.6: A set of mixing operators & is called A
closed if for any integer n and for B,,...B,€Z follows
A[B,[B,,...[B,_\,B,] "] ]EA,@.

Definition 3.7: A set of mixing operators & is called A
invariant if for any integer »n and for all 4, B,,...,B,e< fol-
lows A(e = Be= 5o Prge® - oPieP) €A D,

Definition 3.8: A set of mixing operators is called a A
algebra if it is a A-closed linear space.

Lemma 3.5: A A algebra is A invariant. A A-invariant
linear space of mixing operators is a A algebra.

Lemma 3.6: Let . be a Lie algebra. Then A.¥ isa A
algebra.

Definition 3.9: Let .¥ be a Lie algebraand let & bea A
algebra. Here .¥ is called an embedding algebra of & if
ICLandA\Y =AYD.

Definition 3.10: The minimal embedding algebra .&
of the A algebra & is defined as . ;, = Comp(Z).

Definition 3.11: Let .Z ,,, be an embedding algebra of
2. Here £, is called a maximal embedding algebra
if for any operator 4¢.7 ., follows A Comp({4}

UL ) 20D,

Lemma 3. 7: The maximal embedding algebra is unique-
ly defined.

Lemma 3.8: For any embedding Lie algebra . there
holds L i CLCL and dim(.% )
<dim(.€)<dim(.Z ,,)-

Having studied the properties of Lie and A algebras as
well as their relations we come back to investigate the
TDRH method. We shall assume that the generators of the
rotations {4, }, k = 1,...,m, are a basis of a A algebra &.
Since & is A invariant we can expand the mixing parts of the
partially rotated generators A4, in the basis; i.e.,

min

A m
A4, = 2 D,..AAd,., (3.25)
k'=1

where 4 « and D,,. are functions of the parameter a. It is
important to note that the structure matrix D is independent
of the Hartree product @ used to construct the super opera-
tor A. The structure matrix is real. We now extend the set of
Hermitian operators {4, } such that {4, }, k = 1,...,M, be-
comes a basis of the maximal embedding algebra .% ., . The
rotated basis 4, = U'4, U can be related to the original one
via the matrix R, i.e.,

- M
Ay = z Ry Ay

k'=1

(3.26)

for all k between 1 and M. Let the Hamiitonian H be a mem-
ber of the maximal embedding algebra .%,,, i.e.,

M
H= Z h A
k=1
Since .7, is invariant we may also expand the rotated
Hamiltonian in the basis

(3.27)

~ M o~

H= 2 hkAk‘ (3-28)
k=1

By comparison one finds
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- M

he= Y PRy (3.29)
k'=1

Using the above equations we can now express F [cf. (2.26) ]

as

m M m
F: 2 ( thjk' + Z dekk’) AAk:. (3-30)
k'=1 \j=1 k=1

Hence F vanishes if
a= — (R'D~")"h, (3.31)

where we have denoted by R’ the M X m matrix consisting of
the first m columns of R.

The TDRH method yields the exact wave function if the
differential equation (3.31) has a solution. The existence of a
unique and global solution of (3.31) depends on certain
properties of the matrices R and D. Their matrix elements
depend on the choice and ordering of the basis. To discrimi-
nate not well behaved matrices from well behaved ones we
introduce the following definition.

Definition 3.12: Let GCR™ be an open set. The genera-
tors Ay, k = 1,...,m, are called properly ordered on G if

(i) D! exists for all aeG,

(ii) [RD~"|<e: +eallel
for some constants c,, ¢, and for all aeG.

We remark that the choice and ordering of the basis
operators not belonging to &, i.e., Ay, k=m + 1,...M, is
irrelevant. We are now ready to state the central result of this
section.

Theorem 3.1: Let {4, }, k = 1,...,m, denote a set of Her-
mitian operators which form a basis of some A algebra Z.
Let the generators 4, be properly ordered on some domain
GCR™ Let{4,}, k = 1,...,M, denote a basis of the maximal
embedding algebra .¥ ., and let the Hamiltonian H belong
to this algebra. The expansion coefficients of
H=73%_  h.A, are assumed to be uniformly bounded, i.e.,
|A, (2)|<const. Finally let a(z=0)eG. Then the TDRH
method as defined by Egs. (2.17) and (3.31) provides the
exact wave function within some time interval 0<¢<t,. The
parameters «(¢) are uniquely determined. The time ¢, if
finite, is given by the condition a(#,)edG. The solution is
global, i.e., t, = oo, if a(z)eG for all ¢. A global solution
exists in particular if G = R™.

To prove the theorem we remark that we only have to
show that the differential equation (3.31) has a unique solu-
tion on G. The uniqueness of the solution is given if the dif-
ferential equation satisfies the Lipschitz condition.?® The
matrix elements of D and R can be shown?*?! to be analytic
functions of a. The conditions raised in Definition 3.12 now
ensure that the matrix elements of R’D~ ! are analytic on G.
Hence the Lipschitz condition can be satisfied. The existence
of the solution is also guaranteed by the conditions raised in
Definition 3.12. The condition (ii) together with the as-
sumption |4, (£}|<const ensures that the solution cannot
“blow up,” i.e., ||a(?)||— o for finite .

In closing this section we comment on the case
He.# ... An exact solution is no longer guaranteed but one
wishes to ensure the global existence of the approximate so-
lution. In view of Theorem 3.1 we may conclude that TDRH
has a global solution if the approximate Hamiltonian H,,,
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has uniformly bounded expansion coefficients 4, (¢). How-

ever, because B, or C, may become singular one cannot en-

sure that A, (¢) is bounded. But if we remove the singularities

of B, or C, as discussed above [cf. (3.23)] then we obtain a

global solution. This is stated in the following theorem.
Theorem 3.2: Let

(i) ID7Y<ep, for all a,
(i) ||H@®OyY()||<cy, for 0<i<t,,
(iii) ||AA4,®P||<c,, for 0<i<t, and 1<k<m,
hold for some constants ¢, ¢y, and ¢, and some time ¢,. The
third condition is only necessary if the LVP version of
TDRH is used. The equations of motion (2.27) or (3.10) are
replaced by

a=D""T(B) + €1)'Byb, (3.32a)

or

a=D"1T(CIC, + 1)~ 'Cle, (3.32b)

for the use of the NVP or LVP form, respectively. The num-
ber € is assumed to be positive. The thus modified TDRH
method has a unique solution in the time interval [0,z,]. The
solution is global if the assumptions (ii) and (iii) hold for all
times. [If the NVP is used, then condition (iii) may be ig-
nored.] The time derivatives of the parameters are bounded
by

lal|<e™ epeym' (3.33a)
or

lat)| <€ 2cpc cym (3.33b)

for using the NVP or the LVP, respectively.

Before we sketch the proof of the theorem we remark
that the assumptions (ii) and (iii) are trivially obeyed if 7, is
finite because || Hy|| and || A4, ®|| are continuous functions
of time. Moreover, the condition (ii) merely excludes time-
dependent Hamiltonians with a somewhat wildly time de-
pendence. For time-independent Hamiltonians we have
[|Hex () ||* = ¥y | H *|¥. ) = const and replacing the ex-
act solution ¢,, by the TDRH approximation ¢ one can
assume that || H¢/|| does not change considerably.

Turning to the proof of Theorem 3.2 we remark that
D™, b, and ¢, are analytic functions of a (b, and ¢, depend
on a via AH). The Lipschitz condition® for the differential
equations (3.32) is therefore obeyed and the solution is
unique, provided it exists. The existence of the solution fol-
lows immediately from Eqs. (3.33). To prove these equa-
tions is just a matter of simple algebra. We merely remark
that to prove (3.33a) one may use the diagonal representa-
tion of B,

We finally comment on the convergence of the solutions
with respect to the limit € » 0. For this purpose we introduce
two definitions. A detailed analysis of the convergence is
then given in Theorem 3.3.

Definition 3.13: Assume that the limits ¥(€,t) — ¢(0,2)
exist and that

[¥(et) — (0.0 |<a-€” (3.34)
holds for some constants a and v and for all positive €. The

Meyer, Kugar, and Cederbaum 1424



supremum for all v which satisfy Eq. (3.34) is called the
speed of convergence.

Definition 3.14: Let d; denote the eigenvalues of B, or C,
and assume that B, (C,) is singular at ¢ = ¢,. The singularity
is called to be of bounded by p if there exist some positive
constants a, 7, and ¢, such that

|d;(e,t)|>a- |t —t ()] (3.35)

holds for all 0 < e < €5 and |t — ¢, (€)|<T.

Theorem 3.3: Let the conditions of Theorem 3.2 be satis-
fied. Let ¢(€,t=0) =4, be some initial condition. This
wave function is propagated over the time interval [0,¢] ac-
cordingly to the NVP or the LVP, respectively. The final
wave function ¥(¢,?) converges as € 0, provided one of the
following sets of conditions is met.

(1) If a singularity of B, or C, is never encountered
within the time interval [0,#] then 1(€,t) converges with the
speed v>>1 for both of the VP’s.

(2a) If the exact solution is accessible then the solution
of the NVP version of TDRH converges with the speed v>1.

(3a) Ifthere is only a finite number of singularities of B,
within the time interval [0,z] and if these singularities are
bounded by p then the solution of the NVP version of
TDRH converges with the speed v>1/(2u).

The statements (2a) and (3a) hold analogously also for
the LVP version, provided the singularities of C; are com-
mon singularities of By, i.e., if rank(C,) = rank(B,) for all
times considered. If the matrix C, has singularities which are
not common singularities of B, then one arrives at the fol-
lowing weaker statement.

(2b) If an exact solution is accessible and if those singu-
larities of C, which are not common singularities of B, are
bounded by u then the solution of the LVP version of TDRH
converges with the speed v>1/(2u).

Rather than prove the theorem we shall comment on it.
The first point is fairly trivial. If one never encounters a
singularity then the limit €~ 0 of course exists. More inter-
esting is the second point. It raises no restrictions on the
singularities [point (2a), NVP] or on the common singular-
ities [point (2b), LVP], respectively. If an exact solution is
accessible then we shall converge to it, even if we “sit” on a
singularity of B, i.e., if B, is singular over a whole period of
time. Such a situation occurs, e.g., if one adopts the four-
dimensional A algebra of example 8 of Sec. I'V, assumes that
He.? ..., and chooses an initial wave function as given by
Eq. (4.15). As well known a Gaussian remains a Gaussian in
a quadratic potential and hence the Hartree product
will always assume the form (4.15). One finds that
rank(B;) = rank(C,) = 2 for all times, i.e., there are con-
stantly two vanishing eigenvalues; but this does not affect the
convergence.

We now turn to point (3a). If an exact solution is not
accessible then one can find arguments that the character of
the singularities of B, is typically iz = 2. In rare cases one
may find ¢ = 4 or u = 6 butin any event u < . These argu-
ments together with the point (2a) show that the NVP ver-
sion of TDRH always converges.

Due to the very construction of the NVP [see Eq.
(2.38)1 itis clear that || F®||<||AH®]|| holds for all €. This is
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not the case if one adopts the LVP. In fact, ||F®|| may di-
verge like e ~!/2 if an exact solution is not accessible and if we
are close to a singularity of C, which is not a common singu-
larity of B,. Close to such a singularity the computed wave
function changes rapidly and may not converge for e—0. In
this case one has to live with the fact that one computes an ¢-
dependent approximation to the exact wave function.

Theorem 3.3 demonstrates again that the NVP version
of TDRH is numerically better behaved than the LVP ver-
sion. The numerical calculations we have performed*? have
shown that the dependence of ¥(€) on €is fortunately rather
weak for both of the VP’s.

IV. THE TWO-DIMENSIONAL HARMONIC ALGEBRA

In this section we shall explicitly evaluate various quan-
tities defined in the previous section. The examples given
here will help to clarify the concepts. We concentrate on
systems of two degrees of freedom and in order to keep the
notation simple we use x and y for the coordinates and p and
q for their conjugate momenta rather than x,, x, and p,, p,,
respectively.

Any operator on the Hilbert space of square integrable
functions of two variables can be considered as a function of
the four basic operators x, y, p, and ¢g. The two-dimensional
harmonic algebra is spanned by all products of these opera-
tors up to the second degree, i.e., by the 15 operators 1, x, y,
P> 4, X%, Xy, Xp, X9, ¥*, yp, ¥4, P°» Pq, q°. It is easy to show that
this algebra is a Lie algebra. The mixing operators in the
above set are xy, xg, yp, and pg. All the other operators are
separable because they operate on either the x or the y degree
of freedom only. To arrive at a Hermitian basis of the Lie
algebra one has, of course, to symmetrize the two operators
xp and yq. We found it convenient, however, to introduce the
following Hermitian linear combinations of the quadratic
operators:

I=xy—pq, J=xq+yp, K=xy+pg,
L=xq—yp, A=xp+qy, B=xp—yg,

, g (4.1)
V=1x*+y), W=ix*—)),
T=4p*+¢), U=i(p*—¢).

The first four operators—I,J,K,L—are the mixing ones. The
quadratic operators form a sub-Lie algebra. The commuta-
tion relations of this algebra are shown in Table I. In order to
illustrate the action of the above ten operators we display in
Table II the four basic operators rotated by one of the qua-
dratic operators. The transformation generated by the oper-
ator [ is a skewing transformation in the x-¢g and y-p planes.
The operator J performs a similar transformation in the x-y
and p-q planes. The operators K and L generate (true) rota-
tions in the above mentioned planes. Note that J and L gen-
erate coordinate transformations; they mix the degrees of
freedom but they do not mix coordinates and momenta. The
transformations generated by I and K, however, do mix co-
ordinates and momenta. They are hence the more difficult
transformations. The transformations generated by the sep-
arable operators 4 and B are totally symmetric and antisym-
metric scaling transformations, respectively. The potential
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TABLE I. Commutation relations among the quadratic operators of the harmonic algebra. The table entries are (1/i) [0,, O,]. The entries xy and pg may be

replaced by (I + K)/2 and (f — K)/2, respectively.

0, I J K L A B vV w T U xy Pq

0,
I 20V+1 24 2AwW-U) 2K 0 J L J ~L A A
J ~UV+TD ATV 2B 0 AL —2xp O g O -2V 2T
K —24 V-1 W+ U) 27 o -J —L J —L —4 A
L 20U-w) -—-2B -2W+U) 0 2J 0 2xy 0 2pg —2W -2U
y —2K 0 -2 0 - 0 -2V —2W 2T 2U —2xp 2pg
B 0 —2L 0 -2 Q e =2W =2) U 2T 0 0
14 —J 2xy J 0 2V 2w e 0 A B 0 J
w —L 0 L — 2xy 2w g 0 e B A 0 L
T —-J — 2pq -J 0 -2T -—-2U -4 — B 0 —J 0
v L 0 L —2pg —-2U —-2T —-B —4 0 L 0

xy —A4 2V A W 2xy 0 0 0 J —L e A

Pq Ny —2T —4 2U —-2p¢ 0 ~J ~L 0 0 -4

operators ¥ and W or the kinetic energy operators Tand U Example 1:

mix the goordmates and momenta within e?ch degree of D ={0}, Lopin =10}, Lopu ={4]|A4d=0}

freedom if they rotate the momenta or coordinates, respec- E f

tively. In Tables I and II we have also included the operators xample 2.

xy and pg because we found it sometimes more convenient to
work with these operators rather than with I and K. For the
sake of completeness we present in Table III the quadratic
operators as rotated by the mixing ones.

It may be useful to indicate the relation of the two-di-
mensional harmonic algebra with the classical Lie alge-
bras.*® The harmonic algebra is the semidirect sum of the
radical {1,x,y,p,q} and the simple subalgebra which is built
up by the ten quadratic operators (4.1). This subalgebra is
isomorphic to SP(4). The Lie algebraic structure of the har-
monic algebra was recently investigated by Wolf and
Korsch® in connection with the Wei and Norman approach.

The four mixing operators 1, J, K, and L (or xy, pq, J,
and L) can easily be shown to be A complete. Moreover, any
subset of these operators is A complete! Hence thereis a large
variety of A algebras which are subsets of the two-dimen-
sional harmonic Lie algebra. In the following examples we
list some of these A algebras together with their maximal and
minimal embedding Lie algebras.

2 =span{L}, £, =span{L},

L max = span{L,4,V,T,x,y,p,q,1}.

Example 3:

2 =span{xp,L}, £, =span{xy,L,W},
L ax = span{xy,LA,V,W x,yp,q1}.
Example 4:

D =span{xp,J}, L .. =spanixyJ,V},
F max = span{xp, /. 4,V,W,x,y,p,q,1}.
Example 5:

9 =span{xy,J,.L}, Z,... =span{xyJ,LB,V,W},
Z max = span{xy,J,L.A,B,V,W,x,y,p,q,1}.
Example 6:

9 = span{I,K}=span{xy,pq},

L min = span{l,K, 4},

L max = span{l,K.4,B,x,y,p,q,1}.

TABLE II. Basic operators rotated by the quadratic ones. The table entries are exp( — iA0,) 0, exp(iA0,). The last column of the table repeats the definition

of the quadratic operators for convenience.

0, x y P q Definition
0,
I x-cosh A + ¢-sinh 4 y-coshA + p-sinh 4 p-coshAd + y-sinh A g-coshA + x'sinh A xy — pq
J x-cosh A — y-sinh 4 yrcosh A — x-sinh 4 p-cosh A + g-sinh A g-coshA + p-sinh A xq + yp
K x'cos A — g sin A y-cosA —p-sind prcosd +ysind gcos A + x-sind xy + pq
L xcos A 4 y-sind ycos A — x-sin A pcosA +g-sind g-cosA — p-sin A xq — yp
A e~ *x ety ep &q xp + qy
B e~ *x 'y ep e %q xp —yq
4 x y pP+Ax g+ Ay 12+
w x y p+Ax g—Ay X2 — )
T x—Ap y—Agq P q 1+
U x—4Ap y+4g I q 1}t —gH
xy x y p+Ay g+ Ax xy
Pq x—Aq y—Ap J4 q Pa
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TABLE I11. Quadratic operators rotated by the mixing ones. The table entries are exp( — (10,)0, exp(iA0,).

0, I J K L A B v w T U xp 9
0,
1 1 J-cosh 24 K-cosh 24 L-cosh24 A-cosh 24 B V-cosh?A  W-cosh?4  T-cosh®’A  U-cosh’A  xp-cosh’A  pg-cosh? A
+ (V¥ 4 T)sinh 24 + A4-sinh 24 + (W— U)sinh 24 4+ K'sinh 24 + T-sinh®A — U-sinh® 4 4+ V-sinh® A — W:sinh®* A 4 pg-sinh®> 4 + xy-sinh®> 4
+ 4J-sinh 24 4 iL-sinh 24 + }J*sinh 24 — JL+sinh 24 + 4-sinh 24 + 4-sinh 22
J I'cosh 24 J K-cosh 24 L-cosh24 A B:cosh24  ¥V:cosh 24 w T-cosh 24 U xyrcosh24  pg-cosh 24
— (V + Nsinh 24 4+ (T~ V)sinh 24 + B-sinh 24 + L-sinh24 — xp-sinh A + pg-sinh 24 — Vsinh 24 + T-sinh 22
K Icos 24 J-cos 24 K L-cos24 Arcos 24 B V-cos® A W-cos® A T-cos’ A U-cos’ A xy-cos? A pgcos’A
— A-sin 24 + (V= Dsin 24 + (W + sin24 4+ I'sin24 + T'sin?A  — Ussin®A  + Vsin? A — W-sin? A + pgsin? A + xpsin® A
~4Jsin24 —iL'sin24  +4Jsin2d —4L'sin24 — i4-sin 24 + 44-sin 24
L I'cos 24 J-cos 24 K-cos 24 L A B-cos 24 Vv W-cos 24 T Uwcos24  xy-cos2A  pg-cos 24
4+ (U— W)sin 24 — B'sin 24 — (W + U)sin 24 + J:sin 24 + xp-sin 24 +pgsin24 — W-sin 24— U-sin 24
Xy I- A4 J + 24V K +24 L +2AW A + 24xy B Vv w T+ AJ U—AL xy pq+ AA
— Ay + A xy + AV — AW + A2y
Pq I— A4 J—2AT K- 44 L +24U A—2Apg B V—AJ W— AL T U xy—AA P
+ A%pg +A%pg + AT —Aw +A2pq




Example 7:

9 = span{l,J,K} =span{xy,pq,J},

L win = span{l,J,K,A,V,T},

L an = spanilJK,A,V,Tx,y,p.q,1}.
Example 8:

9 =span{lJ.K,L},

L in = span{l,J,K,L,A,B,V,W,T,U},

L max = spani{l,J,K,L.A,B,V,W,T,U x,y,p,q,1}.

We now discuss the various examples. In the first example
one does not use any generator, i.e., one performs a usual
Hartree calculation. The Hamiltonian lies in .¥_,, and the
result is exact, if H is a separable operator. If one wants to use
only one single generator it is convenient to use the angular
momentum operator L as done in example 2. The general-
ized rotation becomes a true rotation. The structure matrix
D reduces to unity because there is only one generator. In the
third example we encounter for the first time a nontrivial
structure matrix. Assume we order the generatorsas 4, = L
and 4, = xy. With the aid of Table I1I the structure matrix is
easily calculated and reads

1 0
o=( )
0 cos2a

Hence the structure matrix becomes singular for a = 7/4. If
we use the other ordering 4, = xyand 4, = L we find that D
is regular,

)

This illustrates the importance of ordering. The matrix R’,
which—for this example and ordering—is given by

(4.2)

(4.3)

R,_(cos2/3 0 0 sin28 22 0 0 0 O O)T
“\ o0 1 0 O 0 0 0 0 0 0/
(4.4)
is obviously linearly bounded. Hence the generators are
properly ordered on R? and a global solution (in the sense of
Theorem 3.1) is guaranteed. In Eqgs. (4.2) and (4.4) we
found it convenient to use a and S rather than o, and a,.
Wenow skip example 4 and turn to example 5. Using the
ordering 4, = xy, A, = J,and 4, = L, i.e., U = e e,
one finds that the structure matrix reads

1 0 0
D=}0 1 0 (4.5)
0 0 cosh2B

This matrix is obviously regular for all parameters. How-
ever, the matrix R’ possess matrix elements containing
sinh 28 and cosh 28 such that ||R’'D~"|| grows like cosh 23
for large . The generators are hence properly ordered on
G,, where

G, ={(aBy7||B|<c} (4.6)

and where ¢ denotes some positive number. Inspection of
Table III shows that the two positive definite operators ¥
and 7 are multiplied by cosh 25 under a generalized rotation
withJ.Since (T ) (V') >1duetothe uncertainty principle, one
finds that conservation of energy requires that |3 | is bound-
ed. One can choose ¢ larger than this bound which proves
that example 5 provides us with a global solution in the sense
of Theorem 3.1. Using similar arguments one can also prove
that examples 4,6, and 7 yield a global solution.

Turning finally to example 8 we find that the ordering
A, =1,4,=J, 4A; =K, and 4, = L is the most convenient
one. Using this ordering the structure matrix reads

|
1 0 0 0
2 0 0
D= 0 cosh2a , 4.7)
0 0 cosh 2a cosh 23 0
0 0 0 cosh 2a cosh 283 cos 2y
which is singular for ¥ = #/4. The matrix R’ can be bounded by
|IR’||<¢o cosh 2a cosh 23
with some constant ¢,. The generators are hence properly ordered on
G. ={(aBy.8) | |al <€, |B| <€, ly|<7/4— €}, (4.8)

where € denotes some small positive constant. Similar as before one can argue that a and 8 remain bounded because of energy

conservation. We cannot, however, prove that |y| does not approach 7/4. The singularity of the structure matrix D can be

removed by adding a separable operator to the set of generators. We choose the separable operator W = } (x> — y*) because W

rotated by K contains the operator L (compare Table II1). The singularity of the structure matrix was caused by the loss of the

operator L from the set of partially rotated generators. We therefore define the unitary operator U now by
U — ei'qLei(S WeiyKeiBJeiaI'

(4.9)

The structure matrix D is now a rectangular 5 X 4 matrix relating the partially rotated operators Af, A}, AR , A ﬁ’, and AL to
Al AJ, AK, and AL:

AT 1 0 0 0 Al
AT 0 cosh2a 0 0 AJ
Ak = o o cosh 2a cosh 28 0 Ak | (4.10)
AW 0 0 0 d AL
AL a b c cosh 2a cosh 23 cos 2y
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where
a= — §-cosh 23-cos 2y,
b = 6-cos 2ysinh 283-sinh 2q,
¢ = §(sin 2y-sinh 2 — cosh 253-cosh 2a),
d = }(sinh 2a — cosh 2a-cosh 28-sin 2y).

The equations of motion for the parameters are still given by
[cf. (3.3)]

h= - D7a, (4.12)

where h denotes the four-component vector of expansion
coefficients of AH and where now & = (&,8,7,6,7)7 is the
five-component velocity vector. Equation (4.12) has always
a solution since the structure matrix defined by Eq. (4.10)
has maximal rank. A unique solution can be obtained by
choosing that solution for which ||| is minimal, i.e., by
employing the pseudoinverse. Since DD is nonsingular we
find with the aid of Egs. (3.17) and (3.18d)

(4.11)

(DY =D(D™D) " (4.13)
Using
a= — (D"'R"h (4.14)

we can conclude that the thus modified example 8 allows for
a global solution.

Returning to the discussion of the examples we remark
that the examples 2-5 are of greater practical importance
than the examples 6 and 7. This is because the examples 6
and 7 contain the operator pg in their A algebras. This opera-
tor (as well as I = xy — pg and K = xy + pg) is much hard-
er to exponentiate than xy, J, or L. The example 8, on the
other hand, is of importance because it alone has the full two-
dimensional harmonic Lie algebra as embedding algebra.
Hence using all four mixing operators as generators TDRH
solves every harmonic problem exactly. If the Hamiltonian
is not harmonic then TDRH accounts for the harmonic part
of the Hamiltonian exactly and treats the anharmonic terms
in a mean field approximation.

So far in this section we have implicitly assumed that the
Hamiltonian is a member of the maximal embedding alge-
bra. We now assume that H¢.% ,, and that an exact solu-
tion is not accessible. This leads to a discussion of the matri-
ces B, and C, and in particular to an investigation of their
singularities. To study the singular properties of B, we solve
Eq. (3.16). If the A algebra is spanned by one of the follow-
ing sets: {1}, {J3}, {xy}, {pq}, {xy.J}, {pg.J}, or {IJ} then
there exist no square integrable solution of Eq. (3.16) and
hence B, possesses no singular points. For the other A alge-
bras which are subsets of the harmonic algebra we find that
the solution of Eq. (3.16) has the form

D =aexp( — (0,/2)(x — X,)? + ipy(x — x,))

‘exp( — (@,/2) (¥ — ¥o)* + igo(y — 1)),  (4.15)

where g, @,, and w, are complex and where x,, y,, po, and g,
are real. Depending on the A algebra there are different con-
ditions on w, and ®,. These conditions are given in Table I'V.
One notices that singularities are more likely for larger A
algebras. However, the restriction (4.15) that the Hartree
product is a product of two Gaussians is a condition which is
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TABLE1V. Conditions on @, and @, which lead to a singularity of B, (see
text).

A algebra Relation between
spanned by @, and o,

{&} @yw, =4

{L} ©, =,

{xy,L} Re(w,) = Re(w,)

{pg.L} Re(1/w,) = Re(1/w,)

{J.L} Im(w,/@,) =0

{xy.pq} & {1.K} Im(w,-@,) =0

{xp,J,L}

{pg.J.L}

{xy.pg.J} = {LKJ} no restrictions
{xy.pq,L} = {IK,L}

{rJ.K.L}

hardly ever met, except, of course, if the initial wave function
is chosen to be of this form. Anyhow, as shown in Sec. III the
singularities of B, are of no physical importance although
unpleasant numerically.

The investigation of the singular points of the matrix C,
is more elaborate because one has to evaluate the determi-
nant of this matrix for each A algebra separately. For illus-
trative purposes we will do so for the A algebras of example 3
and 8. The C, matrix of example 3 is singular if

(o= ) (4.16)
holds where the number (0,0,), is defined as
(0,0,)4 = (0,0;) — (0,){0,) (4.17)

with operators O, and O, taken from the set {x,y,p,q}. The
matrix C, is thus singular if the width of ®,(x) equals the
width of ®,(p). This is a condition which is much easier to
meet than (4.15). Hence, as mentioned before, singular
points of G, are much more likely than singular points of By,
We now turn to example 8 and find that the matrix C, has a
vanishing determinant if

4(x*)o(PP)o — (Xp 4 px)o> = 4(1)o(g")o — OP + )¢’

(4.18)
holds. Again, this is much weaker condition than (4.15).
For the generalized Gaussian (4.15) both sides of Eq. (4.18)
assume unity.

The examples 2, 5, and 7 cannot be treated directly with-
in the LVP form of TDRH because they have an odd number
of generators. The eigenvalues of a real antisymmetric ma-
trix, as G, is, are imaginary and appear in complex conjugate
pairs. A antisymmetric matrix of odd dimension has neces-
sarily one vanishing eigenvalue. However, the replacement
of the inverse by the pseudoinverse helps again. To show
this, let us concentrate on the discussion of example 5. The
matrix C, now reads

0 W, —V,
Co=|W, o0 B, (4.19)
Vv, —-B, 0

The eigenvector with vanishing eigenvalues is given by
e, = (Bp,Vp— W)™ (4.20)
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The matrix CJC, + egej is diagonal and can be inverted ana-
lytically. Hence

o = (Vo> + Wt + B2) ~'CL. (4.21)

Since V2 + W,2 + B,> >0 we find that this approximation
to the inverse of C, is free of singularities. We found®? that
the resulting equations of motion are very convenient to use;
however, they do not compute the exact solution of He.% .
of example 5. This is because one effectively uses only two
generators rather than three. These two generators can be
considered as time-dependent linear combinations of the
three original generators xy, J, and L. Hence one has a time-
dependent maximal embedding algebra and it is not easy to
state for which Hamiltonians we arrive at an exact solution.
For general nonharmonic Hamiltonians, however, the
method outlined above gives usually better results than the
use of the two-dimensional A algebra of example 3.2

V. CONCLUSION

In this paper we have analyzed the TDRH method in
detail. The basic idea of TDRH is simple. One enlarges the
space of trial functions of TDH by replacing the Hartree
product @ by U(a )P, where U(«t) denotes a unitary opera-
tor depending on a set of parameters a. The time evolution of
the product wave function P as well as of the (real) param-
eters o can be deduced by applying a time-dependent VP to
the trial function U(a)®P. We have used two different VP’s,
NVP and LVP, and have found that these two VP’s lead to
identical mean field equations for ¢ but to different equa-
tions of motion for the parameters a. The differences of the
two resulting methods have been discussed.

The ansatz of TDRH is reminiscent to the “‘optimized
coordinate SCF” recently introduced by several authors>*-3¢
in order to improve the time-independent Hartree. There
are, however, important differences. The action of the uni-
tary operators of TDRH is not restricted to cause coordinate
transformations. In fact, the inclusion of operators like
exp(iaxy) is very important in order to compensate the non-
separable potential terms in AH [cf. (2.26)].

The VP approach to TDRH is simple. It is, however,
very difficult within this approach to prove the existence of
the solution. As an alternative way to the equations of mo-
tion we therefore have also investigated the algebraic ap-
proach to TDRH. This approach allows for a much deeper
analysis of the mathematical structure of TDRH. In particu-
lar it allows the formulation of theorems which show under
which conditions a unique global solution exist. The algebra-
ic approach introduces the structure matrix D which illumi-
nates the importance of the ordering of the generators. If the
generators are properly ordered—i.e., if the structure matrix
has no singularities—then TDRH yields an exact global so-
lution for Hamiltonians being members of the maximal em-
bedding algebra . ,,,.. (For a more precise statement see
Theorem 3.1.)

If the Hamiltonian does not belong to .% .., then one
has to approximate AH by some Aﬁapp which belongs to
AZ . The two different VP’s, NVP and LVP, correspond to
two different constructions of Afl,pp in the algebraic ap-

proach. Using NVP (LVP) this construction introduces the
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matrix B, (C,) which depends on the Hartree product &.
The equations of motion become singular if B, (C,) has a
vanishing determinant. A singularity of B, indicates that—
according to the construction (3.5)—there is no unique

Af{app . A singularity of C,, on the other hand, indicates that

there is either no unique or no solution at all which is consis-

tent with Eq. (3.11), i.e., with the construction of Aﬁapp

according to the LVP. Singularities of C, are much more
likely to occur than singularities of B,. A simple trick can be
used [cf. (3.23)] to eliminate the singular behavior of the
equations of motion for both VP’s. This modification en-
sures that the TDRH method yields a global approximation
to the exact wave function.

ACKNOWLEDGMENT

One of us (J.K.) thanks the Deutschen Akademischen
Austauschdienst (DAAD) for financial support.

'E. A. McCullough and R. E. Wyatt, J. Chem. Phys. 54, 3578 (1971).

2A. Askar and A. S. Cakmak, J. Chem. Phys. 68, 2794 (1978).

3K. C. Kulander, J. Chem. Phys. 69, 5064 (1978).

‘M. D. Feit, J. A. Fleck, and A. Steiger, J. Comput. Phys. 47, 412 (1982);
M. D. Feit and J. R. Fleck, J. Chem. Phys. 78, 301 (1983).

SE. J. Mele and J. Socolar, Int. J. Quantum Chem. 18, 347 (1984).

°R. C. Mowrey and D. J. Kouri, Chem. Phys. Lett. 119, 285 (1985); J.
Chem. Phys. 84, 6466 (1986).

D. Kosloff and R. Kosloff, J. Comput. Phys. 52, 35 (1983).

SR. Kosloff and D. Kosloff, J. Chem. Phys. 79, 1823 (1983).

H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).

19Time Dependent Hartree Fock and Beyond, Springer Lecture Notes in
Physics, Vol. 171, edited by K. Goeke and P. G. Reinhard (Springer, Ber-
lin, 1982).

'IR. B. Gerber, M. A. Ratner, and V. Buch, Chem. Phys. Lett. 91, 173
(1982).

ZR. B. Gerber, V. Buch, and M. A. Ratner, J. Chem. Phys. 77, 3022
(1982).

13G. C. Schatz, V. Buch, M. A. Ratner, and R. B. Gerber, J. Chem. Phys.
79, 1808 (1983).

“P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variation-
al Principle in Quantum Mechanics, Springer Lecture Notes in Physics,
Vol. 140 (Springer, Berlin, 1981).

'SE. J. Heller, J. Chem. Phys. 62, 1544 (1975).

'°E. J. Heller, J. Chem. Phys. 64, 63 (1976).

173, I Sawada, R. Heather, B. Jackson, and H. Metiu, J. Chem. Phys. 83,
3009 (1985), and references therein.

'¥W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).

9P, Pechukas and J. C. Light, J. Chem. Phys. 44, 3897 (1966).

20J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963).

2'J. Wei and E. Norman, Proc. Am. Math. Soc. 15, 327 (1964).

22], Kucar, H. -D. Meyer, and L. S. Cederbaum, Chem. Phys. Lett. 140, 525
(1987).

2ZA. D. McLachlan, Mol. Phys. 8, 39 (1964).

24P, A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

25]. Frenkel, Wave Mechanics (Oxford U. P., Oxford, 1934).

26P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964).

27C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applica-
tions (Wiley, New York, 1971); A. Bjerhammar, Theory of Errors and
Generalized Matrix Inverses (Elsevier, Amsterdam, 1973).

2R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

2°N. Jacobson, Lie Algebras (Interscience, New York, 1962).

3R, Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (Wi-
ley, New York, 1974).

31V, S, Varadaraja, Lie Groups, Lie Algebras and Their Representations
(Prentice-Hall, Englewood Cliffs, NJ, 1974).

323, Kucar, H. -D. Meyer, and L. S. Cederbaum, work in progress.

33F, Wolf and H. J. Korsch, Phys. Rev. A 37, 1934 (1988).

34T. C. Thompson and D. G. Truhlar, J. Chem. Phys. 77, 3031 (1982).

35R. Lefebvre, Int. J. Quantum Chem. 23, 543 (1983).

367 Bacic, R. G. Gerber, and M. A. Ratner, J. Phys. Chem. 90, 3606
(1986).

Meyer, Kutar, and Cederbaum 1430



Conditions for zero not to be an eigenvalue of the Schrédinger operator. il
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A condition for zero not to be an eigenvalue of the Shrédinger operator is given.

I. INTRODUCTION

Let H= —V*+q(x) in R, g¢=g, [q]: = (47) !
X fs:q(r,w)dw, S? be the unit sphere in R?3,
[, :=max( f,0), and Dg: = {x: |x|>R}, where R is arbi-
trarily large. The main result of this paper is the following
theorem.

Theorem: If Hu=0 in Dy, [q] eL??(Dg), and
O0<ueLl ™(Dy), m<3,thenu =0in Dy.

After publication of Ref. 1, Lieb drew my attention to
his work,” where the result in the theorem above is given for
m =2 and [q] .€L*?(Dg). The argument in Ref. 2 relies
essentially on a result in Ref. 3. It is noted in Ref. 2 that H.
Brezis proved the result for m < 3 (unpublished ). The aim of
this work is to give a proof of the theorem that does not rely
on the result in Ref. 3 but is based on the method given in
Ref. 1 and uses the ideas and results from Ref. 2. Our proofis
self-contained and relatively short. It treats the problem as a
local one near infinity; the argument uses the assumptions in
Dy only. In Ref. 3 the global assumption geL *'? (R *) was
used. This assumption is not necessary locally: g(x) may be
L with m<3 In Ref. 1 the condition (a)
l[g(x)|<e(1 + |x|) ~¢, a>2, was used in Dg. This condi-
tion implies that (b) geL 3?(Dy ), and it is very close to (b)
in the sense that (b) does not hold if a<2. It was shown in
Ref. 1 that the theorem is not valid if <2, so that conditions
(a) and (b) are exact conditions on g for zero not to be an
eigenvalue of H.

In Sec. II proofs are given.

Il. PROOFS

First we reduce the problem to the ODE problem. This
reduction, Step 1, is given in Ref. 2, and we reproduce the
argument in Ref. 2 for convenience of the reader in order to
make the argument self-contained.

Step 1: Suppose
Hu=0 in Dg, O<uel™(Dg), (1)
m<3, lql,:=p(reL>*(Dg).

Let f: = exp([In u]). Then by Lemma 1 (below),

—f7'Af+ (g1 — u™'Au + q1>0. (2)
By Jensen’s inequality, /" =exp{lnu™]<[u™], m>1.
Thus

J.f’"dx<J- umdx, m>1l.
D, Dg

Therefore if f&L™ (Dgp) then wudl ™(Dg). Thus if
p(r):=|[q]l, and

implies that f&L™ (Dg), then wgLl ™(Dg), m< 3. Since

1431 J. Math. Phys. 29 (6), June 1988

0022-2488/88/061431-02$02.50

JSf=f(r), the problem is reduced to the problem for ODE. To
complete the argument let us prove the following.

Lemma 1: (See Ref. 2, p. 632.) If f=exp([In u]) then
FIA<u™Aul, Au: = V2,

Proof: If g = In u then u~'Au = Ag + (Vg)~ One has
[Ag] = Algl, (Vg)>>(8g/dr)? and [(dg/dr)*)>(d[g]l/
dr)? by Cauchy’s inequality, since [1] = 1. Thus

[u'Aul>Alg] + (Vg2 =f""Af.

Step 2: Let f= r—'v. Then (3) reduces to

—v" + p(nv:=h(r)>0, r>R. 4)
Note that

SEL™(Dg) < vel ™((R,0 )t ~ "~ V) = L.

We need to prove the following.

Lemma 2: Inequality (4) implies v = O provided that
ve.’”, m<3, and O<p(r)el>*(Dg), ie, if
IEtp*2(Ndt < .

Write (4) as

v>0,

v=A+ Br+ fw (t— r)p(t)v(r)dt—f (r—1t)hdt,
r R

5
where A,B = const. Let

a(r) = (f t2p3/2(t)dt)2/3.
One has

J-w (t—r)pvdt

oo 2/3 o 1/3
<(J. t2p3/2(t)dt) U t“v3dt)
w 173
=a(,.)(J t —(m—Z)Um(t—lv):&——mdt)

<a(M|p||7 Ir | * =™ ~0 as r— . (6)
Here ||v|| : = max,,  |v|, and the estimate

"ol < oo (N
was used. To prove (7), differentiate (5) to get

v'(r) =B_f pvdt—f h dt<B, (8)
r R

where the inequalities pv>0 and 4>0 were used. Integrate
(8) and use the inequality v > 0 to get

0 <v(r)<Br+ v(R). 9
From (9) inequality (7) follows. Let us prove that

f h(t)dt < . (10)

R

Suppose (*) Sfzhdt= «. Then choose R,>R so that
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SRk dt> 2B, fix R,, and choose r so large that

r R,
f (r—t)hdt}rf (1 —r 'tYh dt>28Br. (1)
R R

From (11), (6),and (5)itfollowsthatv— — oo ifr— + oo.
This contradicts the assumption v > O, 7> R. Therefore (*) is
false and (10) holds.

Proofof Lemma 2: Write (4) as v” <pv and integrate this
inequality over (7,7, ), 7, = o0, and let n— o to get

— u'(r)<f pudt.

Here we used the fact that ve "™, m < 3, implies existence of
asequence 7, — co such that v’(r, ) »0. An easy proof of this
factis left to the reader. Integrate (12) over (#,R,, ), R,, = o0,
and choose R, so that v(R,, ) -0 as n— . This is possible
since ve.¥™, m < 3. The result is

(12)

0<v(r)<f dtf pvds=J (t—nrpvdi-0, r- oo,
r r (13)

where the assumption v > 0 and the inequality (6) were used.
Note that inequality (13) implies v = 0 provided that

f tpdt< 00 .

R

(14)

Indeed (13) implies max,,, v < max,,, v, where r,is chosen
sothat *tp dt < 1. Thus v = Ofor r>r,,. By the uniqueness of
the solution to the Cauchy problem, v = 0 for 7> R.

Let us derive from (13) that v = O under the assumption
pel 33(Dg). One has as in (6)

© 1/3
v<a(r)(f t“‘v’dt) <a(n|vl|72 vl r =<7, (15)

where €:=3 — m. Define ||r*’v||,: = max,,, 1F/2 v(r)|
: = N(v). Then

f W dtgj t TSPy de

<N3WYe lr=c, rer, (16)
From (16) and (15) one gets
v<a(r)Nw)e V3r— <3, (17n
Multiply (17) by r*”* to obtain
N@)<max a(r)e"'>*N(v). (18)

rar,
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Choose 7, so that €~ '/* max,,, a(r) <1. Then (18) implies

N(v) =0, v=0 for r>r, and, as above, v =0 for r>R.
Lemma 2 is proved.
This completes the proof of the theorem.
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APPENDIX: SKETCH OF BREZIS’ ARGUMENT

This appendix is an excerpt from a letter by Professor H.
Brezis to the editor of this Journal. In this letter Professor
Brezis sketches his unpublished argument as follows.

Let #>0in Dy and

—Au+p(ryu=q_(x)u>0 in DyCR>
Let

b(r): = f ds s“zf p(Htde.
R R

Then b(r)>0, b(R) =b'(R) =0, Ab=p(r). Multiply
(A1) by exp[b(r)] — 1 and integrate over Dy to get

(A1)

J-{ — ul exp[b(r)] + pulexp(b(r)) — 1]

—q_u(exp[b(r)] — 1)}dx =0, (A2)

where { = f Dg- Since

A exp(b(r)) = explb(r))[p + (Vd)?],
it follows from (A2) that

f{pu + 1 exp(b(r))|Vb |* + g_ulexp(b(r)) — 1]1}dx = 0.

Thus pu = 0, and (A1) reduces to

— Au>0 m<3.

(A3)
This implies # = 0. The argument that leads to (A2) can be
justified: multiply (A1) by {exp[b(#)] — 1}9(x/n), where
17>0,7€C &, 7 = linaneighborhood of the origin, integrate
over Dy, integrate by parts, and then let 7— .

in Dp, u>»0 in Dg, wuel™(Dyg),

'A. G. Ramm, J. Math. Phys. 28, 1341 (1987).
2E. Lieb, Rev. Mod. Phys. 53, 603 (1981).
3B. Simon, J. Funct. Anal. 40, 66 (1981).
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For a broad class of potentials, we show that the nonvariational (so-called Hill-determinant)
intuitive identification of binding energies with zeros of certain infinite determinants may be
given a rigorous mathematical foundation. The essence of the construction lies in an
appropriate restriction of the class of the admissible Ansirze. This eliminates the undesirable
confluence of the physical and unphysical components of (7) that may take place in the

general case.

I. INTRODUCTION

An exceptional simplicity of the harmonic oscillator
wave functions

I n
— _____’.2) ’,2m+1+l
¥, (r) exp( 5 mﬁzopm

(cf., e.g., Fliigge') forms a natural background for the per-
turbative? as well as variational® treatment of anharmonici-
ties. Recently, the direct generalizations of (1.1),

(1.1)

(1.2)

were also studied in the numerical context,*’ with the inten-
tion of deriving the new resummation techniques,® etc. Be-
sides the simplicity and semianalytic character of the wave
functions, additional merit of (1.2) lies also in the possibility
of an approximative replacement of the power series by a
polynomial, and in the related tractability of the approxi-
mate energies as zeros of the so-called Hill determinants.’

In a purely formal manner, the “generalized harmonic
oscillator” wave functions (1.2) may be interpreted as an
Ansatz, converting, say, the radial differential Schrédinger
equation

d*  I(l+1)
PR

into a purely algebraic problem.*”® Unfortunately, in con-
trast to the more standard numerical and variational meth-
ods,? it is not always easy to treat properly also the physical
boundary conditions in the new algebraic language.* Even
the simplest example with the special sextic anharmonic os-
cillator potential,

V(ry=arr + b +cr®, ¢>0, b<0,

was not treated properly from this point of view.%° This in-
spired an extensive discussion in the literature (cf., e.g., Ref.
10 for the review).

At present, the latter b < 0 sextic oscillator puzzle seems
resolved. Singh’s “completely WKB” choice of the polyno-
mial exponent P(r) in (1.2) has been proved incompatible'!
with the intuitive identification of the physical bound-state
energies with zeros of the related “Hill determinants.”” Con-
versely, rigorous validity of the method has been confirmed
for & > 0,2 or for certain incompletely WKB!? or completely
non-WKB® modified exponents P(r) in (1.2).

¥, (r) = exp(polynomial) X power series,

+ V(r)]¢(r) —Eyr) (13)
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For a broader class of potentials, the situation will be
clarified in the present paper. In Sec. II we specify the forces
in more detail, in Sec. III we characterize them formally as a
natural generalization of the harmonic oscillator, and, se-
parating their class into a pair of its natural subclasses, we
deliver the corresponding construction and proofs in Secs.
IV and V. Section V1 is a summary.

Il. THE CLASS OF FORCES

An interest in simple potentials stems from the phenom-
enological needs of the atomic and molecular physics as well
as from the methodical considerations of the perturbative
field theory.!* In our preceding paper,* our interest has been
concentrated upon the general superpositions of the rational
powers of the coordinate

N

Voiry =Y & N my/ng s >my/ng> — 2.
i=1

(2.1)

These forces were shown to be tractable by the Hill-determi-
nant technique, provided only that a certain “superconfine-
ment restriction” (schematically, g0’ , >0) was satisfied
by the coupling constants. Now we intend to get rid of it.
Indeed, a formulation of a procedure independent of the par-
ticular coupling values is important methodically. More-
over, our choice and study of the class of forces (2.1) may
also be shown useful from the following points of view.'>

(a) Their flexibility forms a good background for ap-
proximations of the various realistic forces. If needed, a com-
ponent g§¥r~2 may also be used and incorporated into the
centrifugal term, I(/+ 1) +g{® =1'(I'+1). The con-
dition of regularity /'> — } implies that the coupling g§”
> — (I + })? cannot be arbitrary.

(b) The restrictions imposed upon the exponents m,/n;
and the singular coupling g§ are minimal. They merely re-
flect an acceptable nonregularity of the differential equation
and of its general solution near the origin,

Y(r)~e 4 er,
The latter, irregular component of ¥(7) may immediately be
omitted as unphysical.®

(c) Asymptotically, formula (2.1) incorporates both
the finite wells (m,/n,<0) and the confining potentials

r=0.
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& >0,my/ny>0,and E>E,.). In the wave functions,
an asymptotic appearance of a node, ¥/( 0 ) =0, is in a one-
to-one correspondence to an emergence of a new bound
state. This is valid within the discrete spectrum domain (for
E<g® if my/ny =0) and follows from the standard
Sturm~Liouville oscillation theorems.!” In particular, we
shall have also |¢/(r) | ~exp (polynomial) > 1, for large r5 1
and for E#E, .
(d) An elementary change of variables,

¢_’¢i) l_’lia {E, n}" S.i)yEi}’ 1<i<imaxy

in Eq. (1.3) may be used to preserve its Schrédinger equa-
tion form and modify the potential'® ¥, ¥,. In particular,
we may obtain the even polynomials

r—-r;,

vii?)y= Y gor", g>0, (2.2a)
m=0
ordinary polynomials
in= Y g>r, g>0fore>l, (2.2b)

n= ~1
and all the fractional-power superpositions up to i =i,
=TJand V;(e ) = const < o,

T
Vi) =3 gPr- (2.3)
k=0

All these potentials are equivalent, formally, to the original
force ¥, = ¥, , and we may study any of them without loss of
generality. In the paper, we shall use only the polynomial
forms (2.2), recalling the special case of their mutual trans-
formation,®

0(r) =Jr g (r), r=r, 2L+1=1+1}

g(z)l = i(g(()l) —E), g —E,= ig(ll)’ (2.4)
gD =10, m=12.., s~1=¢
B
. » A,— E, — B,,
p"+1 =(H Bk) 'podet 0,...,0, Ck’ Ak —E,
k=t 0,..., 0, C,,

n

for an arbitrary choice of the parameter Sin (3.1).

Of course, in the particular example in question, a ““clev-

er” choice of the parameter 8 = a implies that C, = O for all
k. This makes the regular infinite series (1.2) coincide with
the confluent hypergeometric function. It will terminate
at the exceptional values E=FE, = (4n+2/+3)a, n
=0,1,..., of energies. Then the overall exponential factor
makes the norm of ¥(r) finite—the exceptional energies
form a complete spectrum. Formally, we may write a deter-
minantal equation that defines exactly the first N — 1 bind-
ing energies,’

pv=0  N>1. (3.4)
The oversimplified harmonic oscillator example may
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as an illustration of the above implicit formula.

An analysis of the polynomial potentials (2.2) leads to
an important formal difference between the even and odd
degree t. Indeed, the general asymptotic solution of Eq.
(1.3) reads

arz/2+1) (_arx/2+1)
7)~d, ex d, exp{l ————— |, 1,
v =d, p(t/2+1 taenT )

@ =g%, 1,

(2.5)
t<l,

and may be used as a factor in Eq. (1.2) for ¢t = 2¢q only. In
Ref. 15, an elimination of the square-root variable #'/? has
been achieved by means of a transition (2.4) from odd ¢ and
V =V, to its even-degree representation V|, with t ™% = 4g,
t°9 = 2¢g — 1. Here, we shall treat both parities of ¢ separate-
ly.

2 __ 2)
a —g(() —E,

lIl. HARMONIC OSCILLATOR AS A METHODICAL
GUIDE

The simplest form of Ansatz (1.2) reads

N
w(r)ze—ﬁF/Z 2 p"r2n+l+l’ N‘-‘OO, (31)
n=0
and may be inserted in our Schrodinger equation (1.3) with
an arbitrary potential in principle. In order to illustrate this
procedure, let us contemplate the simplest potential V(r)
= @*r*. Obviously, the recurrences obtained from (1.3),

B.ppiy = 4, ~-Ep,+C,p,_y, n=01,..,
B,=02n+2)2n+ 21+ 3), (3.2)
A, = (4n+214+3)5, C, =a2—ﬁ2,

may immediately be solved by means of the explicit deter-
minantal formula

0,...

—-B, 0..1, n=01,.., (3.3)

n =

|
simulate the more complicated cases, provided that we pick
up a “wrong” value of the parameter S(#a) in (3.1). Then,
in a purely heuristic manner, we may still simplify Eq. (3.2)
(three-term recurrences) by a change of variables:

P.=B"g,/n!, n>0. (3.5)
In an asymptotic domain of indices, a simplified form of
(3.2),

q”_‘_l._qn:‘l‘(az/ﬁz_l)qn_“ n>19 (36)
may be used in place of the original difference equation.

The new equation has constant coefficients and may be
solved by the Ansatz
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g, ="
After a determination of A =4, = (1+a/B)/2 from
(3.6), the general solution of Eq. (3.2) becomes available,

- 55,

n! 2 n! 3.1

and leads also to the B = a termination condition. Of course,
its relation to the normalizability physical requirement be-
comes less obvious.

In the detailed analysis, we may recall (2.5), i.e.,

¢(r) — dleaF/Z + dze—m’/Z, r> 1’

whered, =0Oifandonly if E = E ..
At the same time, we may insert (3.7) in (3.1) and write

(3.8)

#(r) exp(4B7°) =a polynomial + 3 -

n>N
=c CXP('B +a rz) + ¢, exp (’3_ a r2)
2 2
+0(”Y), r»1, N>l (3.9)

Thus, provided that 8> 0, the asymptotics of #(7), r— oo,
remain unphysical (d,50) whenever ¢,#0 in Eq. (3.7) or
(3.9). Conversely, both the coefficients d, and ¢, change sign
precisely at E = E_;, . when treated as functions of the vari-
able E. Obviously, we may write

o= ()

=c,((B+ a)/2)"(1 + 0(e™)),

O<e=(B—a)/(B+a)<], (3.10)

and see that the roots of p, coincide with the physical bind-
ing energies E, in the limit N— «. In this way, a rigorous
foundation of the Hill-determinant method is obtained—in
accord with (3.3), we may employ the approximate secular
equation (3.4),

AO _BO

¢ 4, -5
det — EI

Cy Ay

=0, N>l

(3.11)

and determine the binding energies by the standard compu-

tation algorithms.?
J

A, — E, — B,
n —1 Cg”, A] _E)
Prin =(H Bk) Po det .
k=0 ‘.
0,..0, DW@+V _DW,

(g—-1) (1)
cu=v,_.,Ccw,

IV. POTENTIALS EQUIVALENT TO POLYNOMIALS OF
AN ODD DEGREE

For t=2¢—1 in the definition of the potentials
V = V,(r), we may use the change of variables (2.4) and
consider an equivalent potential

V(r) =g+ &7 + " + 8,7 8, =0a">0, (41)

giving the quartic anharmonic oscillator in the simplest non-
trivial ¢ = 1 case. In accord with the standard Hill-determi-
nant computations,” we may choose the exponential (sub-
dominant) factor in an almost arbitrary way in (1.2),

$(r) =+ expl—g(r) S pr,
. n=0 (4.2)
gr) =Y Br/2.

=1
Then, an insertion in Egs. (1.3) and (4.1) leads to the basic
(2g + 2)-term recurrences of the type (3.2),

q—1 .
B,,P,,+| = (An —E)pn + z pn—jcflj)
j=1
! Gal-g
+ ) p,_ ;DU TD,
qu !
n=0l,., p_,=p_,=--=0. (4.3)

Of course, the coefficients are functions of the couplings and
other parameters,

B,=(2n+2)(2n+2I+3),
A, = (4n+20+3)B, +g=C +E,
CP=@n+24+3-2)B,,+g

j—1

+ Z Bi+1 j—i»
<o (4.4)
j=12...g—1, n=01,.,
. a1
D”)=gj+q_1 + z 1ﬁi+1 q+j—i—12
i=j—
j=12,..4q,
D(""'”=g2q=az.

A discussion of the physical normalization requirement re-
mains an open question here.
In general, we may expect an asymptotic growth of

Y(r):

P+ —aqridt!
(S e S,
Y(r) lexP(2q+l +d, exp 21 r>1
(4.5)

At the same time, each row of Eq. (4.3) defines the nonzero
coefficient p, , | at each energy E,

(4.6)

A, -E

Hence the standard finite-dimensional analogies make no sense in the infinite-dimensional system in question.'® A detailed
analysis of relations between the physical asymptotics of ¢(7), r— «, and p,,, n— 0, necessitates a more careful argumenta-
tion as indicated schematically in the preceding section.
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In the first step, we shall employ a change of variables inspired by Eq. (3.5),
A”h,

pn+l = . (4'7)
Fl+(n+1)/Qeg+ 1+ (n+1+3/Q2g+ 1))
This converts our basic recurrences (4.3) into a set of the alternative difference equations
g—1
hn -hn—2q-—] = z (wq—mhn+m—q + w2q—mhn+m—2q)’ (4-8)
m=0
each of which may be numbered by the parameter & such that
2 1/(2¢g+ 1) 2k
A=A =[——i——] ( ) k=0,+1,+2,...,+gq, 4.9
73 (4q +2)? CXP12q+1 +L+ i’} (4.9)
in the Ansatz (4.7). The new values of coefficients in (4.8),
ClO~'="™T(1+(n+1)/Q2¢+ DTl + (n+1+ 329+ 1))
W, = R
! ATT"BT(1+(n+14+m—gq)/Q2q+ D)1+ (n+1+3+m—g)/(2¢+ 1))
D™Dl +(n+1)/2q+ D)T(1 + (n+1+3)/(29+ 1))
Wy = ’
* A= "B T(1+(1+n+m—2g)/Q2q+ DT+ (n+1+3+m—29)/(2g + 1))
m=0,l1,..,9—1, (4.10)

are ordered with respeét to their asymptotic decrease [cf.
Fig. 1(a)],

—(2 1)/(2¢+ 1
wq_m=0(” 2m+1)/(2q )),

(4.11)

—(2m+2)/(2q+1
wzq_m=0(n (2m+2)/(2q )).

In comparison with the harmonic oscillator methodical ex-
ample. (3.6), our equations (4.8) have an asymptotically
negligible right-hand-side expression—one of their solutions
should obviously be almost constant for n> 1.

The almost-constant solution may easily be represented
by its Taylor series truncated after a few terms. In this case,
we may replace also each of the difference equations (4.8) by
the simplest nontrivial differential equation approximation,

(2¢q+1) dih" = w,h, + corrections, n>1, (4.12)
n

and derive immediately the leading-order form of the al-
most-constant solution. Assuming for simplicity that 5, #0,
we get

w, =2+ 1)"'B,[n/(2g+ 1)1 ~V**+P/4 9,
+ corrections,

ie.,

[(2g+ 1)~ '@+ D

h, =h® =exp{ 2
gA

+ corrections] , n>1, (4.13)

for each particular parameter k. This is similar to the con-
struction of the harmonic oscillator solutions for each
e = e , . The general solution of the present difference equa-
tion (4.8) may be written as a superposition of the type

(3.7,
n+1) ( "+l+%)

r(1 ri14+ ———-|p,

(+2q+1 + 2g 11 Puin

q
— n (k)
= 2 A lohn

k= —g

n>1. (4.14)
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I
This completes the first part of our analysis—an insertion of

(4.13) will enable us to derive the present analog of the har-
monic oscillator formula (3.10).

The proof of the previous statement is not complicated.
First, we renumber the roots (4.9) in such a way that 4 7
=Au, /A8 ie,weputko=j—qfork=2j+1,ko=j

U, =0(N?)

/ U, =0
V. U, =0(1)
@ / /

o()g - R S R T

x
0(p%) x
x
x
o(p* " x
X
O/N b o o e e e e e
0 I g—1 q q+1 g+2 - 2 2+1
v 3 U, =0(¥?) U, =0(N)
(b)
U, =0(1)

[T DI S I S S I I

0(p) T x x

x x

0(p%) + x x
OCI/NY o« o o mem e e e

+—t + + +
[} Lo =1 ¢ g+1! g+2 - 2 2q+1

FIG. 1. Order of magnitude of coefficients in our recurrences
2g+1

29+1
Y Upnyr—;=0 and > Vibn_;=0,
j=o

i=0
for large N3»1: (a)
p=N—Va+D

t=2q'—1, p=N—l/(2q+l); (b) t=2q,
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for k = 2j, and k, = 0 if and only if k = 0. Next, we notice
that Re A, , <4, for all k,7#0. Thus due to (4.13) we
have |4 (| <|h V|, for all k #0 and n> 1. This means that
in full analogy to (3.10), we may neglect all the exponential-
ly small corrections and write, for sufficiently large indices
N ’

r(1+N+1)r(1+
2g+1

=ch (0,1 ¥
2¢/(2¢g+ 1)
zc(yl?{,,exp[ B, [_N_.]q ’ }’ N> 1.
294 %, 129 +1
(4.15)

—J

N+l+;)
2+ 1 Pr+1

The asymptotic zeros of p,, and ¢, will coincide.

In the next step of our considerations, we may try to
extend the asymptotic estimate (3.9) beyond the harmonic
oscillator trivial case. Thus combining (4.2) with (4.15) we
arrive at an estimate

Y(r) =r'*'exp(—g(r) (O(rz”) + i p,,rz”) , (4.16)
=y

where the summation may be approximated by an integra-
tion,

r*" exp(n In Ao, + corrections)

=3 P~ J‘“’ d
¢N(r) ";an Co N n F(l + (n

Then a change of variables leads to the formula

+1)/Qg+ DIT(1+ (n+1+3)/(2¢+ 1))’

N>l (4.17)

p2q+Hm exp[(g+1)mIn Ao, + corrections ]

2 1 *
S (r) = q;’ cof

) e+ 1)
~c, Y — exp[m(ln 2+

m=[(N7(qg+ 1)) m

~c,exp[ar*?**1/(2q + 1) + corrections],

2g+1

r>»1,

d
s T+ m/2+ 1/(2q+ D)1+ m/2+ (I +3)/2q + 1)

1n,10) (14 O(m~= "+ ”))]

(4.18)

compatible, within the achieved precision, with the asymptotic d, #0 estimate (4.5).
A common zero in ¢,, ¢ (), or ¥(r) is in a one-to-one correspondence to the energy, crossing its bound-state value

E = E,,.. We may conclude that the relation

AO’ - B(), 0,
Cfl), Al! — Bl! O,_“
det . ) _EI
0""’0’ D e l)’D (q)"--a ijl)’ AN

defines the bound-state energies for the potential (4.1).

V. POTENTIALS EQUIVALENT TO POLYNOMIALS OF
AN EVEN DEGREE

The pair of forces (4.1) and

Vir)=g,+&r+ + 82q+ 17 824+1 =a’>0,

(5.1)
represent the complete class of the general “fractionally an-
harmonic” oscillators (2.1) [cf. Sec. II (d)]. From the
purely formal point of view the new interaction (5.1) con-
tains one more coupling, but we may postulate

$(r) =P+ exp(—g(n) 3 pr,
n=0 (5.2)

a+1 B.r%
)= L
§=2%

and arrive again at the (2¢g + 2)-term recurrences

’ Bq+1=a>0,
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~0, Now, (4.19)
r
i ;
Bnpn+l = (An _E)pn + z pn——jcfr/)
i=
2q .
+ Z p"_jD(J—q)’
j=gq+1
n=0l,., p_,=p_,=- =0, (5.3)

analogous to Eq. (4.3).

Before going into details, let us recall a close analogy
between (5.1) and the harmonic oscillator [ = a special case
of (5.1) with ¢ = 0], and reparametrize (5.1):

Viry=W,(r) + W3i(nr,

Wi(r) =co+er+ - +c,r

Wyr)=vi+ryr+ - +7’q+1’2q» Ye+1 =4a.

In terms of the new couplings, we may express then also the
explicit definitions of coefficients in (5.3),

(5.4)
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B,=2n+2)(2n + 21+ 3),
A, =@n+2+3)B, +c=C® +E,
CYP=@n+2+3-2)B,, +¢ +d,

ji—1

dj = .;0(7’1'—1' +Bj—i)(7i+l _BH.]),

. a1
DY = z (7’q+j—i+Bq+j—i)(7i+1 —Bi+l)!
1

i=j—
(5.5)
J

j=12,...q,

A, T(1 + (n+v)/(g+ 1))

with the possible explicit transition between the definitions
(5.1) and (5.4) of the potential,

1 m
yq—-m =E(ng—m - 2 Yq+m—i7’q+l—i)’

i=1

m=0,1,..,g — 1, (5.6)

etc.
In comparison with the preceding section, the change of
variables (4.7) finds its present counterpart in the relations

pn+l =

T+ (n+1)/(g+ DT+ (n+1+/(g+ 1)’

(5.7

fw=2+3-2+ (1/a)(c, +d,), n=0l.., A9*'=a/(g+1).

This transformation converts our basic difference equation (5.3) into the g + 1 different equivalents

g—1

h,. —hn_q_l = z (wq—mhn+m—q +w2q+l—mhn+m‘2q—l)’

m=0

(5.8)

where the auxiliary parameter A = A ,, has a form similar to Eq. (4.9),

A =A’(k) -

( a )1/(q+1)
g+1

g+ 1
The coefficients

w

exp(i 2wk ), k=0,1,..q.

(5.9)

_CETTPT(+ (ntm—q+0)/(g+ DT+ (n+ /(g + D)1+ (n + 1+ /(g + 1)

qg—m

BATTTI(1+ (n+0)/(g+ D)N((n+m+2)/(g+ D)T((n+m+1+3)/(g+ 1)

DY (g+ DI((n+m—g+v)/(g+ 11+ (n+1)/(g+ D)L+ (n+143/(g+ 1))

w2q+l—m =

m=0,1,.,g—1,

exhibit again the n> 1 asymptotic decrease

Wy_m=(g+17'B,_ A0 n/(g+1)]~ "+ D/@+D 4 corrections,

aB, A" "T(1+ (n+v)/(g+ D)D((n+m+1—q)/(g+ D)T((n+m+1+3—q)/(g+ 1))

(5.10)

(5.11)

Woi1-m=(g+1D7T'DY"™[n/(g+1)] "+ /U4+ V40 95 ™ 4 corrections,

displayed also in Fig. 1(b).
In full analogy with the preceding section, the simple
n’> 1 differential equation approximations to Eq. (5.8),

d
1)2—1Inh,

(¢g+1) an
A’ n

—~1/(g+ 1) B .
= _— + B, + corrections],
5 (q+1) [r, +5, ]
(5.12)

give ¢ + 1 independent solutions
h,=h®

= exp[_——ﬂq + 7 (______n

2gA %, \g+ 1

k=0,1,..,q,

numbered by the subscript & used in (5.9).

The remaining ¢ independent solutions of Eq. (5.8)
with D (9 5£0 may be found in the same way as above—only
the suitable change of variables

q/(g+ 1) .
) <+ corrections |,

n>1, (5.13)
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r

Prn—gq =/.t"’~l,,/r(1 + (n+r/q), p?= —(1/4aq)D?,
r=(1/4a)[ (21 +3 - 2q)a+c, +d,], (5.14)

differs from Eq. (5.7) and replaces Eq. (5.3) by the q rela-
tions

h,—h,_,
_ P ( D@ . Bq ip
B (n/q)l/q\— 44 nt+g+1 — —_ Ttng
D@-b
ST h,,_q+1) + corrections, n3 1.

(5.15)

We arrive at the ¢ missing and independent quasiconstant
solutions

h (¥ = exp(const g, n9~ Y/ + corrections),
n»1, k=12,.4, (5.16)
immediately. A similar procedure works for D ¥ =0 as

well.
The detailed form of constants in (5.16) is not needed.
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When we compare (5.7) with (5.14), we see that the latter ¢
components of p, | , are suppressed by a huge overall factor,

I'(const + n/q)/T"(const + n/(q + 1))
~T(const + n/[g(¢g+ 1)]), n>1.

We may omit them completely from the general solution of
Eq. (5.3) and write the latter, within the present error
bounds, in the form
Tl+ 4+ D/ g+ D)L+ (n+14+3)/(g+ 1))

T+ (n+v)/(g+ 1))

q

= Z Ck/{ ?k) hfnk), n>1,

k=0

n+1

(5.17)

fully analogous to our former Eq. (4.14).
In what follows we shall assume a choice of B, such that

B, +7,>0. (5.18)

As a consequence, the right-hand-side sum in (5.17) be-
comes dominated by the kK = 0 component [cf. Eq. (4.15)].
Indeed, for k£ #0, we have always a nonzero imaginary part
in the factor

1/A %, = A &7 expl — 2mwikq/ (g + 1))

=A o exp( —2mi(g+ 1—k)/(g+ 1))
An insertion in (5.2),
P(r) =r*exp(—g(N)[OY) + ¢ (1], r>1,

b =3 pr"
n=N
enables us to write

©
T1+ (n+1)/(g+ 1))
Xexp O(nq/(q+ 1))

pPma+ 9]

dn(r)=c, wdn r
N

~Cqy

ms>NTg+n  m!

a + o(mq/(q+l)))
g+1

g+ 2
zcoe"'z Za+ D ey,

X exp(m In

(5.19)

in full agreement with the unphysical asymptotic growth
[ (2.5) with d,#0] whenever ¢, = ¢;,(E) #0. Conversely,
the zeros of ¢, ( E) will coincide with the zeros of ¥(r), r» 1,
as well as with the zeros of the Hill determinant,
A, — B, 0,...
c, A, — B, 0,...
det — EI

1 1
0,.,00 D@, DY C@,..CPL, A
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=0, N>l (5.20)

The proof of the validity of the method [Eq. (3.4)] for the
potential (5.1) is completed.

Vi. SUMMARY

In this paper we have considered the complete class of
the fractional potentials (1.4). We have transformed (i) the
potentials into their two “canonical” forms, (4.1) and (5.1),
in accord with Ref. 15; (ii) the regular wave functions
¥(r), re(0,00), into their appropriate Taylor coefficients
Pnr» 2= 1.2,... [cf. Egs. (4.2) and (5.2), respectively]; (iii)
the radial (ordinary differential) Schrodinger equation into
its difference equation equivalents [Egs. (4.3) and (5.3),
respectively]; and (iv) the standard physical boundary con-
dition

¢(r)=09 r— o0, (6.1)
into its “Hill-determinant” equivalent
Pv=0, N-o. (6.2)

The core of the paper lies in a complete asymptotic solu-
tion of the difference equations, showing that the asymptoti-
cally dominant component of p, is in a one-to-one corre-
spondence to the > 1 asymptotically dominant component
of the wave function #(r) itself. Our main result [the equiv-
alence between the two boundary conditions (6.1) and
(6.2)] is a property of our particular choice of the transfor-
mation ¥(r) —p,,, and, in light of the existing counterexam-
ples,'! it need not be valid in general, of course.
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A new proof of the generalized Birkhoff theorem in general relativity is presented. The partial
results contained in previous proofs are recovered in a unified treatment of the different kinds
of space-times to which the theorem applies. The proof is based on the fact that these space-

times are conformal to the direct product of two two-dimensional manifolds (almost-product

structure).

I. INTRODUCTION

The original formulation of the. well-known Birkhoff
theorem' applied only to spherically symmetric vacuum
space-times. Its standard generalization applies to space-
times with an energy-momentum tensor posessing two dou-
ble eigenvalues either in the case of the spherical®® or asso-
ciated symmetries,** even when the orbits of the isometry
group are timelike.®

In this work, a new proof of the generalized theorem is
given. The partial results contained in Refs. 2~6 are recov-
ered in a unified treatment of the different kinds of space-
times to which the generalized Birkhoff theorem applies.
The proof is based on the fact that all these space-times are
conformally reducible, in the sense of Petrov.’

This conformal reduction was used by Petrov® in con-
nection with the original version of the Birkhoff theorem,
working in specific coordinate systems. The proof of the gen-
eralized theorem that is presented here is intrinsic, for the
class of adapted coordinate systems in which the almost-
product structure of the space-time metric is manifest.

The paper is organized as follows. In Sec. II, the confor-
mal reduction of the space-times considered is performed
and the generalized Birkhoff theorem is properly stated. In
Sec. II1, the components of the Ricci tensor are computed
and an important lemma is proved. The proof of the theorem
is given in Sec. IV and, finally, Sec. V contains comments on
previous formulations on the same theorem.

Il. SPACE-TIMES WITH SPHERICAL OR ASSOCIATED
SYMMETRIES

Let us consider a pseudo-Riemannian manifold (V,,8)
admitting a three-dimensional isometry group G, acting on
two-dimensional non-null orbits® O,. The space-time is then
conformally reducible,” and the metric 2 has the following
structure:

g = ng s 1
where g is reducible’ and it can be thought of as the metric of
a direct product space-time (V,,g).

Let us construct a local coordinate system by taking
local coordinates { y*} (4 = 1,2) in O, and {x°} (a = 3,4)
in the surfaces ¥, orthogonal to O,. In this adapted coordi-
nate system, the conformal factor ¥ and the metric g can be
written as follows:

Y= Y(x) ’ g=hAB(y)dyAdyB+gab(x)dxadxb’
(2)
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where / and g are the two-dimensional metrics induced by g
on 0, and V,, respectively.

The two-dimensional manifold ¥, is of constant curva-
ture, so that the conformal factor ¥ can be normalized in
order to have

Ric(h) = kh, (3)

where k can be either + 1 (spherical symmetry), O (plane
symmetry), or — 1 (hyperbolic symmetry). The specific
form of the metric s depends both on the sign of k and on the
causal character of the (non-null) orbits 0,.

We are now in the position to state the following
theorem.

Theorem 1 (Generalized Birkhoff theorem): Every
space-time admitting a three-dimensional isometry group G,
acting on two-dimensional orbits 0, and with Ricci tensor
pertaining to the algebraic types [(11)(1,1)] or [(111,1)]
(Segré notation) admits at least a four-dimensional isometry
group G,, provided that

d,Y #0. (4)

iIl. COMPUTATION OF THE RICCI TENSOR OF (V,,9)

The Ricci tensor of (¥, ) can be computed in two
steps. First of all, one can obtain the Ricci tensor of (V,,g) in
terms of k and the Gaussian curvature R of the two-dimen-
sional manifold (V,, ),

RAB =khAB’ RAb = RaB =0, (3

as it follows easily from the direct product structure (2) of g
and from Eq. (3).

The second step consists in applying to § and g the well-
known formulas relating the curvature tensors of two met-
rics that are conformal one to another.'® A straightforward
calculation gives

Ryp=[k+ Y(Vd Y™') —3Y “2(VYV, V) | hyp ,

R4w=R;p=0,

R, =2YV,d, Y '+ [R+Y(V°d. Y™ ")
—3Y VYV V) 18w

where V stands for the covariant derivative in (¥,,g) and all
contractions are made using the two-dimensional metric g.
Expressions (6) are covariant in (V,,g) and allow an
intrinsic formulation of the Einstein field equations for the
space-times verifying (1)~(3). Here we are only interested
in the algebraic structure of the Ricci tensor of (V,,2). The
decomposition (6) leads directly to the following result.
Lemma 1: The algebraic type of the Ricci tensor of

Rab = Rgab’

(6)
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(V&) iseither [(11)(1,1)] or [(111,1)] (Segré notation)
if and only if the second covariant derivatives of 1/Y [in the
sense of (V,,g)] are proportional to g, that is,

V.d, (1/Y) xgg, . (7

IV. PROOF OF THE THEOREM

The proof consists of three steps. Let us suppose that the
hypotheses of Theorem 1 are verified, so that, allowing for
Lemma 1, Eq. (7) holds true.

(1) Let us construct the two-dimensional vector  with
components

u(x) =e%d, (1/Y), (8)
where e, stands for the antisymmetric tensor in ( V,,g). The
vector % is nonzero, as we are supposing that the function ¥

is not constant [Eq. (4)]. It is easy to see that « is a Killing
vector of (V,,g),

vbua = vb [ezvc(l/y)] cceab . (9)

(2) Let us construct now a four-dimensional vector v
with components

ri=0, (10)

so that it is tangent to the surfaces ¥, orthogonal to O,. It
follows from (9) and the direct product structure of g (2)
that v is a Killing vector of (¥,,g), that is,

L,(g)=0, (11)

where L( ) stands for the Lie derivative operator in V.

(3) Equation (11) implies that the vector v defined in
(10) must be a conformal vector of the metric § conformally
related to g by (1), that is,

L,(g)=2L,(Y)g (12)

and the factor L, (Y) can be easily computed from (10) and
the definition (8) of u,

L,(Y) =u(x)d,¥Y=0, (13)

so that v is in fact a fourth Killing vector of (¥V,,g) and
Theorem 1 is proved.

There are two more results arising from the proof pre-
sented above.

Corollary 1: The components of the fourth Killing vec-
tor v are

v'=ut(x),

v'=0,

where u is the two-dimensional vector explicitly given in Eq.
(8).

Corollary 2: The fourth Killing vector is invariant by the
isometry subgroup G, acting on O,. The extension to a G,
isometry group is then central.

v =u’(x),

V. COMMENTS

The generalized Birkhoff theorem is sometimes stated
without the restriction (4).!" This is not correct because, in
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the case in which Y'is constant, the metric g itself has a direct
product structure and its Ricci tensor (6) becomes

RAﬂzkhAB’ RAb=RaB=O! (14)

so that it pertains always to the required algebraic types and
one has no restriction at all on the two-dimensional metric
&.- For a generic form of g,,,,, the space-time ( V,,2) does not
admit a fourth Killing vector.'?

In other versions, ' the condition (4) is replaced by

d°Yd.Y #0, (15)

which is more restrictive than (4) in the case in which the
orbits O, are spacelike. The cases not covered by (15) are
discussed by Foyster and McIntosh.'* Note that, in these
cases, Eq. (7) becomes

v,d,(1/V) =0, (16)

so that (¥,,g) must be flat (we are supposing that Y is not
constant). It is easy to verify that, in these cases, the two-
dimensional vector u defined by (8) is isotropic.

This vector coincides up to a sign with the vector w
defined as follows:

w'(x) =g*°d,(1/Y), (17)

and a straightforward calculation shows that the four-di-
mensional isotropic vector W defined as

We=uw'(x), W*'=0 (18)
is covariantly constant in the sense of (V,,g). The space-
times (¥,,g) can be interpreted then as plane-fronted gravi-

tational waves with parallel rays (pp waves'®) and the metric
forms are given in Ref. 14.

Rab = Rgab ’
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It is shown that the class of solutions S(2,0, — 1/1), a real slice of the “complexified”
Plebanski S(a,b,c/m) metrics, is interpretable as colliding wave solutions and, fora = —s,,
coincides precisely with the Ferrari-Ibafiez colliding wave metrics.

L. INTRODUCTION

The main purpose of this work is to demonstrate the
equivalence of the S(a,0, — 1/1) metrics and the Ferrari—
Ibariez class of colliding wave solutions.

Il. PRESENTATION

In 1980 Plebanski' published a large class of static Weyl
solutions, denoted by S(a,b,c/m), which can be given in a
real chart {g,p,0,7} (1<g< 0, — 1 <p<1) by the metric
structure

m7g,=f""Ag + B do*] — fdr,
o = (g+ 1)+ (g— 1)«
X(1+p)r (1 =pye=,
B =(g—1)(1-p), (1)
S=(@+1) " P(g—1)°—*
X(14+p)~ @92 ~p)~o,
&= (qz ——pz)(q+p) —(b+c)2(q__p) —(b—¢)?
dg® dp®
2 q + P 2
g—-1 1-p
where a, b, ¢, and m are arbitrary constants.
By complex coordinate transformations (scaling trans-
formations of the form ¢ - q/qg, p— p/ P, 0—0/ 0o, T— T/ Ty,

accompanied by complex scaling of parameters), the metric
(1) can be brought to the form

m~’g, =f-' A&+ % do*] + fdr,
3=(1+q)(a+b)2(1_q)(a—b)2
X(l+p)(a+¢)2(l_p)(a——c)2’
B=0-pHd-g)=:p" )
7=(l+q)—(a+b)(l__q)b—a
X(1+p) =21 =p)~°,
L= -+ TP
2 d2
-
1—p* 1-g¢

X

’
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which are real solutions of cylindrically symmetric charac-
ter; d,, and 8, are now spacelike Killing vectors. This class of
solutions is naturally denoted by S(a,b,c/m).

According to the theorem on colliding wave solutions
belonging to the CW, class,? it is necessary and sufficient
that

b+c=4+1, b—c= +1. (3)

Thus the S(a, + 1,0/1) and S(a,0, + 1/1) metrics are
interpretable as colliding wave metrics. It is easy to show
that these solutions are equivalent one to another.

Let us consider the particular case of S(a,0, — 1/1).
Then the structural functions and the line element g, of the
above metric g, reduce to

B=0=pH(1—¢)=:p?

F=p=(1+p)/(1—p), 4
& =p(1+p) " (1—p)'+7%,

. _ _dpt 4

&= 1_p2 1_q2 :

The S(a,0, — 1/1) is interpretable as a colliding wave
solution, since by accomplishing the transformations
T=Xx7%

p=cosd, g=cosbf, o=x', a= —s,

(3)

in g, from (2) with structural functions and g, from (4), for
m = 1, one arrives, modulo the change of signature, justly at
the colliding wave solutions derived and studied by Ferrari
and Ibafez.?

We expect that certain cylindrically symmetric real
slices of the “complexified” multiexponent Weyl metrics*
could bear a colliding wave interpretation.

'J. F. Plebanski, Phys. Rev. Lett. 45, 303 (1980).

2F. J. Ernst, A. Garcia D., and 1. Hauser, J. Math. Phys. 28, 2951 (1987).
3V. Ferrari and J. Ibafiez, Gen. Relativ. Gravit. 19, 405 (1987).

“J. F. Plebafiski and A. Garcia D., Phys. Rev. Lett. 48, 1447 (1982).
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The self-similar spherically symmetric solutions of the Einstein field equation for the case of
dust are identified. These form a subclass of the Tolman models. These self-similar models
contain the solution recently presented by Chi [J. Math. Phys. 28, 1539 (1987) ], thereby
refuting the claim of having found a new solution to the Einstein field equations.

|. INTRODUCTION

The assumption of self-similarity in general relativity
has particular appeal because of the simplification that re-
sults in the Einstein field equations. The mathematical sim-
plification arises because the metric functions, in a spherical-
ly symmetric problem, are now essentially functions of the
single variable ct /R, where R is the radial coordinate and ¢ is
the coordinate time. Consequently the field equations reduce
to a system of ordinary differential equations. The solution
of these equations should be useful in astrophysics, for exam-
ple in studying the asymptotic behavior of a relativistic su-
pernova shock wave created by a source from which energy
is released.

Recently Chi' found a self-similar spherically symmet-
ric solution to the field equations for the special case of dust.
However, the general dust solutions for spherically symmet-
ric space-times, the Tolman models,” are known and are list-
ed by Kramer et al.®> Thus the solution of Chi must be a
particular Tolman model. We reexpress the solution of Chi
to ease comparison with the equations of Kramer et al. This
solution contains the Einstein—de Sitter model as a particu-
lar case.

We extend the solution of Chi by finding two further
classes of self-similar solutions for the Tolman metrics. In
fact the self-similar solutions presented in this paper are the
only possible self-similar spherically symmetric solutions
admitted by the field equations formulated by Chi. Through-
out we follow the notation and conventions of Chi.'

Il. FIELD EQUATIONS
The spherically symmetric metric can be put in the form
ds? = ?e” M dr? — P dR?

— P(4,R) (d6? + sin® 8 d¢?), ()

where R is the comoving radial coordinate. Cahill and Taub*
define a self-similar spherically symmetric solution of the
field equations as one for which the resulting space-time ad-
mits a conformal Killing vector. They then show that the
metric (1) must be of the form

ds’ =c?e”® dt? — ¢® dR?

— RS(£)(d6? + sin’® 6 dg?), (2)
where £ is the self-similarity variable. In his attempt to ob-
tain self-similar solutions Chi' expressed the field equations
in terms of the dimensionless functions
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87Gpt* = N(£), 8mwGpt?/c* = Q(£),

2Gmt*/R>* = M(£), r=RS(£).
(Note that if we replace ¢t with R in these expressions we
then obtain the equations considered by Cahill and Taub.*)

The field equations can then be written as a system of ordi-
nary differential equations,

M=E2S[1+e°S?—e~2(S—£5")2], (3a)
3M — EM' = NS*(S — £57), (3b)
EM' —2M = — EQS?S’, (3¢)
fo'= —2(£N' —2N)/(Q+ N) — 4£8'/S,  (3d)
o= =207/(Q+N), (3e)

where a prime denotes differentiation with respect to £. In
the case of dust the pressure vanishes so that @ = 0 and the
field equations (3) can be easily integrated. The metric (2)
now has the particular form

ds =c*dt? — S ~*N ~2dR>

— R2§%(d8* + sin® 0 dg?), (4)

where
SS?4+8(1—-M2)—M,=0, (5a)
NS?*(S —£S') — M2 =0, (5b)

and M, is a constant of integration. It remains to obtain the
function S(&).

lil. THE CASE Mo=1

This special case was considered by Chi.! Equations (5)
yield

S=[3(5 + §)]2/3,
N=4fo+ ) (&1 £/3)7L
On using Eq. (5b) we obtain the relationship

(6a)
(6b)

E‘N =254 = (S+ RS')? = (ﬂ)z.
R

Then the metric (4) can be written as
2
ds? = de? — (%) dR? — P(d0? +sin? 0dd?).  (7)

The solution (7) is a special case of the general dust equation
(13.39) (on setting € = 0) of Kramer ez al.> We use (6a) to
obtain an explicit form for 7,
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t—to(R) = + [m(R)]1V*P?, (8)

where £o(R) = F &R /cand m(R) = [2/(3¢R?)]"/% The
result (8) is equivalent to Eq. (13.38a) of Kramer et al. (In
the general dust solutions the quantities £, and m are arbi-
trary functions of R.) Thus we have shown that the self-
similar dust solution of Chi is a particular Tolman model.
With the aid of Eq. (6) the metric (4) can be written as

ds? = dt* — (D3 (& + &) (& + £/3)2dR?
— D¥PRUE + £)¥3(dO? + sin” 6 dg?). (9)

This self-similar solution contains essentially only one arbi-
trary constant, namely &,. It is interesting to observe that
when we set £, =01in (9) we get

ds® = cdt? — t** dR?* — t*3(d6* + sin” 0 d¢?) (10)

after a rescaling of coordinates. The space-time (10) is the
familiar Einstein—de Sitter model.

IV. Mo31

This case was not considered by Chi.! However, the field
equations (5) can also be integrated for M,7# 1 and we ob-
tain two further classes of self-similar Tolman models. Upon
integration (5a) yields

M3>1:
S=My(M23—1)""(coshyg— 1),
E—E&= + My(Mj —1)7?(sinhy — 1),
M1
S=My(1—-M3)"'(1—cosn),
E—&= +My(1—-M%)>?(n—sinp).
We can write this solution in the standard form
t—t,(R) = +h(n)m(R) f~,
where -
to(R) = &R /c, m(R) =M,R /c,
5 [(Mf,-l)‘“, for M2>1,
Tl =MV for M2<1,

(11)

sinhn—7, for M}>1,
h(n) = [ 7= )

n—siny, for M2<1.
Of course Eq. (11) is contained in the general dust equation
(13.38b) of Kramer ef al.

These self-similar solutions contain essentially two arbi-
trary constants, namely &, and M,,. Note that self-similarity

1444 J. Math. Phys., Vol. 29, No. 6, June 1988

seems to isolate those solutions for which m(R) ~R. For
M, =1 we have m(R) ~1/R. For M, 1 the metric (4)
becomes

ds = ¢ dt? — (L%)z dR? — P(d6? + sin? 6 dg?),

° (12)
where » must satisfy
r=h'(g)m(R) f~2

The metrics (7) and (12) comprise the entire set of self-
similar Tolman models.

V.ENERGY DENSITY

Here we briefly study the behavior of the energy density
p in the self-similar Tolman models. The energy density is
the only nonvanishing dynamical quantity in the Tolman
models. For the case M, = 1 we have

p=(187G) "t 22 (L £ )T (G £ £/ (13)

Note that the expression corresponding to (13) given by Chi
incorrectly contains an additional factor of £ For small
values of £, we obtain the behavior

p~E*/t* =c*/R?,
and p has the form of an inverse square law. For large values
of £ we obtain the behavior

p~t

Also, in the classes of solution for which M, 1 the en-
ergy density p can be written as

-2

p = My(87G) 't ~2£28 —z(i) -
° R
If 9r/3R ~ S ~? then clearly p~£?/t?, and again p has the
form of an inverse square law.
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In this paper a special case of Hauser—Malliot (HM) space-times is examined in the presence
of a perfect fluid source. The obtained solutions are all known except for a generalization of a
stationary axisymmetric solution found by Kramer [Class. Quantum Gravit. 1, L3 (1984)].

I. INTRODUCTION

In a 1968 paper Carter' examined spaces with a two-
parameter Abelian isometry group, G, (condition I in Ref.
1), invertible with non-null surfaces of transitivity (condi-
tion II in Ref. 1), in which the Hamilton—Jacobi equation
(HJ) is separable for non-null geodesics (condition IV in
Ref. 1). The metric satisfying these four conditions is metric
(77) in Ref. 1. Carter, in order to simplify the field equa-
tions, imposed a supplementary condition (III S'in Ref. 1),
the separability of the Schrodinger equation. The necessary
and sufficient condition for the separability of the Schro-
dinger equation is relation (79) in Ref. 1. The resulting
spaces split into four families [4], [B(+)1, [B(—)],and
[D] in the presence of a nonsingular electromagnetic field.

The separability of the HJ equation, which has been
shown independently by Matravers® and Carter,' gives rise
to a fourth constant of the motion for particle orbits (the
three other constants being the rest mass, the energy, and the
angular momentum about the symmetry axis). This implies
the existence of a second-rank Killing tensor in these solu-
tions. Matravers has also shown that the separability of the
HJ equation for null geodesics gives rise to a nonzero qua-
dratic first integral for the null geodesic equations, which
implies the existence of a conformal Killing tensor. Walker
and Penrose® found that all the vacuum type-D solutions
admit an irreducible second-rank conformal Killing tensor
for null geodesics, while an irreducible second-rank Killing
tensor and its corresponding first integral for all geodesics
exists only in a subclass of these solutions.

The results of Walker and Penrose have been extended
to type-D electovac solutions with an aligned nonsingular
electromagnetic field by Hughston et al.* and by Hughston
and Sommers.®> The latter authors have shown that the C
metric and the C-NUT metric and their electrovac general-
izations are the only metrics in the class that do not admit the
Killing tensor. Sufficient conditions for the separability of
the HJ equation have been given by Woodhouse.® He relates
the separability of the HJ equation with the existence of sec-
ond-rank Killing tensors (Theorem 4.2).

In the same spirit with Carter, Bonanos’ has studied
spaces with a two-parameter, invertible Abelian isometry
group in which the HJ equation for null geodesic separates in
the presence of perfect fluid sources. The separability of the
HJ equation for null geodesics is equivalent to the existence
of a conformal Killing tensor (the conformal Killing tensor
which corresponds toa [ (11) (11)] Killing tensor). This is
the only work that has been done on spaces containing, as
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special cases, metrics admitting [ (11) (11)] Killing tensors
in the presence of a perfect fluid energy-momentum tensor.
A generalization of Carter’s space-times has been made by
Hauser and Mathiot (HM), in two successive papers.®® In
the first (1976) they presented the set of all space-times that
admit a second-rank Killing tensor whose Segre characteris-
ticsare [(11) (11)], or, equivalently, a second-rank Killing
tensor with two double nonconstant eigenvalues, A, and 4,.
In a special coordinate system the resulting metric has the
same general form as Carter’s HJ separable metric [ (77) in
Ref. 1] except that there is no group of symmetry. However,
under an additional assumption on the Ricci tensor (the R,
component of the Ricci tensor vanishes) the metric of HM
admits a two-parameter Abelian isometry group and, in this
case, the space-time coincides with Carter’s metric (77) un-
der the restriction of relation (79). The vanishing of the R,
component of the Ricci tensor is the sufficient and necessary
condition for the separability of the Schrodinger equation
and it is completely equivalent to relation (79) of Carter.

In a second paper (1978) HM completed their previous
results and obtained a larger class of metrics, namely, they
found all space-times that admit, or are conformal to, those
that admit nonsingular [(11) (11)] Killing tensors, with
nonsingular meaning with the nonconstant eigenvalues A4,
and A,. Their general metric splits into four subfamilies:
(1,1) when 6,6,70; (0,1) when 6, =0, §,#0; (1,0) when
6,#0, 86,=0;, and (0,0) when §,=6,=0, where
8, =p — p and 6, = 7 + T are expressions of the Newman-
Penrose (NP) spin coefficients. In this second paper they
also proposed two possible directions of research: the first is
to find spaces with R, #0 (non-Schrédinger separable) and
the second is the search for physically plausible matter ten-
sors, which permit the hidden symmetry characterized by a
[(11) (11)] Killing tensor.

In the present paper we examine only the (1,1) subfami-
ly of HM spaces in the presence of a perfect fluid source and
under the assumption of the separability of the Schrodinger
equation.

In the (1,1) subfamily of HM spaces, the existence of a
f(11) (11)] Killing tensor in the presence of a perfect fluid
energy-momentum tensor implies the existence of a G, (at
least), invertible with a non-null surface of transivity. The
orbits of the group are timelike (one timelike Killing field
and one spacelike), or spacelike (two spacelike Killing
fields).

Our work generalizes, in a certain way, Bonanos’ re-
sults, because (a) we also examine the spacelike case (Bon-
anos examined only the timelike case, namely, the stationary
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axisymmetric spaces), and (b) we find all solutions for the
timelike case (Bonanos has not found Kramer’s solution and
its generalization). We say “in a certain way” because Bon-
anos’ spaces are more general than the spaces examined in
this paper since they admit the conformal Killing tensor cor-
responding to the [ (11) (11)] Killing tensor, which charac-
terizes the (1,1) subfamily of HM spaces.

In Sec. II we present the (1,1) subfamily of HM spaces
and we make a classification of this subfamily based on the
eigenvalues A, and A4, of the [(11) (11)] Killing tensor.

In Sec. IIT we formulate the consequences of the exis-
tence of a perfect fiuid source for the (1,1) case in NP for-
malism.

In Secs. IV and V we solve the field equations and we
present the obtained solutions.

We shall perform our calculations using the NP formal-
ism'® and the complex vectorial formalism of Cahen,
Debever, and Defrise.!'™"?

Il. SPACES ADMITTING [(11) (11)] KILLING TENSORS

The Killing tensor has the following form in a local co-
ordinate system (x‘) (see Refs. 8,9, and 14):

K, =A,(n; + Linj) + Ay(m;m; + m;m;) , (1)
where the covariant vectors /; and n, are real and null and the
complex null vectors m; and m; are complex conjugate. The
functions A4, and A, are real.

The Killing tensor equation,

V(K;)=0, (2)
can be written in the NP notation:
k=o0o=A=v=0, (3)
dﬂ.l = (/11 +Az){(ﬁ— 7')19'3 + (m— 7_')194}3 4)
dl,= A+ AL {—(p+p)d ' + (1 +R)%%}, (5)

where ¢ ¢ (a = 1,2,3,4) are one-forms forming a covariant
null tetrad in which the metric has the form

ds* =2(3'92 - 3°3%), (6)
and in a local coordinate system (x°),

dl=n,dx' 9*=1dx

?P= —m;dx' 9= —m; dx".

The basis dual to ¢ ° is denoted by {X, } and the corre-
spondence with the NP operators is given by

)]

a ; d
X,=D=l'—, X,=A=9'—,
! ax' 2 g ox’ 8)
X3_6=m"—a—_, X4=3=m'—‘1.

ax’ ax’

The differential of a scalar function f is, in this nota-
tion,

df = (DF)3' + (Af)F2 + (8f)33 + (8f)9*.  (9)
The integrability conditions of (4) and (5) are simply
d’A,=d?41,=0. (10)

In the NP formalism, conditions (10) can be written

as®1

1446 J. Math. Phys., Vol. 29, No. 6, June 1988

T =17, (11a)
PR =pi » (11b)
DF—n)=@+p)(7T—7)
+(e—E+p)(F~1), (11c)
AM7—7T)= —(u+p)(FT—1)
+(y—y+m)(F—1), (11d)
Sp+p)=(p+p)@a+B—7)
—(P+p) T —~1), (1le)
Sp+p)=—(@p+p@+p—m7
—(u—m(T—-7, (11f)
S(r—7)—6(mr—1)=(@—-P)(T—71)
—(@—B)(F—1), (11g)
Du+m +App+p) =p+p)(r+7)
—(u+HA)(e+8& . (1lh)

The canonical form of the [ (11) (11)] Killing tensor is
conserved under the transformation

I'=e, (12a)
n' =e" °n, (12b)
m' = e®m, (12¢)

where n, I, m, and m are the four null vectors forming the.
covariant null tetrad (6). Relations (11a) and (11b) sug-
gest that we choose our tetrad, imposing the conditions

p=fp, w=r, (13)
where f= + 1 (we can also make 7= — 7 without any
change in the results). Imposing 7 = 7, we have that 7 =0
implies 7 = O which is in agreement with (11a), but z =0
does not necessarily imply p = 0 as we can see from (11b).
Thus the condition u = fp does not cover all cases and we
have to consider also u = 0, p5#0:

,u'=f)b7é0’ 77':7" (14)

n=0, p#0, w=r (15)

Before we present the metrical forms for the (1,1) sub-
family of HM spaces, we have to mention an important
theorem of HM.®

Theorem: The null vectors / and 7 are shear-free geode-
sic and are therefore principal null vectors of the Weyl ten-
sor.

The proof of this theorem is based on relations (3).

Equations (3)—(5) and (11), combined with the NP
equations (14), permit us to obtain the following forms for
the metric."

(ia) A, and A, are not constants, g =fp#0, 7=,
(p—p) (7 +7)5#0,

2 2 E2 2

HZ
— ——_ (dt + Bdz)?
B A)2( + B dz)
(¥, dy)* (4, dx)? ]
- — . 1
d 4G? 4F? 1
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(ib) 4, and A, are not constants, u =0, p#0, 7 =1,
(p —p)(T+7)#0,

ds2=a2{ 2("; -(-Bf—A)dy(dHA dz)
2
—TB—Ij—;_)E (dt+de)2———(¢;::) ] (17)
where
V=244, L=9¢(x), =90,
A=A(xz1), H=H(xzt), B=B(yzt),
E=E@yzt), G=G(y), F=F(x), f=+1

The unknown functions 4, H, B, and E of both metrics
have to also satisfy the following two differential equations
on ¢ and 25

AGE o4 _4 3B-A)

E ot at B4 at
_19E__1 9B-4) (18)
E oz B—-A4 odz

BOH 3B__B _3B—A)

H ot at B-—-4 at
-1 B-4) (19)
B—4 dz

These differential equations have been integrated by
HM?® and in a different way by the present author!® with the
same results. Metrics (16) and (17) belong to the (1,1)
subfamily of HM spaces.

Metric (16) does not admit, in general, any isometry
group. Hauser and Malhiot have proved® that a sufficient
condition for the existence of a two-parameter, invertible
Abelian group with the generators 3@ /df and 9 /3z is

Rij(vi/ll)(vj/lz) =0. (20)

Condition (20) can be written in the NP formalism as
follows:

RIVAN(ViA,) = — 12f(4, + 4,0 (p +p)
X[ A o1 — b10) + $21 — 121
=0, 2n

and if we replace the Ricci traceless tensor components by
their expressions obtained by the NP equations we have the
equivalent relation,

RIY(V,4,)(V;4,)

= — 12f(A; + )’ (p +p) (T — 1) (pT — pT) =0.
(22)

Then, condition (20) reduces to

Sdor — $10) + P21 — o= 6f(ﬁ7' —-p7) =0,

where the assumption that A, and A, are not constants,
(p + p) (7 — 7) #0, has been made.

Relation (23) is the necessary and sufficient condition
for the separability of the Schrédinger equation.®'*

We have to remark that, by imposing condition (20),
Hauser and Malhiot exclude a class of spaces, namely, those
spaces which admit the two-parameter invertible Abelian

(23)
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group and are not Schrodinger separable [Carter’s metric
(77) without condition (79)]. For this reason we have
searched and found the sufficient and necessary condition
for the existence of the above-mentioned group,'* a condi-
tion that does not imply the separability of the Schrodinger
equation,

f¢01 =¢21 . (24)
The group’s orbits may be timelike ( /= 1) or spacelike
(f= — 1) and in the case of electrovac field equations, met-

ric (16) reduces to Carter’s metric [4].

Metric (17) also does not admit, in general, any group
of motion and it belongs to the (1,1) subfamily of HM
spaces.® The necessary and sufficient condition for the exis-
tence of a two-parameter Abelian group is'*

$2:=0, (25)
$o1 — b10=3(pT —pT) . (26)
In this case the group is noninvertible but orthogonally
transitive with null orbits and the generators 8 /dt and d /3dz.
In the presence of a nonsingular electromagnetic field, met-
ric (17) reduces to a metric found by Leroy'® and Debever

and McLenhaghan."’
(ii) A, = const, A,#const, it = fp#0, =17, (p —p)

X (1 +7) #0,
2 2
df:f(T%?(dt+Adz)2—QzagH?4—)—2
X (dt + Bdz)> — fR*dy* — Q*T?dx*,  (27)
where
Q2=A,+4, A, =const, 4,=9¢(p),
A=A(xzt), H=H(xzt), B=B(yzt),
E=E(yzt), R=R(y), I'=I(x), f=+1

(iii) Here A,s#const, A, =const, u = fp#0, 7=7,
(p—pP)(r+7)#0,
E? H?
s =fQ* — — . R
s (B — A)? (B— A)?

X (dt + Bdz)? — fQA® dy? — S?dx?,

(dt + A dz)? —

(28)
where
Q=A,+4, A, =4¢(x), A,=const,
A=A(xzt), H=H(xzzt), B=B(azt),
E=E(yzt), A=Ay), S=Sx), f=+1.

Functions 4, H, B, and E have to satisfy the differential
equations [Eqgs. (18) and (19)] for both cases. These met-
rics do not admit, in general, any group of motion, but, under
certain conditions on the Weyl and the traceless Ricci ten-
sors, they admit a two-parameter (at least) invertible Abe-
lian isometry group, with the generators d/d¢ and d /dz
whose orbits are timelike ( f= 1) or spacelike ( f= — 1)."®
In the case of electovac field equations, metrics (27) and
(28) reduce to [B( — )] and [B( + )] Carter spaces, re-
spectively.

In Secs. III-V we are going to consider metric (16)
when /= 1, and metrics (27) and (28) whenf= + linthe
presence of a perfect fluid source. We have neglected to con-
sider metric (17) because it does not admit a perfect fluid
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energy-momentum tensor.'® Also we have not examined
metric (16) when f= — 1 because the equations are very
complicated and we hope to present a solution for f= — 1as
well as for the rest of the HM subfamilies in the presence of a
perfect fluid source.

lIl. METRICS (16),(27), AND (28) IN THE PRESENCE OF A
PERFECT FLUID SOURCE

We consider the Einstein equations with a perfect fluid
energy-momentum tensor:

R; —\Rg; + Ag; = (e + p)u,u; — pg;, (29)

where A is the cosmological constant, e is the rest energy
density, p is the fluid pressure, u is the velocity field of the
fluid, and

u, =kn; + k,l; — k;m; — kym; . (30)
Here, k,,k, are real and k;,k, complex functions of the co-
ordinates

k3=1—‘4=¢71+i¢72; (31)
also,

uu' =1k ik, — kky=1.

We assume that the energy conditions are satisfied:
e+p>0. (32)

The Einstein equations (29) give the following expres-
sions for the components of the traceless Ricci tensor in the
NP notation:

$oo=14(e + ki, dn=1(e+p)k;,
2 =}(e+p)k3, dro=4(e+p)ki,
bor = Y(e+p)kiks, &y =1(e+plksk,,
$r0= %(e +p)kiky, b= i(e + pYkoks,
¢ =Le+p)kik, + ksky), A—IR=1(e—3p).
The NP equations and the relations between spin coeffi-
cients permit us to distinguish two cases for metrics (16),

(27), and (28), which are dependent on whether f= 1 or
f= — 11418

(a) f=1, one timelike Killing field and one spacelike,

e>0,

(33)

ki=k;, ki=ks=@, k% —¢’% =14
boo = b =L(e + p)k T,
P02 =d=1Le+ppi,

$or = ¢ = §(e + Py, (34)
20,1 = oo + b =4(e +p) (kT + @}),
A—1R=1(e—13p),

Boo — P02>0, Pp>0, ¢p>0.

(b) f= — 1, both Killing vectors are spacelike,
ki=ky ky= —k,=ip, k% —‘P% =1,

$oo = 22 = (e +pki,

bor = 0= — (e +p)et,

$or = — ¢ = (e + Pk, (35)

2¢11=¢oo—¢02=%(e+l’)(k% +¢7§),
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A—R/4=1(e—3p),

$oo + 02>0, Hpo>0, Pp2<0.

We note that in case (a) the HJ and Schrodinger equa-
tions are separable while in case (b) only HJ is separable.

If f= — 1 and ¢,,#0 then the Schrédinger equation is
not separable for metrics (16), (27), and (28).'*!® We do
not consider here non-Schrodinger separable spaces.

Now we can state the following theorem.'*'®

Theorem I: The (1,1) subfamily of HM spaces in the
presence of a perfect fluid source always admits a two-pa-
rameter (at least) Abelian invertible isometry group with
d/dt and 9 /9z as generators, and whose orbits may be time-
like ( f=1) or spacelike ( f= — 1).

The proof of this theorem is based on the remark that
relations (34) and (35), which express the perfect fluid
source presence for metrics (16), (27) and (28), satisfy the
necessary and sufficient conditions of the existence of the G,
group. As an example for metric (16) we have, from (34)
and (35),

¢01=¢21, f=1 ¢01="‘¢21’ f= -1

Clearly these relations are the necessary and sufficient
conditions for the existence of the group for the same metric
[relation (24)].

IV. INTEGRATION OF FIELD EQUATIONS FOR
METRICS (16) AND (27)

The fact that / and n are principal null vectors of the
Weyl tensor leads us to distinguish two cases for the four-
velocity field of the perfect fluid (see Wainwright!®),

u[i77jlk 170,
unl, ,=0.

(36)
37

Condition (36) implies that #; does not lie on the space
spanned by / and » while condition (37) implies that it does
lie on the above mentioned two-space.

For metric (16) we can state a theorem.

Theorem II: The only perfect fluid solution of Einstein’s
equations for the (1,1) subfamily of HM spaces, when A,
and A, are not constants and f= 1, is the Wahlquist solu-
tion,'420

The metric takes the following form?°:

2

ds* = lei- o [t 78 (0 =]
HZ
- ?:-7 [dt + rd(x} + yH)dz]?
dx? d
— G+ [H2(1 T e TEQ szyz)] ’
where (38)
EX(p) =1+

+yly— k7M1= k) sin T (k) 1gT !,
H(x)=1—x

—x[x—k7'(1 + k%) Y%inh~ '(kx)]1g !,
e 0, x4, k, and g are constants, and
u; = [(2)'°721(E?* — H){E(n; + 1)) + H(im; +m))} .
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Here, u is the fluid four-velocity and belongs to the fam-
ily obeying relation (36). Also u is nonexpanding with zero
acceleration and shear tensor but with a nonzero two-
form.? There is no solution with A, and A, nonconstant and
JS=1and (37) satisfied.

For metric (27) the obtained solutions belong to the
(37) family and we have

ds* = E*(y)[dt + 2bx dz]?

_Q B"’(‘ ~+ 5 (x)dzz] R2x)dy?  (39)
when f= 1, and
ds’ =dt? — E*(t)[dy + 2bx dz]?
_92[ d’(‘ -+ (x)dzzl (40)
whenf= — 1.

In metric (40) we put y = 7, £ = $ and we have dropped
the caret, the Killing vectors being in this case d /dyand d /dz
(spacelike).

For metrics (39) and (40),

$o1=01=0, B>’(x)=cX*+¢, X+,

The field equations are solved for special cases:

E=R=1. (39

These are the locally rotationally symmetric (LRS) so-
lutions of type I found by Ellis.>' Between them we mention
the Godel universe corresponding to 3 = 1:

b=0,
This is the Schwarzschild interior solution.

Metric (41) is the LRS solution of type III'®?! and the
field equations have been solved for the special cases

e = const. (39")

L=Q, (40")
which are the Friedman solutions,?! and
b=0, (40")

which are the Kantowski—Sachs solutions.??

V. INTEGRATION OF FIELD EQUATIONS FOR METRIC
(28)

For this case, the expressions for the traceless Ricci ten-
sor and the energy conditions imply that the metric takes the
following form:

ds* =fQ*E*(p) [A(x)dt — dz]*> — H*(x)dt?
2 x2
_fE?m Y= Hi(x) ’ *D

The only possible cases are

u il #0, f=1, (42)

unly, =0, f= +1. (43)
When (42) holds, then,

u,=k(n,+14)—@,(m +m,). (44)
The integration of the field equations yields

E*(y) =asin( £ aoy +a3) +a,/a;, (45)

where a = (a? — 2 a2 a3)/ay, a,, a,, and a, are constants;

1449 J. Math. Phys., Vol. 29, No. 6, June 1988

Q%(x) =exp[byx + b,], (46)

H?(x) = — (a,/bj)expl — (box + b))] + b, + b;,
(47)

A(x) = F (a/b3)expl — (box + b)) + Co,  (48)

where b, b,, b,, b,, ¢, are constants; and
1/2
k=2 Aa0E , (49)
2 [16E%a} — H?b,0?]'?
(2)1/2 bOHE
= , 50
T 6B — B0 0
e+ 3p=1[ —44 + 2byb,], (51)

where 4 = cosmological constant.

This solution is a generalization of Kramer’s solution,?
which is obtained by making @, =0, A = 0, and adjusting
the remaining parameters.

This same metric has also been found by Kramer inde-
pendently under different assumptions® (the vanishing of
the Simon tensor).

The NP coefficients obey the following relations:

p=p, €=7, a=4,
k=v=0c=A=p+p=r+T=a+a=0.

T=r,

(52)
(53)

The fluid four-velocity is nonexpanding and is shear-
free, its acceleration and the rotation vector are orthogonal
to the group orbits. The solution is of Petrov type D.

The Abelian group generated by d /dt and 3 /Jz is the
maximal group of motion.

The fonesponding vacuum case (e = p = Q) is a sub-
case of [B( + )] spaces of Carter. Obviously then, this solu-
tion cannot be matched to the Kerr solution, which belongs
to the [4] family of Carter’s spaces, but it could be matched
to the {B( + )] spaces.

When (43) holds, we obtain, for f= 1,

ds’ = x*[dt — (a — bx~3)dz]?

— H*(x)dzZ* — x*dy? — [dx*/H*(x)], (54)
where
H%(x) =cx,+cx '+ (b2/2)x— %, (55)
The pressure and the rest energy density are
=3°x"%+3c,—4, (56)
e—'5b2 6 _3¢,+ A4, (57)
where a, b, ¢, and c, are constants.
The equation of state is
e — 5p = const. (58)

The metric (54) admits a three-parameter Abelian
group generated by the vectors d /dt, d /dy, and d /0z.

The corresponding vacuum metric (e = p = 0) also be-
longs to the [B( + )] Carter spaces.

If we put a = 0, and make some variables changes, we
obtain a special case of the stationary cylindrically symmet-
ric perfect fluid solution with rigid rotation found by Kra-
sinski.?

For spacelike orbits ( f= — 1) we obtain
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ds®* = x*dt? — x*[dy + (a — bx3)dz]?
— H*(x)dz*> — dx*/H*(x), (59)

where we have puty = t,t = $, and have dropped the caret in
(41). We have

H*(x)=cx+ecx—bx~*, (60)
p=3#x"°%+3c,— 1, (61)
e=4b’x"°—3c,+ 4. (62)

The fluid’s four-velocity is nonexpanding, shear-free,
and nonrotating but it has a nonzero acceleration. Metrics
(54) and (59) are of Petrov type I and the Killing tensor is,
for both of them,

K, =x*nl +1n)—k%,;.

Metric (59) could represent a cosmological model but it
does not depend on the time coordinate and, consequently, it
is without physical interest.

This paper makes a generalization of Bonanos’ results’
by finding metric (41), which, although it belongs to the
family of spaces examined by him, he did not find since he
considered only metrics with u(;n,;l, | = 0 (for this classifi-
cation see also Wainwright'®). Another kind of generaliza-
tion of Bonanos’ results is coming from the fact that we have
also found spaces with spacelike group orbits (with both
Killing vectors spacelike). In order to complete this last kind
of generalization, we have to examine the Schrédinger non-
separable spaces, an assumption that in the case of a perfect
fluid imposes f = — 1 (space-like orbits) and ¢, %0. It will
be interesting then to search for spaces that admit the two-
parameter invertible Abelian group as the maximal group of
motion because it could be used in the study of colliding
waves.”®?’
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A possible direction can also be the study of spaces with
(p — p) (7 + 7) = Oin the presence of a perfect fluid or with
another matter tensor in order to answer the problem posed
by Hauser and Malhiot, that being if there is any physically
plausible matter tensor permitted by the existence of a
[(11) (11)] Killing tensor without any other symmetry.
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A review is given of the perfect fluid solutions which can be constructed by conformal
transformations of nonflat vacuum solutions of Einstein’s field equations. In addition a proof is
given that (a) under physically reasonable restrictions all solutions for which the gradient of
the scalar field is orthogonal to the fluid velocity and (b) all solutions sharing with the
corresponding vacuum solution a symmetry group of dimension n3>2 are necessarily shear- or

vorticity-free and hence are explicitly known.

I. INTRODUCTION AND REVIEW OF KNOWN RESULTS

Exact solutions for inhomogeneous perfect fluid solu-
tions of Einstein’s ficld equations are important for a better
understanding of several aspects of cosmology and astro-
physics. Only relatively few such models are known, and
very often restrictions of a purely geometrical nature are
used to construct new classes of solutions. In view of the
successful construction of all conformally flat perfect
fluids,' one can wonder whether one could take, more gener-
ally, one of the vacuum models as a “seed solution” and
conformally transform it to a perfect fluid solution. Some
simple questions one would like to see answered are then, for
example, the following.

(a) Can the Schwarzschild solution be transformed by
&(r,t) to yield an expanding fluid sphere?

(b) Can the stationary axisymmetric vacuum models be
transformed by ¢(p,z) to rigidly or differentially rotating
perfect fluids?

(c) Can spatially homogeneous cosmological vacuum
models be transformed by ¢(¢) to spatially homogeneous
perfect fluids?

(d) Can arbitrary vacuum solutions always be trans-
formed into perfect fluid solutions by a suitable choice of ¢?
So far, the investigation of these—and related—questions
has resulted in the following conclusions®™: A necessary and
sufficient condition in order that the metric g, of a perfect
fluid  model [with  energy-momentum  tensor
(w+ p)u,u, + pg., ] should be conformally related to a
vacuum metric &,, = e*®g,, is the existence of a solution ¢
of

¢a;b - ¢,a¢,b + %gab¢,e¢’e = [(w +p)/2]uaub + %wgab .
(1.1)

One may suppose w + p#0, as otherwise’ g, is the de Sitter
or anti-de Sitter metric or a vacuum pp wave.

When V¢ is aligned with the fluid velocity u, the result-
ing space-times are conformally flat, and are just the FRW
models.* When the fluid is shear-free and V¢ is orthogonal to
u, the resulting models are locally rotationally symmetric.
They are either rotating class I or nonrotating class IIc solu-
tions in Stewart and Ellis’ classification® and have a (non-y-
law) equation of state p = p(w). When the fluid is shear-free
and V¢ is not orthogonal to u, the models are conformally
flat. They are either the expanding Stephani universes or
generalizations of the interior Schwarzschild solution.'
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When none of the previous conditions hold and when
the fluid is vorticity-free with V¢ orthogonal to u, the only
solution* is a nonstatic model admitting a three-dimensional
isometry group of Bianchi type VI, acting on timelike hyper-
surfaces. The fluid has an equation of state p = p(w). When
V4 is not orthogonal to u, solutions® are (pseudo-) spherical-
ly or plane symmetric [and hence the answer to question (a)
above is affirmative], but an equation of state does not exist.
It also has been shown that the answer to question (d) is
negative: Vacuum solutions of Petrov type N cannot be con-
formally transformed to perfect fluid solutions.

Questions (b) and (c), and related ones, in which one
assumes that space-times (M,g) and (M,g) share some iso-
metry group G, (n>2), have remained unanswered so far.
In Sec. IT it will be shown that, when V¢ is not orthogonal to
u, the resulting perfect fluid models are always vorticity-free.
When V¢ is orthogonal to u no immediate answer can be
given. However, when one assumes the existence of an equa-
tion of state, the orthogonal case can be completely solved
without making any assumptions about the existence of an
isometry group: In Sec. III, a proof is given that all such
solutions are shear- or vorticity-free and hence belong to the
known cases discussed above. As a consequence the answer
to questions (b) and (c) is negative, too.

In contrast with the investigation of the general cases,
where the Newman-Penrose formalism was used, the situa-
tions where V¢ is orthogonal to u, or where Killing vectors
are present, are most easily discussed within the orthonor-
mal tetrad formalism,’ by choosing a frame such that e, = u
and d,¢ = d;¢ = 0. With F = d,¢ and G = dy¢ (and hence
F #0, as a consequence of the first result mentioned above)
one obtains for the frame components of (1.1) the following:

280G—2F1'4,—F2—Gz=§(2w+3p), (1.2)
d,G=F(6,+G), (1.3)
3,G=F(o,, + ws), (1.4)
095G =F(oy; — 0,), (1.5)
231F—-2G0,—F2—G2=§w, (1.6)
dF = G(i, + F) (1.7)
LF=G(o), + o), (1.8)
HF=G(o,;—w,), (1.9)
and
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—2G6, —2F(ny +a,)) + F* - G*=lw, (1.10)
—2GO,+2F(ny —a,)) + F*—G*=1w, (L.11)
Giu, — FQ, =0, (1.12)
Gi, + FQ, =0, (1.13)
G(o,, — @) + F(n;3—a,) =0, (1.14)
G(o;+ w,) — F(n; +a;3) =0, (1.15)
26w, — Fn,, =0, (1.16)
2G0oy; + F(ny; — nyp) =0 (1.17)

1. (M,ﬁ) AND (M.g) SHARING A GROUP OF ISOMETRIES
Gn>2

When one supposes that space-times (M,2) and (M,g)
admit at least a two-dimensional group G, of isometries,
with generators K and L, such that

Ex8=Ekg=£8=4£,8=0, 2.1)
then obviously also
£xd=%£06=0, (2.2)

i.e., the conformal transformation “preserves” the symme-
tries. Taking now the directional derivative of (2.2) along
V4, one obtains

(K4.),,¢" =0, (2.3)
or, with the aid of Killing’s equations,

K44 =0. (2.4)
Substitution of (1.1) in the latter equation results in

(K°u,)(¢,u") =0, (2.5)
whereas for L one obtains similarly

(Lu,)(6,u") =0. (2.6)

The case ¢ ,u® = 0 will be dealt with in Sec. III in its full
generality. So now assume ¢ , u® 0 (hence F and G #0),
such that, by (2.5) and (2.6), K and L are orthogonal to u:

Ku,=L%,=0. 2.7)
From Killing’s equations one also obtains then
Ké,=L%,=0, (2.8)

whereas (2.2) implies that K and L lie in the (e,,e;) plane.

First notice that G #0 always implies @, = 0: Indeed
(1.4), (1.5) and (1.8), (19) show that
9,(F*—G?)=08,(F*—G?>)=0 and hence that
[35,05]1(F* — G?) = 0. With the aid of (1.16) this can be
written as Go,(w + p) =0 or @, = 0. Unless the fluid is
vorticity-free, the frame can then be invariantly fixed by re-
quiring @, = 0. By (2.2) and (2.7) the operators d, and d;
will then yield identically O when applied to any invariantly
defined scalar.

In  particular one will have ,F=4d,F
= 3,G = 3,G = 0, as the scalar-field ¢ for a nonflat CRF
solution is uniquely defined up to a constant factor.® By

(1.4) one then has
2.9)

Oy = — W3,

such that (1.14) yields
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—2w0,G+ (3 —a,)F=0.
Acting now with [d,,d,] on F? — G? gives

— 203 0y(F*~G?) + (n,; —a,)3,(F*-G?) =0,

(2.11)
which, together with (2.10), shows that o,G(w + p) =0
and hence that @; = 0, a contradiction. As a consequence we
have shown that all CRF perfect fluids sharing at least a
group G, with their corresponding vacuum solution, are vor-
ticity-free provided V¢ is not orthogonal to u. Together with
the result of Sec. I11, one obtains that they are precisely given
by the classes of shear-free or vorticity-free solutions dis-
cussed in the Introduction, provided the fluids have an equa-
tion of state p = p(w).

(2.10)

IIl. CRF PERFECT FLUIDS WITH Vé ORTHOGONAL
TOu

When ¢ ,u“ =0 (i.e., G = 0) strong restrictions on the
rotation coeflicients can be obtained, provided one assumes
the existence of an equation of state p = p(w). From (1.2)—
(1.17) one immediately obtains the following relations:

O\ F=4iF*—w/6, (3.1)
OF =0,F=38,F=0, (3.2)
and
Oi=n=n;3=0,=03=0, op= —w;,
(3.3)
Oi3=0y Rp= —a3 Ni3=0a; N33=Hy,
with p and w determined by
w=3F?—-6Fa,, (3.4)
p= —3F*+4Fa, — 2Fu, . (3.5)

The relevant Jacobi equations and field equations are given
in the Appendix.
Acting now with the commutators [d,,d,1, [d,,d,], and

[35,8,] on Fyields with the aid of (3.1) and (3.2):
w=0d,w=38;w=0. (3.6)

When w + p#0 this implies that the resulting fluids are non-
expanding:

63 = — 92 . (3.7)
Also, when p = p(w) one has
#,=u,=0, (3.8)

whereas (3.4) and (3.5) show that #, and q, satisfy relations
similar to (3.2) or (3.6).

Consider first the case @, = w; = 0: Under a rotation in
the (e,e;) plane, e; =cosae, — sin ce;, e; =sinae,
+ cos ae,, one has

(3.9)

and hence (e,) can be chosen to be a shear eigenframe.
From the Jacobi equations (A2) and (A3) one then obtains
n,,0, = 0, which implies that solutions are either shear-free
(and hence are explicitly known?), or that #n,, =0 and
6,#0. In the latter case, however, the field equation (A3J)
implies Q, = 0, which, after substitution in (A2), shows
that w,(#, +a,) =0. As &, +a, =0 would imply with

g5, = sin 2a6, + cos 2a0,,,
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(3.4) and (3.5) thatw + p = 0,one has @, = 0, i.e., the only
possible solution is the temporally homogeneous vorticity-
free solution discussed earlier.*

Assuming henceforth that w? + w3} #0, the frame can
be invariantly fixed by choosing

w,=0, w;7#0. (3.10)
Then (A1) implies s,; = w; — Q,, and, for the remaining
variables F, #,, a,, a,, a3, ©,, @3, N,,, &,, and Q,, Jacobi
equations and field equations can be combined to yield the
following:

O F=0,F=03,F=0, (3.11)
OF=F(F—ay), (3.12)
Ootty =i, =11, =0, (3.13)
dyis, = — i} +2a,u,+3F(a,—F—14,) ’
+2(6% + Q] —2Q,0)), (3.14)
doa, =da,=da, =0, (3.15)

da, = (a, — F)(a, + i) + 03} + 0} — 20,0,
(3.16)
dyw, =0, (3.17)
Oy = — 6,0, (3.18)
0,05 = 2w;a,, (3.19)
Aoy, = 4w, (i) + ay) + 2nx,0, + 8wsa;, (3.20)
308, = 29, (0, — Q) , (3.21)
0,0, = 2ny,(w, ~ Q) — 1,0, — 4wsa,, (3.22)
3,0, =26,Q,, (3.23)

3\, =2(it; + a))o, + 2n,,0, + dwsa, — 1,
(3.24)

and
0w, + w5 = w,(it, + 2a,) + 2w,a;, (3.25)
3,00, — 20,a; — 26,a; — 40,0, =0, (3.26)
20y, + 3,0, = 4a;(20, — 1))

—4(4+a))w; + 66,a, . (3.27)

The essential step is now the careful calculation of some
of the resulting integrability conditions. Acting first with
[34,0,] on ), one obtains with the aid of (3.11)-(3.24) and
(A6):
20w (ay + ) + asw;5]

— 0,[8,Q, — 2 3,a, — 4Q,a,] =0, (3.28)

which, with (3.26), results in 6,w,(a, + #,) =0 or, as
a, +u, =0wouldimply w + p =0,

0,0, =0. (3.29)
Two more integrability conditions are required: acting with

[30,9,) on w; and with [d,,,d,] on 6, yields, by (A6), (A7),
(3.26), and (3.27):

Q, w3 = 2w;[ 2w, — Q,)a; + 20,a, — w,(1, +a,)]
(3.30)

and
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0, 0,0, =40;[(Q, — w\)a; + (i, + a,)w;]
+ 207 (a, + ;) — Q0,it, — 46,044, .
(3.31)

Together with (3.28) the latter two equations result in the
algebraic restriction

[0} + (0, — )] (@ +a) =0, (3.32)
or, as #; + a, = 0 would imply w + p =0,
o} +o(w, —Q,)=0. (3.33)

It is clear now that the case 6,0 admits no solutions: then,
in fact, by (3.29), v, = 0 and hence, by (3.33), w, = 0. On
the other hand, when 6,=0, (3.21) implies that
Q(w; — Q) =0 and hence 2, =0 [0, — Q, =0 would
give us by (3.33) w,; = 0]. Then, however, (3.33) leads to
@3 + o} = 0, which is in contradiction with our assumption
w3 7#0.

Herewith we have obtained the result that all CRF per-
fect fluids having an equation of state p = p(w) and having
V¢ orthogonal to the fluid velocity u are either shear-free or
vorticity-free, and hence belong to explicitly known classes
of solutions.**
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APPENDIX: EQUATIONS USED IN SEC. Ill

The Jacobi equations relevant for the first part of Sec.
III are the following:

I — 03(y — 0, + 033) — 6,0, =0, (Al)
Oohzy — 91(023 + Q)

+ 0w, — 03 — i, (033 + @, + 20,)

— 20,4, — 2m,a, — 6wsa; — 2n,,60, =0, (A2)
Ogtzz + 9,(03 — Q)

— 0,0, + G305 + U, (093 — Q) — 2w,)

—2w,a, — 2wya; — 6wya, + 2n,,0, =0, (A3)
0,03 — Gyw, — 2w,a, + 2wa; =0, (A4)
together with the (23) field equation

8023 + 26,00, =0. (A5)

The commutator relations relevant for the system
(3.13)-(3.31) are

[30,0,] =1, 3y + 2w, 3,
and
[000,] = — 6,3, +2Q,3;.

(A6)

(A7)
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The relationship between global anomalies of quantum theory and the topology of spaces of
real Fredholm operators is shown. The spectral properties of such operators and how they are
seen in examples of global anomalies on both compact and noncompact space-times are

discussed.

I. INTRODUCTION

It has become clear that many of the anomalies of quan-
tum field theory are due to the nontrivial topology of various
moduli spaces, such as the space of connections on a fixed
vector bundle modulo the group of gauge transformations.'
More abstractly, one can view the moduli space as parame-
trizing a family of Dirac-type operators, and so one is using
the particular family of operators in order to view the space
F of all complex Fredholm operators.

If one captures a nontrivial cohomology class of # by
means of a family of operators then this may prevent one
from defining the renormalized determinant of the operators
in a nice way. To be more precise, in free fermionic path
integrals there are two types of determinants which arise. In
the Lagrangian the relevant differential operator (the in-
verse of the covariance) may either map one function space
to itself, or to another.

In the second case the determinant can be complex and
its anomalous symmetry properties reflect the topology of
% . In the first case the determinant is always real. One can
view the underlying function space as a real vector space and
because fermion fields anticommute, the differential opera-
tor must be real and skew adjoint. It turns out that the space
F R of real skew-adjoint Fredholm operators has a very
rich topology” and we wish to show that much of this topol-
ogy can be seen in quantum field theories (QFT’s). This is
manifested both in the existence of zero eigenvalues for
Dirac-type operators and in the occurrence of global anoma-
lies, the original example of which is Witten’s SU(2) anoma-
ly.?

When one rotates fermions from Minkowski space to
Euclidean space, one may seem to lose special properties,
such as the existence of Majorana or Weyl representations.
In Euclidean space, these special Minkowski properties are
seen in the existence of operators which anticommute with
the Euclidean Dirac operator. In general, one can consider
the spaces % , R which consist of the elements of % R
which anticommute with a Clifford algebra of operators.
These spaces have a topology which is different but related to
that of % ,R. We also give examples of how this refined
structure is seen in QFT’s.

The structure of this paper is as follows. In Sec. I, we
review the topology of some spaces of Fredholm operators.
In Sec. III, we discuss how this topology is seen in terms of
the spectra of such operators. In Sec. IV, we give examples of
QFT’s on compact space-times which see the topology of the
F « R’s. These examples are more-or-less known, but we
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hope that it may help to see them in a unified way, and that
the derivations of the indices may be new. In Sec. V, we give
some new examples of global anomalies on noncompact
space-times. These examples are analogs of the Gell-Mann-
Lévy o model* and show that the existence of a global anom-
aly does not necessarily ruin consistency of a QFT. In Sec.
VI, we sketch how the anomalies involving real operators
can be understood in terms of analogs of the determinant line
bundle of Quillen.’
Notation: {o”’ }_ | will denote the Pauli matrices:

N i N}

{v%4}3_, will denote the ( — + + + ) real Dirac matri-
ces: Yy =Ioir, yy=Ier, p,=o0c'e7r, and
yu =0 87, and y;, will denote 15,7 Va Vs Satisfying
(ru)= =1 (n3))"= —93. {yi}_, will denote
(+ + + +) complex Dirac matrices satisfying
VeV + vy’ = 26", and y;; will denote Y% yLv% 7%, satis-
fying (2)? = I, (v%)' = 7%. A handy reference for Clifford
algebra structures is Ref. 6.

il. REVIEW OF TOPOLOGY OF OPERATOR SPACES

Let H'be acomplex Hilbert space and consider the space
of Fredholm operators

F ={TeB(#°): dimker T< o and dimker T* < w0 }.

(If one wishes to consider unbounded Fredholm operators
one can generally modify the function spaces to reduce the
bounded case.) Put.¥ , = {Te#: T* = — Tand the essen-
tial spectrum of ;T intersects both components of R — {0}}.
One has that # is a classifying space for complex X theory,
i.e., for all compact topological spaces X, the Grothendieck
group K(X) of virtual vector bundles over X satisfies
K(X)=[X,%], where [X,7] denotes the homotopy
classes of maps from X to.#.” The relationship is as follows:
over % one has the virtual vector bundle Index with fiber
[Ker T]-[Coker T] over an element 7% . Then any ele-
ment of K(X) can be written as ¢* Index for some ¢e[ X,.7 ].
As a consequence, . has the homotopy type of ZX BU( w0 )
where the Z factor refers to the ordinary index of an operator
and BU( 0 ) is the classifying space for the group U( o0 ). By
Bott periodicity, 7, , , (%) = 7 (# ) and these homotopy
groups 7, (.7 ) =K (S') are listed in Table I.

Similarly, .%, is a classifying space for K ~', ie,
K '(X)=[X,7,]. Then 7, , ,(F,) = m (F,) and the
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TABLE I. Homotopy groups of complex operator spaces.

TABLE II. Homotopy groups of real operator spaces.

F F, FR FR F, FR FR FR FR FR
7o zZ 0 L Z, 7, 0 Z 0 0 0
™ 0 VA 2 Z, 0 A 0 0 0 zZ

™ Z 0 Z 0 0 0 Z Z,
7 0 Z 0 0 0 z z, A
T, Z 0 0 0 z Z, A 0
m 0 0 0 zZ A z, 0 z
homotopy group are listed in Table 1. The relationship T, 0 0 Z Z, Z, 0 z 0
between .%¥ and .Z , can be seen as a suspension.® Let 0% m 0 z Z Z, 0 [/ 0 0

denote the pathsin & from I to — I. Then there is a map ¢:
F - OF given by ¢(T) = {cos 7t + T'sin 7t: 0<t<1},
which can be shown to a homotopy equivalence. Similarly,
let J be an operator unitarily equivalent to (; _°;) and put

F,={TeF,: TJI+JT =0}

Let 0.5, denote the paths in .% | from J to — J. Then there
is a homotopy equivalence ¢,: ¥ ,-Q%, given by
#,(T) = {J cos mt + T'sin 7t, 0<t<1}. Because 7, is iso-
morphic to .%, one has ¥ ~% ,~0% ,~N2%, which
shows the Bott periodicity.

It is now easy to state the relationship between the axial
anomaly of QFT and the topology of % . Consider, for exam-
ple, the space .7 of connections on §* X SU(N), N> 2, and
the group ¥ of gauge transformations which are the identity
at a point o on S *. Then the determinant line bundle A™**
Index has first Chern class which is a nontrivial element of
H*(¥ ,R) = m,(%) ® R =R, and which is pulled back via
the Dirac operator to give a nontrivial element of H*(.<//
%,R) = H*(Q*(SU(N)),R) = R.! (More precisely, under
0. o - F, the pullback d* A™** Index is a ¥ -equivariant
line bundle over . which pushes forward to a line bundle on
/% .) To see this another way, fix 4,2 such that 4, _is
invertible. Put

% ={TeB(H): T — Iis compact and T is invertible}.

Then there is amap p: & —.% given by p(g) =8 1 '6,.4,.
Now % is homotopically equivalent to U( w0 ), or & |, and
p*H' (% R)—H'(% R)isnontrivial from R toR. This is
a precise form of the intuitive idea that the phase of the chiral
determinant changes by a nontrivial multiple of 27 when
going around a nontrivial loop in & . Finally, from the Ham-
iltonian viewpoint consider the analogous spaces for
S3%SU(N). The Dirac Hamiltonian d,: T'(S) -»T'(S) is
skew adjoint and gives amap o: &/ /¥ — .7 ,. The nontrivia-
lity of 0*H3(.¥ ,R)eH *(«/ /9 ,R) leads to a Hamiltonian
interpretation of the axial anomaly.®

Let us now consider the space & (R of real Fredholm
operators on a real Hilbert space 5’ . For a compact topo-
logical space X with involution 7, let KR(X) denote the
Grothendieck group of virtual complex vector bundles over
X with an antilinear involution covering 7.'° [If 7 is the iden-
tity then KR(X) = KO(X)]. One has KR(X) = [X,F (R].
It follows that ¥, R is homotopically equivalent to
ZXBO(w)and 7, , ¢(F oR) = 7, (F (R). The homotopy
groups are listed in Table II.

In order to get the higher KR functors, let C; denote the
real Clifford algebra generated by {e,}5_, with relations
ee; +ee = —25,, et = —e. Letp: C, >B(Hg) bea
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faithful * representation of C,.. Put
G, ={TeF,R: T= —T*, Tp(e,)
+p(e;)T=0 for 1<i<k —1}.

For k= -1 (mod4) put ¥, R=Y%,. For k= —1
(mod 4) there is a slight subtlety: put % , R = {Te¥ ,: the
essential spectrum of p(e;) - -p(e; _,)T intersects both
components of R — 0}. Then KR ~* (X) =[X,.% . R].?Asa
consequence, the homotopy groups are those listed in Table
IL. The various % , R ’s are again linked by suspension maps:
put %, _R={paths in ¥, _|R from p(e,_,) to
—p(ex_,)}. Then ¢: F  R—QF  _ R is given by

#(T) ={p(e,_,)cos 7t + Tsin 7z, 0<t<1}.

The various spaces # , R have simple interpretations.

k=1: % |R is the space of real skew-adjoint Fredholm
operators on H .

k=2: Because .# ,R consists of the elements of .% |R
which anticommute with (% g), they all have the form
(3 _%) with 4 and B real and skew adjoint. Then
(v,w) - (Av + Bw,Bv — Aw) and v+iw-(4 +iB)
(v — iw), showing that % ,R is the space of skew-adjoint
antilinear Fredholm operators on a complex Hilbert space.
Note that

\TrA4 B (V)_ Lot , ,
(W) (B —A) W = Re(v —iw)"(4 + iB) (v + iw),

showing that . ,R can also be thought of as skew-symmetric

Fredholm operators from a complex Hilbert space to its
complex conjugate. Finally, because

WG _D0)
W, — A \W,
=Re(v+ iw)7(4 + iB) (v + iw),

these operators arise when writing complex Berezin inte-
grals (i.e., Berezin integrals whose total integral is a complex
Pfaffian).

k=3: .7 4R consists of the underlying real Fredholm
operators coming from skew-adjoint operators on H g ® C?
of the form igy+cd'a,+ Pa,+o'a;  with
ay,a,,a,,a:eB(Hyg ), which satisfy the essential spectrum
property. This anticommutes with the operators p(e,) and
p(e;) given by p(e,)x = 0,X, p(e,)x = io,X: the complex
structure comes from p(e,)p(e,).

k=4: # ,R consists of Fredholm operators of the form
(_sr o) acting on (HgeX) e (Hgr®X), where
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BeB(H g ® 7)) commutes with the quaternions 5#°. The op-
erators p(e,), p(e,), and p(e;) are i @ 03, j® 03, and £ & 0.

k=>5: % sR consists of Fredholm operators of the form
(%&) acting on Hg ® (# &) where BeB(Hg ® 57) is
skew and commutes with #°. The operators p(e,), p(e,),
ples), and p(e,) are 1 ® ioy, I ®@ 03, j® 03, and k@ 03.

k=6: For MeM(2,5¢), let L(M) denote left multipli-
cation by M on 7 & 7 and for ge77, let R(g) denote right
multiplication by g on 7% ® 7. Then .% (R consists of Fred-
holm operators of the form B,R(j) + B,R(k) acting on
(Hg ® ) & (Hg ® 7°), with B, and B, being self-adjoint
operators in B(#’g). The operators p(e,),...,p(es) are
L(So)RWD, L(5H)RWD, L(5%s)RWD,
LS Y)YRM,andL (5 %) RG).

k=7: Because C,= M(8R), F R consists of
{p(e)) pleg) T: TeB(F g ), T* =T, Tis Fredholm and
the essential spectrum of T lies on both sides of R — {0}}.

k=38:Let J,,...,Jo denote a representation of the genera-
tors of Cg on R® and put € = J,,...,Js. Then # 4R consists of
Fredholm operators of the form (% _4) acting on
Hy o (R®oR®) with AcB(H g ) skew and BeB(H g ) self-
adjoint. The operators p(e,),...,o(e;) are J,® 0y,....Js ® 0,
and I ® io,. The Bott periodicity is seen in the fact that # 4R
is isomorphic to ¥ ,R.

lli. SPECTRAL PROPERTIES OF REAL INDEX THEORY

We will be interested in the 7, and 7, homotopy groups
of operator spaces. First, for the complex Fredholm opera-
tors 7, (¥ ) = Z shows that .# breaks into connected com-
ponents labeled by the index of an operator. That 7 (% ,)
equals Z can be seen using spectral flow. Given a smooth
map: S ' —.% |, we have that the spectrum of i® (¢>™*) is uni-
formly bounded away from zero as € variesin [0,1], with the
possible exception of a finite number of eigenvalues. Because
the spectrum for € = 1 is the same as that for € =0, the
generic circle of operators will have a finite number of eigen-
values which flow from negative to positive when going from
€ =0 to € = 1; this number defines the spectral flow F:
[S!,.# '] -Z. If the operators i®(e*™) are actually self-ad-
joint first-order elliptic differential operators acting on cross
sections of a vector bundle E over a compact manifold M,
one can compute F(®) by means of the eta invariant.'' Giv-
en such an operator H, define

p(H) =lim 3 A,|4,] "

50 fiZo

If H(e) is a one-parameter family of such operators then
n(H(€)) can have integer jumps as eigenvalues cross the ori-
gin, but (d /de)n(5°(€)) has a smooth extension which can
be computed in terms of local quantities. Then

1

0= 2F(®) +f 2 (0 () de (1)
o de

gives an effective way to compute F(&P). One can also com-
pute F as an index by means of a “‘desuspension.” Consider
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the operator D = d /de + i® (e*™) acting on cross sections
of the pullback of E to S!X M. Then F($) = Index D.!"
Similarly, for some Fredholm operators on a noncompact
complete manifold, one can define a generalized eta invar-
iant'? and the spectral flow is again given by (1); however,
the expression (d /de)n(H(€)) then depends both on local
quantities and on the behavior of H(¢€) at infinity.

For an operator Te# , R, one has that ker Tisa C, _,
module.” If it is not a C;, module then T represents a nontri-
vial element of 7,(F , R). Thus the connected components
of 7 , R are labeled as follows:

k=0:IndexT, k=1:dimker T (mod2),

k=2:idimker T (mod 2),

k = 4: } dim ker T = Index 4 B.

In order to see 7,(F ; R) spectrally, consider first the
case k = 1. Then one has a one-parameter family iT(¢) of
self-adjoint operators, each of which has spectrum symmet-
ric around the origin. As € ranges from 0 to 1 the spectral
flow of iT'(¢€) is zero because of the symmetry, but a finite
number of pairs of eigenvalues can be switched. This number
{(mod 2) then labels the class of 7,(% ,R) = Z, in which
T'(€) lies. [Because the switching can be seen by watching
what happens near the origin of the spectrum, the definition
makes sense even if the operators i7(e) have continuous
spectrum. }

For the case k = 3, let T(€) be a one-parameter family
in # ;R. Viewing T(¢) as a complex operator as in Sec. II,
one sees that if x is an eigenvector of iT'(e) with real eigenval-
ue A then ¢,X is also an eigenvector with an eigenvalue A.
Thus there is an action of the complex Clifford algebra C§
on the discrete eigenspaces of iT'(€) given by x—0,X and so
the eigenspaces have even complex dimension (one cannot
solve o,x =ax with aeC). The class of T(e) in
7, (F 3R) = Z is labeled by | of the spectral flow of T'(¢).

Finally, for k = 7 the operators are self-adjoint and
m,(F ;R) is labeled by the spectral flow.

For real first-order differential operators there is a de-
suspension which maps 7, (F  R) to mo(F .\ R). If T(€)
is a one-parameter family of operators in % ; R then formal-
ly (}9(‘6) 7)) isin F, . \R, as a differential operator on
S x M. However, there is a slight subtlety, since to obtain
the isomorphism between 7, (% , R) and 7y(F ; , R) one
must also twist the bundles over S'' by the Hopf bundle H,
the flat R bundle over S'' with holonomy — 1. To be more
precise, we state the following.

Proposition 1: Let T(€) be a circle of elliptic first-order

E
real differential operators acting on I'(E), with | being a
M

real vector bundle over a compact manifold M. Suppose that
each T(e) is in ¥ R. Let ®: S'XM-S' and P,:
S'' X M — M be the projection maps. Consider the first-order
operator D acting on I'(PTH @ (P}E & PFE)) given locally
by D= ( }3&, g ) - Then under the isomorphism
KR % (S KR ~%* *+Y(pt), the topological index of the
family 7(e) is mapped to the topological index of D.

Proof: Let T" denote the vertical directions in
T(S'XM),ie,T*" =S'X TM.Letnbeafixed element of
KR ~'(TS"). Consider the diagram
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“en a
KR ~X(T*") - KR ~¥(T*")® KR ~(TS') -KR ~*+*V(T(S'XM)) t-ind

t-ind
e

KR ~*+D(pt,)

B
KR ~*(S') - KR ~%(TS'")® KR "' (TS')-KR ~*+Y(TS") tind

where the maps are as follows: z-ind is the topological index "
which generally maps KR *(P X TX) to KR *(P), where P
and X are compact manifolds. 7*: KR *(S') - KR *(TS ) is
the map induced from the projection 7: TS ' - S !. a is multi-
plication in KR *(T(S'XM)) and B is multiplication in
KR *(TS"). The multiplicative property of #-ind ensures
that that diagram commutes. Thus the only problem is to
find 7 such that t-indoBo(7* @ %) is the identity map from
KR ~%(S') to KR ~—“*+ D (pt.). Itis easily checked that this
77 is the symbol of the operator d, acting on I'(H), which
proves the proposition. |

One can easily generalize the Proposition to the case of a
fibration over S''. In a special case, the element of 7, (% |R)
represented by a circle of real skew-adjoint operators can be
computed by means of spectral flow. Suppose that for all &*"*
eS!, T(e) commutes with a fixed JeB(Hpg) satisfying

J?>= —I,J*= —J. Then J provides a complex structure
on Hy and we can write T(€) as ( _42 45 ) . Over the
A+iB(e) O

complexes this is equivalent to (4 (A— ibye ) and for
each eigenvector xeH g @ Cof (4 + iB) (¢) with eigenvalue
iA, there is a corresponding eigenvector x of (4 — iB) (¢)
with eigenvalue — il. It follows that each eigenvalue il of
A + iB gives a pair (id, — id) of eigenvalues of T, and the
spectral flow of i(4 + iB) equals the number of eigenvalue
rearrangements of 7T(mod2). Thus the class in
7,(F |R) = Z, represented by T(¢€) is labeled by the spec-
tral flow of i(4 + iB)(€) (mod 2).

IV.QFT’s ON COMPACT SPACES

The topology of real operator spaces arises in two dis-
tinct ways in QFT. The first way uses the 7, invariant to
ensure zero eigenvalues for some differential operator 7. The
physical interpretation of such a zero eigenvalue depends on
whether the operator arises from a Lagrangian or a Hamilto-
nian. If T enters in a Euclidean fermionic Lagrangian in the
form (¥,7¥) then a zero eigenvalue can prevent tunnelling
between different “@ vacua.” '*'*> On the other hand, if T
gives the spatial Hamiltonian for a fermionic theory then
there are degenerate ground states arising from ker 7.

The second way uses the 7, invariant to label global
anomalies. This means that there may be an obstruction to
defining a renormalized determinant function for a family of
operators. If one is dealing with a circle of operators then it is
possible that when one attempts to define the the determi-
nant smoothly along the loop, the spectral properties of the
operator force the putative determinant to change sign when
going around the circle. (For a more precise interpretation,
see Sec. VL.)

Our examples all involve Dirac-type operators. Because
the Clifford algebra structure depends strongly on the di-
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mension of the manifold, we will list examples by dimension
and restrict to the case of perturbatively renormalizable field
theories, i.e., dim<4. Of course, there are mathematically
interested examples in all dimensions. In general, one has
that on a k-dimensional manifold, the real Dirac operator
(involving only the metric) lies in .% . R."

A. One dimension

Let M be an oriented Riemannian manifold with
7, (M) =0, let : S'— M be a smooth path in M, and let
(7,¥): S' - TM cover y. The Lagrangian for N =} super-
symmetric geodesic motion is

Lo =~ f (72 = (L.V,%)]dT,
S|

where the W fields are formally anticommuting. Upon doing
a formal integration over ¥ in the functional integral
fe b Dy DV, one is left with fe~ (/PIITAT
X (det'/? V,) D y. If one tries to define det'/? V., by a regu-
larized product of the positive eigenvalues of /V., then the
obstruction to a smooth definition is the possibility of an odd
number of eigenvalue rearrangements of iV, when going
around aloop of ¥’s, i.e., the possibility of amap S ' - [S ', M]
giving a nontrivial element of 77, (% |R). In this example one
can compute |det'/? V. | explicitly and see whether there is a
smooth definition of det'/? V., '® but one can also see this via
Proposition 1.

Proposition 2: There is a loop in Map (S ',M) whose im-
age is nontrivial in 7, (% ,R) iff M is not spin.

Proof: Let y: T? - M be aloop in Map(S ',M). Because
M is oriented, y*TM is an SO(N) bundle over T'2. Let 4 be
the pullback of the Riemannian connection on TM to y*TM.
LetSbetheflat Rbundleon 72 = § ! X .S ! with the holonomy
— 1 on the first S ! factor. By Proposition 1, the element of
(% ,R) given by ¥ is the same as the element of 7,(.% ,R)
given by (S, %%") acting on T(E),
E=(y*TMo y*TM) ¢ S. Because the index of D in
mo(F ,R) is a homotopy invariant, it only depends on the
topological class of the real vector bundle E. For n> 2 the
SO(n) bundles on T2 are classified by H?*(T?*Z,) = Z,,
which can be considered to be the element of 7, (SO (7)) used
in gluing the ends of S ' X I to construct a bundle over T2

Let ¥ denote a nontrivial R bundle over T,. Now y*TM
is classified as a real bundle by y*w,(M), where
w,(M)ed?(M,Z,) is the second Stiefel-Whitney class, and
so we can instead compute the index of D= %’. ~ g ') acting
on either T'((72XRY™M) g §) if y*w,(M) is trivial, or
C((T?XRIM-3 o V)eS) if y*w,(M) is nontrivial.
However, thisis computed tobe y*w, (M) [ T*]€Z,, the eval-
uation of ¥*w, (M) on T2. As one can pick up a nontrivial
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w,(M) by some mapping of T2, it follows that the index of
V. in7,(F R) is zero for all y: T? - Miff w,(M) =0, i.e.,
M is spin. One has the same story for n = 2. [

Under canonical quantization one sees that the Hamil-
tonian corresponding to L(,¥) is § P2,,'® which makes
sense iff M is spin. Thus in this case a global anomaly causes
nonexistence of the quantum theory.

B. Two dimensions

As one has Majorana-Weyl spinors in two-dimensional
Minkowski spaces, one can consider the fermionic Lagran-
gian L(¥) = f¥3, ¥, where d, maps S, to S_. The total
integral § ¢XY) PV is formally det'/? 3, which Wick ro-
tates to det'/2 3;. Now on a compact two-dimensional Rie-
mannian spin manifold one only has Majorana spinors, and
the real Dirac operator can be written as D = o' D, + o°D,.
The Minkowski-Weyl property can be seen in the fact that &
lies in % ,R, as it anticommutes with io,. Then D, + iD, is
skew symmetric and one can form the complex Berezin inte-
gral (DY exp — VT (D, + iD,)V¥, with total formal inte-
gral det'/? ;.

The class of B in 7(.% ,R) is labeled by } dimg ker B
(mod 2). On a Riemann surface of genus g there are
28 ~1(28 + 1) spin structures for which it is nontrivial and
28 —1(2%8 — 1) for which it is trivial.'®

C. Three dimensions

Let A be a real gauge field and consider the Minkowski—
Majorana action

L= f V(io®D, + o'D, + o*D,)¥ d >x.

After integrating out the fermions in fe“’ 2V one is left
with det'/2 B,,.

As there are no Euclidean Majorana spinors in three
dimensions, let S be the complex spinor bundle over S3, let E
be an RY vector bundle over S 3 with connection 4, and con-
sider the Euclidean Lagrangian

L.—.f W'(0'D, + 0°D, + &°D,)¥, for Yel'(Se E).
SJ

The Minkowski-Majorana property is seen in the fact
that B, = o'D, + 0*D, + o°D, lies in ¥ ;R, which implies
that all eigenspaces of /P, are even dimensional. We may try
to define the formal integral fe LIV = det'/> B, by
multiplying the eigenvalues of iB, with half-multiplicity.
This will only be well-defined when going around a circle of
operators if one-half of the spectral flow around the circle is
even, i.e., if the circle is trivial in 7, (F ;R) (mod 2).

Proposition 3: Let A(€) be a one-parameter family of
connections on E, 0<e<1, with 4(1) = g-4(0) for a gauge
transformation g: S3—SO(N). Then the class of B, ., in
7 (F3R) = Zisg*w[S>], where w € H3SO(N),Z) s given
by the three-form w = ( — 1/487%)Tr(g~ ' dg)>. This can
be odd for some choice of 4(€) iff N> 3.

Proof’ Let L be the RY bundle over S ! XS 3 formed from
the trivial bundle over I X .S by identifying the fiber over
{1} x 82 with the g-twisted fiber over {0} XS, and by then
tensoring with the pullback of Hto.S ' XS >. Let T denote the
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real Dirac operator on S ' X S > twisted by L and let 7 denote
the complex Dirac operator on S'XS? from S*®L to
S ~ @ L. By Proposition 1, the class of B, ., in 7,(% ;R)
equals the class of T in #,(.% ,R), which is one-half of the
index of 7. Now the family of connections A (¢€) give a con-
nection B on the trivial bundle over 7 XS* by B, =0,
B, (e,X) = A, (€) (X), which extends to a connection on L.
We can homotopy B to B, =0, B; (¢,X) = €(g~ ' dg), with-
out changing the index. Then the index of Tis given by

J‘ Tr 5 B)/2m
S'xS?

1
= ——_ TrldeAg—'d,
rycll I (deNg™ " dg

+(e—€)(g ' dg))= — f‘Tr(g"dg)ﬂ

1
2472 Js

so the class in 7y (F ,R) is

T ~1dg)3.

One can check that for N = 3, the pullback of ® from
SO(3) to SU(2) is twice the generator of #(SU(2),Z).
Since every map from S > to SO(3) factors through SU(2), it
follows the evaluation of g*w on .S 3 on § % is always even. On
the other hand, for N 4 the pullback of @ from SO(4) to

SU(2) via SU(2) —»SU(2) X SU(2) -SO(4) gives the gen-

erator of ##7(SU(2),Z). As one can embed SO(4) in SO(N)
for N>4, it follows that g*w[S$ 3] can always be odd for some
gif N>4. |

One could also compute this invariant by computing
one-half of the spectral flow directly. This is perhaps more
physical, as for fixed € there will be a term in the Euclidean
effective action equal to + 1 imn(iD, , ).

D. Four dimensions

In four-dimensional Minkowski space we have massive
or massless Majorana spinors, or massless Weyl spinors, but
not both simultaneously. To see how this is reflected in the
Euclidean action, consider the real Euclidean Dirac opera-
torB =3} _ 9D, withy’ = 5, @ ir"andy’/ =y, ® I. As
D anticommutes with the operators p(e;) =5, ®7',
pley) = Vo ® 7, and p(e;) = 3, ®1, it lies in ¥ ,R and
gives a quaternionic operator. The natural way to form a
massive Dirac operatorisby B,, = B 1 + mp(e;), which lies
in # 4R, as it anticommutes with p(e,) and p(e,). Using the
complex structure provided by p(e,;)p(e,), one can see that
D,, is the underlying real operator for the complex skew-
adjoint operator T, =iyz (2, _,v4D, + m). One can
then use the action L(¥) = \I’*T,,,\I’ to form a complex
Berezin integral f Z'W¥ e~ “¥ to describe massive Euclidean
Dirac spinors. This Berezin integral satisfies reflection posi-
tivity and the reconstructed Hilbert space is the Fock space
of the massive Minkowski Dirac spinor, with the standard
second-quantized Dirac Hamiltonian. Although this way of
handling Euclidean Dirac spinors may be unconventional,
one can see, for example, that the total Berezin integral is
formally det iy (2], _o¥%D, + m), which formally equals
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det(Zf,:(,ﬁD“ + m), the result obtained from the usual
field-doubling method.?

In order to deal with Euclidean Majorana spinors, one
must use the symmetries of B,, . Because D, is # 3R, there is
an operator A satisfying 47 = — 4 and AT* + T, 4 =0.
Then (4 ~'T,, )T = — A~!T,, andonecanused ~'T,, to
form the action L(¥) = (W74 ~ T, W for complex four-
component V. In terms of the charge conjugation operator,
L can be written in the following way. In a given representa-
tion {yf},_o, of the Dirac algebra, let C satisfy
CPrCl= —pT,CT= —C,CT=C~"'= — C* Then
the charge conjugation operator ¥ —¥¢ = C ~'¥*is intrin-
sically defined and one can write L¥y) as
SO¥OHN(EL _oy*D, + m)Y, with C(Z_ov*D, +m) a
skew-symmetric operator. One can form the complex Bere-
zin integral fe ~ L(¥) 2V whose total integral is the com-
plex Pfaffian det'/2 C(2}_,1* P, + m), the } reflecting
that one is dealing with Majorana spinors. This gives the
same way to handle Euclidean Majorana spinors as was
probably by Nicolai.”

The Weyl property is seen in the fact that P anticom-
mutes with the self-adjoint operator p(e)p(e,)p(e;). Writ-
ingPas ( %+ &), the quaternionic operator Bis the Euclid-
ean equivalent of the chiral Minkowski Dirac operator d and
det!/? P=det B is the Wick rotation of det 4. One can cou-
ple an O(N) gauge field 4 to D to obtain an operator B, in
Z 4R, but one can go further and use the quaternionic nature
of P tonaturally couple an Sp(V) gauge field V. Let us write
V as VO4L VY4 v9i4v®k with VP skew
symmetric and V), V¥, and V¥’ symmetric. Then

3
B,=3 @, +VI+VPi+ VLi+V k)
nu=0

lies in # | R and anticommutes with p(e,)p(e;)p(es).

The class of Bin 7o(.F ,R) = Zis labeled by } Index B,
which is § 4 (M) for a pure Dirac operator acting on the real
spinors I"(S). As the other homotopy groups of # ,R vanish
up to 77, a more interesting example is given by B coupled to
an Sp(N) gauge field, the original global anomaly of Wit-
ten.? If V(¢) is a one-parameter family of Sp(N) connections
on an #~ vector bundle E over M, with V(1) differing from
V(0) by a gauge transformation g, then by Proposition 1 the
class of B, in 7,(F ,R) =Z, is given by | dimg ker T
(mod 2), with T'= ( ;;m D_"‘g: ) acting on cross sections of
the #2¥ vector bundle over S ' X M created by twisting the
ends of I X((E® S) @ (E®.S5)) together by — g. Now
i dimg ker T = } dim¢ ker T

=1dim¢ ker p(e,)p(e)p(e) T
=1 dim¢ ker p(e;,)p(e;)p(e;)

( 0 — i3, + b,,(e))
x| .
id, + Dy, 0

=} dimg ker p(e,)p(e,)p(e3) (3. + iDy )
+ 1 dim. ker p(e,)p(e;)p(e;)

X (8, — iy )-

However, over the complexes both p(e;)p(e,)p(e;)
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X (3¢ +iBy,) and p(e)ple)p(es)(d. — iy, ) are
equivalent to the real operator p(e\)p(e,)p(e;)d,
+ Dy, Thus

} dimg ker T = dimg ker(p(e,)p(e,)p(e3)d ., + Do)

In the case of M = S*, the Sp(/N) bundles over S’ X S* are
classified by #7 (S ' X S *,Z,) = Z,, which can be thought of
as the element of 7,(Sp(N)) = Z,, used to join the ends of
I X S*. Upon twisting by the Hopf bundle over S, one can
check that dimy ker(o(e,)p(e;)p(e3)d, + ﬁy(e,) (mod 2),
equals the class of g in 7,(Sp(XV)), which is Witten’s orignal
calculation. [In this case, because one is dealing with chiral
spinors, one can also see that there is a global anomaly using
the results of Witten-Bismut—Freed.?® They showed that the
holonomy of the Quillen connection on the determinant line
bundle is, when going around the loop V(e),
exp — m’(n(@ ) + dim¢ ker .@) where, in our case,
D =ilple)ple)p(e3)de, + P vie)). Because — i lies
in & |R, the spectral symmetry ensures that (% ) is zero.
Thus the holonomy is 1 if dimc ker & is even and — 1 if
dim¢ ker & is odd, showing that in the latter case there is a
global anomaly in the sense that the Quillen connection has
nontrivial holonomy. ]

V. QFT’s ON NONCOMPACT SPACES

In general the index of a family of Fredholm operators
on a noncompact space is harder to compute than in the
compact case. We will only consider complex skew-adjoint
operators T whose underlying real operator T’ liesin % |R.
In general det'/? Ty = |det T'|, and so an odd spectral flow
in a family 7(e) prevents the smooth definition of
det'/2 T (€). Thisis seen in the fact that aclass [ T, (€)] in
7 (F ,R) =Z, can be computed using the spectral flow
(mod 2) of a circle of operators T'(¢), which in turn can be
computed using the generalized eta invariant. If H(€) is a
skew-adjoint operator which arises in the Lagrangian of a d-
dimensional Euclidean QFT, the most practical way that we
know to compute 7(H(¢€))is to regard H(¢) as the Hamilto-
nian for a (d + 1)-dimensional Minkowski QFT and com-
pute the vacuum expectation of the change operator
Q= S<j%X)>d*X, which then gives 7(H(¢)) via the
equation @ = — 17."> One can calculate Q (or more precise-
ly, dQ /de) for the (d + 1)-dimensional theory via a gradi-
ent expansion”® and then the spectral flow is simply the
change in Q when going around the circle.

One way of producing the d-dimensional Lagrangian is
as follows: let {M,}?*¢ 1 be mutually anticommuting self-
adjoint matrices and for a map ¢: RY - R?*!, consider the
operator T'= 2¢_, M/9; + 3244} | iM/¢ with ¢ approach-
ing constants radially. This will be Fredholm iff |¢(x)|? is
bounded away from zero for large x and then the large x
behavior of ¢/|#| gives a map ¢: S¥ ~' - S. We will show
that under the one-parameter family of ¢’s that starts and
ends with a point map, and covers S¢, there is an odd spec-
tral flow and so a global anomaly.

A d-dimensional Euclidean Lagrangian incorporating
Tis
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ow =[5 3 902+ v (3 8)+ v

The ¢-y couplings are Yukawa type, and these Lagrangians
can be thought to be analogs of the Gell-Mann-Lévy o mod-
el* (as opposed to the more recent definitions of a o mod-
el®®!). L has an SO(d + 1) global symmetry, which we will
argue to be broken by the global anomaly.

A. One dimension

Consider the Euclidean action
LYg9) = f L0+ 0+ V(B + D)
R

+3¥'(* 9, + ia'p, + io?$,) ¥,

for ¢,, $,C> (R') and YeC> (R') @ C?, where V goes to wo
asits argument goes to oo . Here L "V has an SO(2) symmetry
given by

(¢,) ( cosa  sin a) (¢,)

$,) \—sina cosal \$,/’

¥ /2@y First consider the case that ¥ has a minimum
away from the origin. Then there will be finite action bosonic
paths which (as x, ranges from — o to ) go from one
point in the minimum well to another. Formally, the integra-
tion over these paths gives the SO(2) symmetry in the quan-
tum theory.

Let T denote the skew operator o° d, + io'$, + io’d,.
Consider a family ¢(€) of background bosonic configura-
tions with ¢, (— o) =¢,.(— 0) =0 and ¢, ()

= C0S €, @, (0 ) = sin ¢, as sketched in Fig. 1. As the fer-

mionic integration in fe =tV ¢ DV leaves a factor of
|det T'|, if there is an odd spectral flow in T'(¢) then one
might expect that the instanton sum is ill-defined and the
SO(2) symmetry is broken.

For the operator iT'(¢) one can show that the derivative
of the generalized 7 invariant is

2 piTe >>——¢2i¢2 ("""¢2 Beg)||”
Lyt
1Td6 /3 I

(Refs. 12 and 25). This can be seen by computing the vacu-
um charge for the two-dimensional Minkowski Lagrangian

LPW) = if -—ZI—W((Z, + 03, + ig'g, + id*$,) Y,
RZ

as was done in Ref. 25; the relevant Feynman diagram is that
of Fig. 2. Thus there is odd spectral flow as € goes from O to
277,

=

FIG. 1. A one-parameter family of background ¢’s in one dimension.

1461 J. Math. Phys., Vol. 29, No. 6, June 1988

As our model is quantum mechanical, one can also ana-
lyze it in a Hamiltonian approach. The Hamiltonian 77,
acting on C* (R?) ® A*(C?), is

XK =4(—-3d}-397)

+ V(X1 +X3) +1¥N(7X, —o'X)¥
where the operators ¥, satisfy {W*,¥;} = 26,,. The U(1)
charge is
= —i(X'3,—X?9)) + W09,

and commutes with J¥°. Representing the complex Clifford
algebra generated by the ¥’s on A*(C?) via ¥, —\2/(e,),
W*_.\2E(e;), we can split H as H, ® H, where H, and H,
act on C* (R?) ® A®**" (C?) and C= (R?) @ A*(C?), re-
spectively, and are given by

H =}(—-3d1 -3d3)+V(Xi+X3)
and

H, = §( —3% —3%)

—iX, - X 2)
X, - X, 0 '
Because Q has integer spectrum on C* (R?) ® A" (C?)
and half-integer spectrum on C°(R?) ® A% (C?), the
SO(2) symmetry of the ground state will be broken iff the
ground state is in C* (R?) ® A* (C?). However, for all
WeC g (R?), (V|H,|¥) = (Yo (¢)|H,|¥Y® (3)) and so

+ V(X? +X2)+(

(mf\Vec”(R ) @ A4(C?) <\P‘H2N’))
(mfwcw(n ) @ ATVN(CY) (‘I‘|H1|\l’)),
implying that the ground state is indeed in

C= (R?) ® A°% (C?). In this example it is clear that the exis-
tence of a global anomaly does not make a theory inconsis-
tent but merely breaks a global symmetry; this appears to be
related to the fact that the anomaly occurs in a global rather
than local symmetry.

The functional integral argument for global symmetry
breaking required that ¥ have a nontrivial minimum in order
that the fermionic operator in the background field be Fred-
holm. However, from the Hamiltonian argument one sees
that symmetry is broken no matter what ¥ is. This can be
seen in the functional integral approach by compactifying
the space-time from R to [ — 3,5]. If there is a symmetry
breaking for each B then one would expect the same as 8
goes to «. A convenient choice of fermionic boundary
conditions which preserves the SO(2) symmetry is the
Atiyah-Patodi-Singer (APS) boundary condition.'' This
requires that W(B) lie in the positive eigenspace of
— 0°¢,(B) + o'$,(B) and that W( — p) lie in the negative
eigenspace of — 0°¢,( — B) + o'¢,( — B).

Proposition 4: Let T(e) be a family of operators on
C= ([ —B.B)) @ C*givenby 09, + io'd, + io’$, with the

» ¢, FIG. 2. One-dimensional spectral flow.
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APSboundary condition, where ( ﬁﬁ - g; ) is a nonzero vec-

IG(B) COos €

tor independent of € and (<5 ) = (sne) -Then as € goes
from O to 27, there is an odd spectral flow of iT(¢).

Proof: Let V(€) denote the vector ( _Y Vi +,ﬁf) (-2 ) and

let W(€) denote the vector ( s+ > ); the APS condition
isthat W ( — ) is proportlonate to V(€) and ¥, (B) is pro-
portionate to W(e€). Because the spectral flow is a homotopy
invariant, we can compute it for any loop in .# , homotopic
to T(€). In particular, for 0O<a< 1, consider the loop of oper-
ators on C* ([ —B,8])eC? given by 0°3, + aic'¢,

+ aio’$, with the boundary condition that ¥ ( — ) is
proportionate to ¥'(€) and V¥, () is proportionate to W(e).
One can check that this gives a smooth homotopy within the
class of elliptic self-adjoint boundary value problems®’ and
so it suffices to compute the spectral flow at @ = 0. Then the
spectrum is

<—$[(2n+ 1)i7r+1n—¢‘—ﬂ(—ﬁ)

V& + &3

mdit @ g ]> neZ
V& + 4
which has an odd spectral flow as € goes fromOto27. B
In higher dimensions, we will only consider the case
when ¥ has a minimum away from the origin, so that the
instantonlike background fields give Fredholm fermionic
operators. Presumably one could put the theory in a finite
volume, as we have done in one dimension, and conclude
that there is a global anomaly with no restriction on V.

B. Two dimensions
Consider the two-dimensional Euclidean Lagrangian

L?= z L .80 + V(,z ¢’)

R j=1 =1

. vﬂ(; Phd, + iV, + ird + i3, ¥

for ,,4,,¢,C* (R?) and WeC> (R?) ® C*. Here L @ hasan
SO(3) symmetry which rotates the ¢’s. If 7T'(¢) is a one-
parameter family of skew Fredholm operators of the form

T= Z }’Ea + 17/))5¢1 + 17’1“?52 + iVeds

j=1
then we will compute the generalized % invariant of 7(¢) by
considering {T to be equivalent to the Hamiltonian of the
three-dimensional Minkowski Lagrangian

r’é,
7 FIG. 3. Three-dimensional spectral flow.
7’4
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€e=0,1

FIG. 4. A one-parameter family of background ¢’s (at « ) in two dimen-
sions.

L(3)= -\17

x( -~ irhd, +j=i Vo, + b, — ird, — irihs) ¥

The Feynman diagram to compute the vacuum charge is
that of Fig. 3 and letting n° denote ¢° /||, one finds

dQ 1
de de R? 81T

This is simply the infinitesimal change in the volume on
S2 swept out by the curve ¢/|¢|: S'—S?, where the S'is a
large circle in R?, and we have normalized the volume form
on S? to have mass 1. Consider a one-parameter family of
loops on S as in Fig. 4. If each loop represents the behavior
of ¢/|#| for large radius in R?, for some ¢, then as € goes from
0 to 1 it follows that there is an odd change in the vacuum
charge, and so an odd spectral flow in i7(€). Presumably
this spectral flow breaks the global SO(3) symmetry.

€. n°dn® Adn.

C. Three dimensions

Consider the three-dimensional Euclidian Lagrangian
1 3 3
L(3>=f,.{ Z (3,8,)% + V(Z ¢f)
+2V(S s, + iy + s 037) ¥,

=1
with @,...,$:6C* (R*) and YeC* (R?) ® C®. There is a na-
ive SO(4) symmetry which rotates the ¢’s, and as before we
will compute the spectral flow for the fermionic differential
operator by computing the vacuum charge of the four-di-
mensional Minkowski Langrangian

L“"=J: ; ( 17/%50+IZI Yi0; + do + iV°$- 7')

This calculation was done in Ref. 25 and the relevant Feyn-
man diagram is that of Fig. 5. Letting n° denote ¢° /||, the
result was

1;¢|TI
7 Ys¢zfz

V’$s7s
FIG. 5. Three-dimensional spectral flow.
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é:m

[2VH

s

FIG. 6. Four-dimensional spectral flow.

dQ _d [ 1

de deJr 1277 ©
As before, this is the infinitesimal change in the normalized
volume on S 3 swept out by a family of immersed S *’s, and by
choosing the family to cover S 3, we ensure that there is an
odd spectral flow in the fermionic differential operator.

bean® dn® Adn® Ndn®.

D. Four dimensions

Let {#}¢_, be another copy of the Dirac matrices

{ve}_, and put %° = 5'p**y*. Consider the four-dimen-
sional Euclidean action

L =L. > @)+ V(Jgo #)

j=0
1 u : -
+= wt (,2. Y59, + vz (don’ + ¢'n)) v,

where d,,...,4,6C* (R*) and WeC~ (R*) ® C'°. This is an
analog of the linear o model* with the target space being R®
instead of R®. The naive SO(5) global symmetry rotates the
#’s. The corresponding five-dimensional Minkowski La-
grangian is
LY = i @

R 2

4 -

x( —ivzdo+ 3, 780, + o’ + ¢'17) v,
u=1

The Feynman diagram to compute the vacuum charge is

that of Fig. 6, and the result is (letting n® = ¢°/|4|)

dg _d 1

de de 64 Jn

Once again, this is the infinitesimal volume on S * swept out
by the ¢ field at «, and by a suitable choice of ¢(¢) there will
be an odd spectral flow in the fermionic differential operator.

Eopcae® An® Adn° Ndn Ndne.

VI. DETERMINANT BUNDLES

Over the space of Fredholm operators .# one has the
virtual index bundle Index and its highest exterior power,
the line bundle Det. For Dirac-type operators Quillen
showed how to define a natural metric on Det.* We wish to
show how to extend these constructions to the other classes
of Fredholm operators.

First, consider the space % | of skew-adjoint complex
Fredholm operators. The heuristic obstruction to defining a
determinant function on % | is the possible change of sign in

1463 J. Math. Phys., Vol. 29, No. 6, June 1988

going around a loop, that is, the mod 2 reduction of
7,(F ;) = Z. Abstractly one can form a flat R bundle over
&, via the homomorphism p: 7,(%¥,)—-End(R) which
takes 1 €7,(% ;) to the operator of multiplication by — 1.
To be more concrete, let us consider a space . of skew-
adjoint Dirac type operators B, on a compact spin manifold,
possibly coupled to an external vector bundle. As in Ref. 5,
# can be covered by open sets {U_ } ,ca - , 50 that for seU,,
iD, has no eigenvalue of + a. Then the transition functions
(for a <B) 8ap(S) = I, 1, sA;(iD,)define an R bundle

DET over .%°. That is, v, €R in a trivialization over U p COI-
responds to vz = g,.V, in trivialization over U, and so

there is a well-defined Quillen metric on DET given by

o> = 2 ( i A%m)),
|4 >a

where the product is understood to be defined using zeta-
function regularization. The unique connection on I'(DET)
which preserves ||| is given in trivialization a by

A" VdA,

il >a

A, =lm
50

and is flat. Thus under parallel transport in patch a, the
quantity (I, , . |4:])v, is constant. One can convince one-
self that the holonomy around a loop is the spectral flow
(mod 2).

Now consider the space # | R of real skew-adjoint Fred-
holm operators. We can abstractly define a flat R bundle via
the homomorphism p: 7,(¥ R) = Z,—~End(R) which
takes 1 to — 1. For a space . of real skew-adjoint Dirac-
type operators, define the covering {U_},x-, as above.
Over U, we have the R bundle A™*(V,), where V,

= @, {eigenspaces of eigenvalue ,, |4;| <a}.Ifa < B then
over U,NUg, T defines a two-form on Vg —V, (by
2, ca,<phi€i \N€;, e; orthonormal) and an isomorphism
from A™** (V) to A™** (V) via exterior multiplication by
T (172 dima Vs — dima Yay . then the bundles A™* (¥, ) patch to-
gether to give an R bundle Pfaff over % There is a metric on
Pfaff given by

ACea N> =[ACen 3 [T 4768y,
A>a
where |‘|5- denotes the metric induced from the Hilbert
space 5% and there is a compatible flat connection. One can
see that the holonomy of the connection around a loop is the
number of eigenspace rearrangements (mod 2).

Because the elements of .% ,R, can be written as 4 + (B
with 4 and B skew symmetric, the natural function to con-
sider is the complex Pfaffian. Freed has shown that for
Dirac-type operators in % ,R, the determinant line bundle of
Quillen has a natural square root, the complex Pfaffian line
bundle, with induced metric and connection.?*

Finally, the elements of % ;R can be considered to be
skew-adjoint complex operators which anticommute with a
complex antilinear map. Then the even dimensionality of the
eigenspaces allows us to canonically take the square root of
the transition functions used to define DET for the | case.
In this way one obtains a flat line bundle DET'/2? which has
holonomy around a loop given by § (spectral flow) (mod 2).
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Various two-dimensional o models enjoy an infinite set of infinitesimal transformations acting
on their solution space. The action of these symmetries is investigated for the Euclidean
projective and Grassmannian ¢ models. On the (anti-) self-dual sector of the latter, the algebra
of symmetries is shown to collapse to a finite-dimensional algebra isomorphic to sl(n + 1,C)
for the models with fields in the Grassmannians G, , , ,. The finite action obtained by
exponentiation is given in a closed form. For CP” models, this result is extended to the whole
space of finite action solutions and the structure of the algebra remains sl(# 4 1,C). Hence the

action is not transitive on the solution space.

I. INTRODUCTION

A great deal of work is currently under way to investi-
gate the structure and applications of infinite-dimensional
Lie algebras. From the mathematical point of view, they
constitute the most recent development of group theory. For
physicists, they are expected to play a role analogous to the
one played by usual group theory for the understanding of
the properties of elementary particles. Indeed, one hopes
that infinite-dimensional Lie algebras and their representa-
tion theory will shed some light on string theories.

Two-dimensional models play a special role in that re-
spect. Let us recall that the conformal algebra in two dimen-
sions has the structure of two commuting Virasoro algebras.
Sigma models are interesting in their own way because of
their privileged link with string theories and also because
infinite-dimensional Lie algebras often show up in their
properties. Here we want to concentrate on the infinite alge-
bra spanned by symmetry transformations, first introduced
by Dolan’ for the unitary principal sigma models. This field
of research has been developed significantly by Wu” and
Uhlenbeck,® among others. The general case of a sigma mod-
el with values in an arbitrary Riemannian symmetric space
has been treated in a previous paper.*

The results obtained in Ref. 4 are particularly important
because they show similarities between the structure of sig-
ma models and the structure of the Kadomtsev-Petviashvili
(KP) equation introduced by the Kyoto school.> Assuming
that the infinitesimal transformations can be integrated to a
group action, we are led to the following interesting ques-
tion: Can we expect this symmetry group to act transitively
on the space of solutions or, at least, can we characterize

# On leave of absence from the Institut de Physique Théorique, Université
Catholique de Louvain, Belgium.
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physically the orbits under that group? This question consti-
tutes the first motivation for the present paper.

A second motivation is given by the existence of finite-
dimensional orbits under the action of the symmetry group.
(Such orbits are known to exist for the KP equation.’) On
these orbits, the infinite-dimensional group would then col-
lapse into a finite-dimensional one. Some distinguished Eu-
clidean sigma models (those with values in a Kidhler mani-
fold®) admit instanton solutions. The subspaces of instanton
solutions of given charge are finite dimensional. If the sym-
metry transformations map k-instantons into k-instantons,
we get an example of the collapse process described above.

We propose to examine these problems in the case of the
Euclidean sigma models with values in a complex Grass-
mann manifold. The instantons of these models are well
known.® Actually, much more is known when the Grass-
mann manifold is a projective manifold. Indeed, Din and
Zakrzewski’ gave a construction of all finite action solutions
starting from the instantons. The present paper deals with
the fate of the symmetry transformations on all these solu-
tions.

The paper is organized as follows. Section II is a review
of the projector formulation of the Grassmannian sigma
models, their instanton solutions, and their Lax formulation.
In Sec. II1, the infinitesimal transformations derived in Ref.
4 are introduced for the subspace of instanton solutions: It is
shown that they map instantons into instantons and that the
infinite-dimensional symmetry algebra collapses into a fin-
ite-dimensional one when restricted to the instanton sector
of the model. The resulting symmetry generators can be inte-
grated explicitly into a finite action. However, the resulting
group does not act transitively on the instanton subspace.
Section IV is devoted to the same questions, but this time for
the whole space of finite action solutions of the projective
sigma models. After a description of the construction of Din
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and Zakrzewski,” we give the proof that the infinite-dimen-
sional symmetry algebra also reduces to a finite-dimensional
algebra on the whole solution space of the CP” models. This
algebra is also integrated explicitly into a group action con-
sistent with the construction of Din and Zakrzewski’ and
does not act transitively on the solution space either. Section
V contains some comments and open questions, together
with an explicit example for the CP? case.

Il. GRASSMANNIAN MODELS

Euclidean sigma models are defined on a two-dimen-
sional space with the coordinates (x_,,x_). The particular
models we consider here are those where the field takes its
values in the Grassmann manifold G(» + 1,p) of p planes in
C"*+'. A useful parametrization of points in G(n + 1,p) is
given by (n 4+ 1) X (n + 1) Hermitian rank p projectors 3:

3t=3, 3*=3. 2.1
The equations of motion are
[02,2]=0. (2.2)

A particular subset of the solution space of the field equation
(2.2) is given by the solutions of the self-duality condition®:

$3,3=0. (2.3)

From now on, we only consider finite action solutions, i.e.,
configurations = such that ftr(d,Zd_32)d*x < . With
this additional condition, solutions of (2.3) are called in-
stantons.

Let us now turn to the Lax formulation of the model. It
is well known®® that Egs. (2.2) are the integrability condi-
tions for the following linear system:

ai R(x+’x—;/{)
=[1/(1+ )] 2 [3, SIIR(x, x_A), (24)

where R isan SL.(n + 1,C)-valued function depending on an
additional complex parameter A and [I=diag(1,
—1,,1_,)- On the other hand, the Hermiticity condition
3' = 3 imposes the following condition on R:

RY(x, x_A) =R '(x,x_;—A). (2.5)

In the particular case of instantons, a solution of (2.4) satis-
fying condition (2.5) is found to be'®

R(x,x_A)=I(1—[2/(1—=A)]3). (2.6)

lil. SYMMETRY TRANSFORMATIONS IN THE
INSTANTON SECTOR OF THE GRASSMANNIAN
MODELS

A. Infinitesimal transformations

As explained in the Introduction, one of the goals of this
paper is to examine the fate of the infinite-dimensional Lie
algebra acting on the solution space of the Grassmannian
models when restricted to the instanton sector. We refer the
reader to a previous paper” for the detailed derivation of the
action of the symmetry algebra. In the case at hand, the
generating function for the infinitesimal transformations
takes the form

3.3 =3+AT(1)3, (3.1a)
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with
AT E=[IR(A)TR " Y(A)LX]. (3.1b)

The generating function is to be understood as defining an
infinite set of symmetries AT03:

AT(A) 2= 2/1 —IATOF, (3.2)
i=0
In order to preserve the Hermiticity condition (2.5), the
parameter Zesl(n + 1,C) in AT”?3 must be such that
T= —Ttifiisevenand T= TTifiis odd.
Using (2.6), the symmetry generators for the instantons
read as

AT =[(1 +43/0 = AH][T2]
+[24/7(0 =AD{Z, T - 232T3), (3.3)

where again, in the first terth, 7" has to be taken anti-Hermi-
tian, while in the second term, it has to be taken Hermitian.

Although the general results* ensure that 3 is a new
solution of the full equations of motion (2.2), they do not
guarantee that 2’ is still a solution of the self-duality condi-
tion (2.3). In fact, one can check explicitly that
3’ d, X' = 0by going into the basis where X is diagonal. On
the other hand, it will be possible to integrate the infinitesi-
mal law (3.3) and obtain the explicit form of the finite trans-
formation to which it corresponds. We thus postpone the
proof that 2’ is indeed an instanton to Sec. III B.

The next step is to identify the algebraic structure
spanned by the symmetry generators {A7?, jeN,T= — T'*
for i even, T= T for i odd}. A general result may be de-
duced immediately from the explicit form of the transforma-
tion (3.3): All the generators A”” with an even index will
act in the same way on X, as will all the generators A7*? with
an odd index. This observation solves one of the problems
discussed in this paper: The infinite-dimensional symmetry
algebra of the Euclidean sigma models with values in a
Grassmann manifold collapses into a finite-dimensional al-
gebra when restricted to the instanton sector of the model.

The structure of this finite-dimensional algebra is easily
read by computing the commutators between the generators
that are now referred to by the notation

ATZ=([T,2}, with TT= — T, (3.42)
ATZ={3,T} —23T3, with T'=T. (3.4b)
The result is
[Aﬁ’,A:’]E:AL""’IE, with U= — U, V= —VT,
(3.5a)
[A,‘,’,AZ]E‘.:ALU’V]E, with U=U', V=Vt (3.5b)
[AZAV]Z = AYPYIS, with U= — U, V="
(3.5¢)

The finite-dimensional symmetry algebra thus has the struc-
ture of sl(n+ 1,C) by using the decomposition
sl{n + 1,C) = h@m, where §) is the subalgebra su(n + 1)
(corresponding to A7) and m is the subset of Hermitian ma-
trices (corresponding to AY).

This finite-dimensional structure embeds into the infi-
nite-dimensional structure in the following way. We expect
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the above symmetric space decomposition to fit into the
structure of a twisted loop algebra by identifying all the gen-
erators with even indices in the gradation and all those with
odd indices. However, we have to check that this idea corre-
sponds indeed to the structure spanned by the infinity of
generators in (3.3). The commutators are

[AY(1),AY(A)]Z
=[1/(A" = A)HAATYI() — A A (A}

+ [1/(AA" = DI{AIYI(A) 4+ AlYYI(A )]s,
(3.6)

We have already encountered such a form for a commutator
of generating functions in the general case.” In Ref. 4 it was
proved that, under a change of basis, these commutation
rules have the structure of the twisted loop algebra

ﬁ=(e(su(n+ 1)@!2i))@(e(m®t2"+‘)),
N N

where m is the space of ((# + 1) X (n + 1)) Hermitian ma-
trices.

The conclusion of this analysis is that the algebraic
structure spanned by the symmetry generators of the instan-
ton sector of the Grassmannian models is the above twisted
loop algebra. However, all the even (odd) generators in the
gradation act in the same way as the subspace of index 0 (1)
and the infinite-dimensional structure thus collapses into the
structure of the finite-dimensional algebra su(z+ 1) em

=sl(n + 1,0).

B. Finite transformations

Returning to the transformation laws (3.4), we see that
(3.4a) can be integrated immediately. This is not the case for
(3.4b). However, both cases can be treated simultaneously if
we observe that they are both special cases of a linear trans-
formation on a Grassmann manifold, expressed in affine co-
ordinates.!! With this remark, the transformations (3.4) can
be seen as the infinitesimal forms of

3. =e"3e T, with Tt= —T, (3.7a)
3, =e"3(e"T+2sinhT3) ™!
=e72(e'2T(1 —-23) + E)_le_r, withT =T
(3.7b)

We are now left with the problem of proving that the
laws (3.7) are indeed symmetries of the instanton sector.
For (3.7a), this fact is trivial. The new information is con-
tained in (3.7b), which s a far from obvious symmetry of the
self-duality equation.

First, let us show that the inverse in (3.7b) always ex-
ists. This will be done in the basis where X is diagonal:
Z=diag[1,,0]. Denoting e ~>” in this basis as

T T .
e""s[ ! 2], with 7{ =7, 7} =7, 7} =75,
(3.8a)

we obtain

e~ T(1—3) 4+ 3= [(1) 72].

Ta
This proves that the matrix appearing in (3.7b) is invertible
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as soon as 7, is invertible. However, 7, being a submatrix of a
positive definite matrix, is itself positive definite and hence
always invertible.

For later convenience, we also denote e?7 in this basis as

7T S . L. -
el = [_' ,2], with # =7, 7 =7, 7 =7,
T3 T4
(3.8b)

The properties of the X are (i) 2.' =3, (ii)22= 3,
and (iii) =, 8,2, = 0 and should be proved in that order.
Since the proofs are similar, we give only the calculation for
the self-duality condition (iii). Observe first that

0.3, =e"0,3(e T(1—-3)4+3) e T
—3e"(1—e"?M)a. 2
X T(1=3)+3) e T
so that
5:3,3, =3T3, 3e (1 —3) +3) e 7.
Now let A be the unitary matrix that diagonalizes 2. Then
3eT=e"S(e"2T(1—2) 4+ 3) e 2T
=e"2((1-2) +73)!

1 o[ o}
ol
¢ o ollz, 1l A

ol Sheen [ oo
and thus
39,5 —eTA~" [Tlo O]AE 3.3

X T(1—3)+3)'e~T=0. (3.9)

Before concluding this section, we want to make two
remarks. First, let v be an eigenvector of = with eigenvalue 1.
Then X{e"v = e’v, which means that the eigenspace of = is
“rotated” by e” with 7 Hermitian for the odd case, whereas
it is obviously rotated by e” with T anti-Hermitian in the
even case.

Second, there is an obvious discrepancy between the di-
mension of the symmetry group SL(# 4 1,C) and the num-
ber of parameters of the instanton solution.® Thus the action
of the above symmetry group is not transitive on the space of
solutions since it is not even transitive on the subspace of self-
dual solutions.

IV. SYMMETRIES ON THE SOLUTION SPACE OF THE
CP" MODELS

Among all (complex) Grassmannian models, it is the
projective models whose solution spaces have been investi-
gated most thoroughly. Indeed, because of the studies of
Borchers and Garber'? and Din and Zakrzewski,’ the space
of solutions with finite action of the Euclidean CP" models is
well understood: Its characterization is explicit enough so
that we can extend the results obtained for the self-dual and
anti-self-dual solutions of the Grassmannian models to the
whole finite action solution space of the CP” models.

As a first step toward the description of the symmetries
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on the whole space of finite action solutions, we shall sum-
marize the results of Din and Zakrzewski.” Since the fields of
the CP” models are rank-1 projectors P(x_,x_), it is con-
venient to introduce the unit vector field z(x_ ,x_)
eC"*', |zl =1, on which P(x_,,x_) projects. The field
equations are

D_D.z+ (z'D_D, z)z=0 (4.1)
and can be shown to be equivalent to (2.2) for P. Here, the
covariant derivatives D , are defined by

D,=d, —(z'd,2). (4.2)
In terms of the unit vector field z, the (anti-) self-duality
condition takes the simple form

D.z=0, (4.3)
where the lower sign is for anti-self-duality. The general in-
stanton solution is given by (n + 1) polynomials p,(x_ ) of

Pz P_z P,z PX 1z

k
P7 z

[ P™z
, yeees \Z peees ,
T R T A T R TR A T

is a solution of the CP” model with finite action; and (iii) all
the elements of the set (4.6) are mutually orthogonal,

(P_z)Y(P/ z)=0, all ij,

(P_)N(P_z)= (P )P/ 2)=0, i#j
Hence the set (4.6) constitute a moving frame of C"*+!
whose elements are solutions of the CP" model. We shall
refer to such a set as a family of solutions. Since
P¥Frlz=pPm+1z=0, PX z and P™ z are, respectively,
an anti-instanton and an instanton. [ According to Din and
Zakrzewski,” it might occur, for particular z’s, that
P**lz=pPm+1z=0 for k and m such that k + m <n. In
these degenerate cases, the family (4.6) isnota C"* ! frame.
However, these z’s can be approximated continuously by
nondegenerate families. We shall not consider any further
these peculiar solutions.] Since any solution z with finite
action gives rise to an instanton by repeated action of the
operator P_, it is easier to describe the families as generated
from an instanton £, i.e., P_f=0:

{fP.S/\Pf,,P" f/\P", £} (4.8)

where P",_ f/|P"_f| is the anti-instanton of the family.

This family structure can be translated in terms of a
family of projectors {P,,P,,....P, }. If z, =P*,_f, for 0<k<n,
define P, to be the Hermitian projector on z, . Since the z,’s
are solutions of (4.1), the projectors P, are solutions of
(2.2). Moreover, the orthogonality of the z,’s is equivalent
to P,P; = 6, P,. There is no compact form for the action of
the operator P_ on the projectors P, and the recursive con-
struction of the family (4.8) is more easily written in terms
of the z,’s:

Pi 1 (P.z)) = (P,z,). (4.9)
A set of projectors {P,,P,,...,P, } verifying the above condi-
tions gives rise to a unique family {z,,z,,...,z, } verifying con-
ditions (i)—(iii).

To take full advantage of the formalism used to describe

4.7)
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x . only, 0</<n, with no common root, and has the form

n ~172
ZI=P1(X+)( z |Pm(x+)|2) .
m=0

The anti-instantons bear the same definition, with x_ re-
placed by x_. The (anti-) instanton number is k
= MaXo.cq(deg(p;)).

Define the operators P, by the following action on a
field f(x . ,x_)eC"

(4.4)

(f19.f)
|fI?
Let z be any finite action solution of the CP” model. Din and
Zakrzewski’ were able to show the following remarkable

properties: (i) there exist k and m such that PX*'z
= P™* !z =0with k + m = n; (ii) every element of the set

P, f=d,f— f (4.5)

(4.6)

r
the symmetries introduced in Sec. III, another description of
the families {zy,z,,...,2, } or {Py,P,,...,P, } is also useful. Let
the £,, k=0,1,...,n + 1, be the matrices

k—1

3,=0and 3, = 2 P, (4.10)
I=0
Obviously, the set
{20222, =1} (4.11)

contains the same information as the families {z,,z,,...,z, }
and {P,,P,,...,P, } since the P, ’s can be retrieved from (4.11)
simply by P, ==, , , — 2. The conditions on the family
{Py,P,,...P,} are equivalent to the conditions (4.12)-
(4.15) on the corresponding family {2,,%,,...,.2, ., }. The
2, are projectors of rank k:

32 =31 =3,, with rank I, =k, (4.12)
satisfying the self-duality equation (2.3) of the Grassman-
nian models

Ek a+2k =0. (4.13)

The image of X, is a subspace of the image of 2, if i< ji:
32=32=32, (4.14)

Finally, the projectors 2, satisfy the supplementary differ-
ential conditions

Ek+l a_'_zk =a+2k, (4.15)

where £, , ; = 1. The equivalence of the purely algebraic
conditions on the family {P,,P,,...,P,} on one hand, and on
the family {£,%,,...,2, , 1 } on the other hand, is straight-
forward. The equivalence between the differential relations
on the two families can be derived by direct manipulations.
We give here only an outline of the proof that [ 0P, ,P, ] =0
holds given (4.13) and (4.15). The self-duality equations
(4.13) on X, imply the field equations [[JZ,,3, ] =0 for
all k. Then

if i< j.

0<k<n,
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[DPk’Pk] = [D(2k+l =22y — 2k)]
= — [O2, 1,2 ] — [(20:2k 41 ]
= —0,(0_%,,3)+3_3,,,0.3,
+0,(2,8_3,,,)—-0d,2,3_3, .,
—0_ (0,2, 3, ,1)+9,. 2,3 24,

FO_ (Do 0230) —0_3, 4 9,3,
(4.16)

Using various derivativesof 2, , 2, = 2,2, ,, = Z;, the
self-duality equations, and (4.15), Eq. (4.16) becomes

[OP.P.] = —8_(8,3,) +9_(3,%,) =0.

Since each element of the family {Z,, 0<k<n + 1}isa
self-dual solution of a Grassmannian ¢ model, the symme-
tries studied in Sec. III transform each of them into a new
solution of the same model. If the symmetries can be shown
to leave the conditions (4.12)—-(4.15) satisfied, they will in-
duce symmetries of the families {P,, 0<k<n} and then, of
the whole space of finite action solutions of the CP” model.
In the case of the even generators, the transformations
(3.7a) are

3, =e’3,e” 7, for 0<k<n+1 and Tesu(n + 1),

(4.17)

and this verification is trivial since all the projectors X, and
P, become transformed in the same rigid fashion
3,-3 =e"3,e” T, P,~P) =e"P,e~T. The conditions
(4.12)—(4.15) are obviously satisfied by the X} ’s if they are
by the unprimed X,.’s. For the odd generators, the finite
action (3.7b) is

Si=e"2,[e7TA -2 )+ 3] e T,

for O<k<n + 1 and T Hermitian, (4.18)

but the verification here is, however, a nontrivial one. Condi-
tion (4.12) was discussed in Sec. III. Condition (4.14) can
be shown to hold following steps similar to the ones leading
to (3.9). Since the self-duality equation has been verified in
Sec. I11, only condition (4.15) still remains. The derivative
d, X} has the form

3.3 =e{0,.2 -2, [eT(1-2,)+5,]"'
X(1—e~*3d,3,}
X[e 2T(1—2) +32,] e "
With the notation [, ] =[e~*"(1 — Z,) + 2], condition

(4.15) becomes, using (4.14) and (4.15) for the unprimed
3.8

i1 0.2
=e'3, [k+l]_1{2k+l d.3, _zk+12k[k]—l
X(1—e M3, T Hi] e T
=e"S 1 {03 — 2 [k] 7' A —e N3, 5, }
X[k] e "
because of (£}, ,)> =2}, ,. Hence
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10,2 =e"{2,, 0.3, — 3,3, [«17"
X(1—e M3, 2} ] e 7
=4d,3;.
Thus all the symmetries described in Sec. III are symmetries
not only of the (anti-) instanton solutions, but also of the
whole space of finite action solutions. However, the explicit
action of the odd generators on the z,, which are neither
instanton nor anti-instanton solutions, cannot be expressed
solely in terms of z, and e”, but also requires the first few
derivatives d°, z, and d/_ z,. Since the family structure is
conserved, the simplest expression for the z; for I <k<nisin

terms of f=2z,, the instanton of the family (see the remark at
the end of Sec. III):

z, =Pk f'/|P* f'| = PX (e"f)/|P* (eTf)|.  (4.19)
Because T'is Hermitian, | f*|> = | f1e’"f| isnotequalto | f|?
in general and then P, (e’f)#e"P, f. Section V provides
an example of an “odd” transformation.

The action just described is not transitive on the solution
space. It is not even transitive on the instanton solutions, as
was underlined for the general Grassmannian case. In the
CP" model, the general k-instanton solution takes the form
(4.4), where the maximum degree among the p,(x,),
0</<n + 1, is k and the polynomials p,(x_ ) have no com-
mon root. Since both the even and odd symmetries act on z,
as zy—e'zy/|e"zy|, where Tisinsl(n + 1,C) and e”is always
invertible, e’z, have no common root since, otherwise, ez,
would represent an l-instanton solution with /<k and
e~ T(e"z,) would not be a k-instanton. Hence, the action of
the group described above is onto the k-instanton solution
subspace. Since the algebra sl(n + 1,C) has 2n(n + 2) real
dimensions and the general k-instanton solution depends on
2(n + 1)(k + 1) — 2 real parameters, the action is obvious-
ly not transitive for k> n.

To conclude this section, we reformulate the result just
obtained through the technique used in Sec. III to see
whether that same technique could provide a group of sym-
metries for the solutions z,, 1<k<n — 1, bigger than the one

just described here. The answer will be that both techniques
coincide. (The details will be skipped; only the major steps
will be outlined.) Din et al.,'® gave the solution of the linear
system associated to a given P, in terms of the P,, 0<I<k, as

R(A) =I{1+ [44/(A — 1)2]Z, — [2/(1 — D) ]P.}.
(4.20)

The generating function for the symmetry generators is
ATAP, = [(1+12)/(1 —A)][T,P]
+ [24/(1 —A)]{P, T} — 2P, T, P,).
(4.21)

The (point-dependent) matrix generator T, appearing in
the odd part of the generating function is

T,=(1—-23,)T(1 —23,). (4.22)
Again, all the even generators coincide and are equal to
AIP, =[T,P,], Tesu(n+1); (4.23)

their exponentiation is obvious and has been given before.
The odd generators are also identical:
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AP, = {P,,T,} — 2P, T,P,, T Hermitian, (4.24)

but their exponentiation is difficult since it depends on the
evolution of the P,, 0</<k, under that symmetry. One does
not know a priori what the elements z; of the family of z; are,
except by the action of P_ on z;. However, it is not difficult
to prove, up to first order in 7, that the set
{P, + ATP,,P, + AIP,,...,P, + ATP,}, where the ATP,
are given by (4.24), is still a family. This very fact allows us
to sum the AIP, and then define the family
{30+ ATZ,2, +ATS,,...,3, + A3, }, wherethe ATS,
are obtained from (4.24):

k—1
AT, = D AP, ={3,,T} — 23, T%,, (4.25)
I=0

where T'now appears nonconjugated. However, this is exact-
ly the infinitesimal form (3.4b) obtained in Sec. III for the
projector 2. The conclusion is then that the finite symme-
tries introduced earlier in this section coincide, in the infini-
tesimal limit, with the transformations obtained through the
solution of the linear system and the technique used in Sec.
IIL

V. CONCLUDING REMARKS

As a first remark, we present a nontrivial example of the
action of the odd generators on a family of the projective
model CP”. In order to be nontrivial, the family has to be
from a model with n>2 since the CP' model has only instan-
tons and anti-instantons as finite action solutions. We
choose the simplest of these models, the CP?> model.

The family will be generated from the following two-
instanton solution:

1
P —— T (5.1)
JI+x7+x° X,
where x*=x_ x_. The solutions z, and z, are then
—x_(14+2x»)
1 4
o= 2 4 6 8 1 —-x
J1+5x% + 6x* + 5x° + x X, (24%)
and
xZ
: "~
2y = —2x_ (5.3)

\/1+4x2+x3 1

Observe that z, is an anti-instanton, as it should be. The
Hermitian generator 7 is chosen to be

0 0 1
T=]|0 0 O (5.4)
1 0 O
so that
¢ + sx?
(6) — ez N
o =g =alxx )l x| (5.5)
™z 2
S+ ox,
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Z)

where c=cosh 6, s=sinh 8, and a(x_ ,x_) is the real func-
tion of x . and x_ such that z{® is of unit length. The second
member of the new family is

()
9 P+ZO

T P27

sx, (x> —2) —ex_(142x%)
=B(x,x_ )} 25 — D1 —x*) +2es(x>. —x%)
ex, (24+x%) +sx_(2x* = 1)

(5.6)
and the new anti-instanton is
2
P2 @ cx* —s
@o_ L +%
25 =|72—2(7),—}/(x+,x_) —2x_ N (57)
+ <o —sxt +c

where, again, the functions £ and ¥ normalize the length of
z{? and z{? to unity. It can be checked explicitly that these
newz{?, z(?, and z{? are indeed solutions of the equation of
motion. The explicit form of z{?’ can hardly be traced back to
z,. However, the form 2, =P? z{%/|P?_zi?| happens to
be precisely zi® = e~ %z,/|e %"z,|. At first sight, this
might seem surprising, since the action defining z{? is
through ¢°7, not e ~ ", However, this can be shown to hold in

general. Indeed, using (4.24) for P, = 1 — X, one finds

AP, = —{P,T} +2P,TP, (5.8)
for the anti-instanton, instead of
ATP,={P, T} — 2P, TP, (5.9)

for the instanton. Hence the two vectors z{? and z? are
obviously orthogonal:

2289 o (e 972,)1(e%"2,) = 2}z, =0,
as it should be. Finally, a direct calculation shows that
neither in the instanton z{® nor in the anti-instanton z'?’ is
there any common root (for any 8) in the three polynomial
components.

As last remarks, we want to list a few open questions.
The first to come to mind is whether a similar construction of
the symmetries for the whole space of finite action solutions
of the Grassmannian models could be calculated along the
lines of the discussion of Sec. IV. The problem here is that
there is no explicit description of the whole solution space for
Grassmannian models other than for the CP” models. Sec-
ond, it would be interesting to have a geometrical explana-
tion of why the larger group Sl(# + 1,C) appears as a sym-
metry group of the field equations since only its real form
SU(n + 1) is an explicit symmetry. It probably originates in
the Kihlerian nature of the Grassmannian manifolds and
from the fact that the self-dual equations are nothing but the
Cauchy—Riemann equations for this complex structure.
This conjecture allows one to hope that a similar result holds
for any o model whose field takes its values in a Kahler
symmetric space. A third (more ambitious) question is to
try to calculate the explicit action of the infinite symmetry
algebra around solutions of other models. This task might be
too difficult or even worthless for solutions on Minkowski
space. Even though solitons known to exist for principal o
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models on Minkowski space bear some conceptual similari-
ties with the Euclidean instantons, they are very different at
the mathematical level. As pointed out by Uhlenbeck,? the
unitarity condition (2.5) on Minkowski space
[R*~"(A) = R(A)] does not have any finite power series
solutions. Hence the collapse of the infinite-dimensional al-
gebra to a finite algebra might be a peculiarity of the Euclid-
ean sector. Nevertheless, the question of finding the explicit
action of the symmetry algebra could be interesting for other
models on Euclidean space. Finally, let us recall that, in the
Kyoto school approach® of the Korteweg—de Vries and Ka-
domtsev—Petviashvili equations, an infinite-dimensional
(affine) algebra also acts on the solution space. Moreover,
this action defines, as in the present case, finite-dimensional
orbits. It would be of prime interest to know if the finite
orbits in both cases bear any similarity more than coinciden-
tal.
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The gauge model based on the Yang—Mills equations for the Poincaré group cannot be
consistently quantized, at least in a perturbative approach. The regulated theory, obtained by
adding the counterterms required by consistency and renormalizability, is just the gauge theory

for a de Sitter group.

I. INTRODUCTION

Gauge theories for the Poincaré and de Sitter groups
have been extensively studied as alternative theories for
gravitation.' In this paper, “gauge theories” are to be consid-
ered as synonymous for models in which the field equations
are the Yang-Mills equations for the group. That the gauge
model for the Poincaré group could describe gravitation has
already been shown elsewhere.? On the other hand, the
quantization of such a model is expected from the start to
face difficulties because of two peculiarities of the group: it is
nonsemisimple and it acts on space-time itself. As a conse-
quence of the first peculiarity, the Yang-Mills equations are
not derivable from a Lagrangian.” As a result of the second
peculiarity, all source fields belong, besides some tensor or
spinor representation, to a ‘“kinematic” representation
whose generators are derivative fields on space-time. The
number of derivatives appearing in currents and invariants is
thereby augmented, representing a great threat to renormali-
zability. It will be shown here that such a model presents an
inconsistency in the gauge field vertices, a problem that
seems to stem from the absence of a Lagrangian. In order to
illustrate what happens let us consider an unrealistic but
instructive model. Suppose we did not know the Yukawa
coupling Lagrangian %, = gpWV, but we had somehow
arrived at the field equations in the form

DY = go¥, (1.1)
UD = — g¢¥, (1.2)
(0% + m*)p = g'VY, (1.3)

where D = iy * d, — m. Suppose further that we had some
evidence (say, “experimental”) that g's£g. This is a baffling
situation from an intuitive point of view, but the problem can
be made more definite if, ignoring the Lagrangian, we try to
quantize the system by the Kéllén-Yang—Feldman (KYF)
formalism.? The trouble is clear: as seen from the channels of
W and W, the coupling constant is g; as seen from the @ chan-
nel, it would be g’. The ¢W\IJ vertex obtained from Eqgs. (1.1)
and (1.2) would be different from that obtained from (1.3).
This trivial remark points to a fundamental inconsistency of
those equations, which are coherent only when g =g’. On
the other hand, if we examine them in the light of Vainberg’s
theorem,* which gives necessary and sufficient conditions
for the existence of a Lagrangian for a given set of equations,
we find that g = g’ is necessary for (1.1)-(1.3) to be deriv-
able from a Lagrangian.

1472 J. Math. Phys. 29 (6), June 1988

0022-2488/88/061472-05$02.50

We show in Sec. II, by using the KYF formalism, that
this kind of inconsistency is present in the Yang—Mills equa-
tions for the Poincaré group.

The fact that the Poincaré group comes outas an Inonii—
Wigner contraction limit of the de Sitter groups is exploited
in Sec. III to provide more insight on the problem. The de
Sitter groups being semisimple, a Lagrangian model can be
built up, the path integral formalism may be used to supply
the Feynman rules, and the Poincaré model is then seen as a
limit case. The comparison of the de Sitter and Poincaré
cases sheds some light on the way the inconsistencies, absent
in the former, emerge in the latter. Geometrical consider-
ations suggest that the de Sitter models can be viewed as
smoothed versions of the Poincaré model.

Inconsistencies in field theories appear mainly when re-
normalization is involved, and sometimes find remedy in the
addition of counterterms to the Lagragian, with consequent
modifications in the field equations. A notorious example is
the electrodynamics of scalar mesons, which only becomes
renormalizable if a self-interaction term Ag * is added to the
purely electromagnetic Lagrangian. As here no Lagrangian
is at hand, we may think of changing the equations directly.
A study of the possibilities arising in this line of thought is
givenin Sec. IV, where, by combining requirements of vertex
consistency and renormalizability, successive counterterms
are introduced in the Yang-Mills equations. Curiously
enough, the final well-behaved resulting theory is just a de
Sitter gauge model, which in this way appears as a “function-
ally corrected” Poincaré model.

Il. VERTEX INCONSISTENCY

The Poincaré Lie algebra is the semidirect product of
the Lorentz algebra and the algebra of the translations in
space-time. It is convenient to use the double index notation
J.p (@, =1.23,4, with a <), for the Lorentz generators
and to take J,, for the translation generators. Individual in-
dices can be raised and lowered by the Minkowski metric
naﬁ .

Taking 4”5, and B, as the gauge potentials related,
respectively, to the Lorentz sector (which constitutes a
gauge subtheory) and the translation sector, the correspond-
ing field tensors turn out to be?

F,=0,4%° —3,A4°°, —gd° A" +gd* A7,
(2.1)
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™y =0,B;—3d,B°, —gAd*, BY +g4°, B7,. (22)
The Yang-Mills equations for the Poincaré group are

8, Fbur —gA® FT 4 gF* AT = gSob, 2.3)
3,7 —gd®, ™ 4 gF* *B?, =gl*0*, (24)

where S* is the source spin density, 8" is a source energy-
momentum including coupling to the gauge fields, and / is
the Planck length.

There is no Lagrangian density from which the above
field equations can be derived.? It will be seen in Sec. IV that
some pieces of this system of coupled equations can have
Lagrangians, but the fact is that the whole system cannot.
Attempts to redefine the fields so as to make the theory more
tractable either disfigure its character by changing the mean-
ing of the fundamental fields or make it trivial. For example,
if the treatment used for the Korteweg—de Vries equation is
applied here, the fields B “, must be some derivative d, ¢ °,
corresponding to the vacuum of the model.

In the absence of a Lagrangian, the natural way possibly
open to quantization is the KYF formalism. It is convenient
to use (2.1) and (2.2) in (2.3) and (2.4) so that equations
acquire the form

04, —3,(3%4%,)

=gVl [A] —g*’ W, [4] +85%, (2.5)
OB * — 3"(6"B"”)
=gUg[A1B% —g?Z G [A1B# +1°0=,  (2.6)
where
Vet (4] =(4,°,6% —4°.,6,°)
X (8,£3° —9°3,)A,, (2.7)
W, (4] = (8.9 —6.n)
X (8,7n% — 8,*n"")A4 ‘opA ¥514 670!
(2.8)
Ugi[A]1=6,"(3,4%%" + 24, d*)
—A4°,°3, — A%, 3"
+ 074 %, —23,4°%", (2.9)
ZalA] =A%, (475"6," — 2475°6;%)
+ A% A7, (2.10)

Gauge-fixing terms should be added to the left-hand side but
they will not be important for the argument that follows.
Let us consider the sourceless case. To simplify the dis-
cussion, we shall rewrite (2.5) and (2.6) symbolically as
KA=gV[A]—g*W[A], (2.11)
KB=gU[A]B—g?Z[A]B. (2.12)
In the KYF formalism, we look for a perturbative solu-
tion in the form
A=A+gK~"V[4d]—gK'W[A4], (2.13)
B=B+gK~'U[A]B—g?K~'Z[4]B. (2.14)
Iteration to the desired order is then performed by replacing
the A’s and B’s successively in terms of the free solutions

A and B. The operator K ~' represents a convolution with
the Green’s function of the differential operator in the lhs of
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(2.5) and (2.6) with Feynman boundary conditions.”> We
shall refer to K ~! simply as the Feynman propagator in
some supposedly fixed gauge. The Feynman rules are ob-
tained by projecting each one of these perturbative solutions
on outgoing fields of the same kind. Each time they “hit” the
free propagator, these outgoing fields produce free-fields of
the same kind, so that the first contributions give precisely
the basic vertices for the Feynman rules. In the case (2.11),
such vertices are of the form g4V[A4] and g?’AW[A] and
from them just the expected three-leg and four-leg vertices
for a gauge model for the Lorentz group are obtained. Equa-
tion (2.11) is, of course, a set of coupled equations, one for
each potential 4% 5,. Take, for instance, the component
A',, . The projection is to be made on an outgoing field, 4 ',
of exactly the same kind. Other potentials 4°5,, 4°,,, etc.
appear in the vertices. In the equations for 425, and 4°,,,
the projections are made on outgoing fields 4 *;, and 4°,,
respectively. The important point is that the three-leg vertex
involving 4 ',,, 4%, and 4 >,, will appear the same when
obtained from each one of their respective equations. In oth-
er words, the expression for a vertex can be obtained from
the equation related to any of its legs, and the result is inde-
pendent of the choice of the leg. This general fact of pertur-
bative field theory is easily found for (2.11), which are in
reality the Yang-Mills equations for a Lorentz gauge model.
Ghost fields could be introduced in principle through the old
laborious Feynman method,®’ but (2.11) alone has a La-
grangian and in fact it would be simpler to pursue the whole
treatment for the Lorentz sector by the path integration
methods.

Now we come to the main point. The same consider-
ations above, when applied to the whole set (2.11) and
(2.12), lead to an insurmountable difficulty: vertices like
gB(9A4)B,gBA(JA), and g >BAAB do come out from (2.12)
but not from (2.11). There are AB couplings in (2.12) but
no field B appears in (2.11). Thus the expression for a vertex
is no longer obtained from the equation for any of its legs, it is
now dependent on the choice of the leg. With some freedom
of language, we might say that the B’s are able to ““feel” the
A’s, but not the other way round. Or still, that vertices in-
volving B’s and A ’s are present for outgoing B ’s but not for
outgoing A4 ’s. The same kind of inconsistency would appear
in our defective Yukawa mode! [(1.1)-(1.3)] withg=0
and g’ #0.

From this fundamental vertex inconsistency we con-
clude that, at least from the point of view of the KYF formal-
ism, a model with (2.3) and (2.4) as field equations is not
amenable to quantization.

lll. RELATION TO DE SITTER MODELS

For usual gauge models, it is simpler to obtain the whole
set of Feynman rules by the path integral approach and it
will be instructive to examine our special case in the light of
this standard procedure. It requires a Lagrangian, which is
missing, but we can resort to the well-known fact that the
Poincaré group P is an Inonii-Wigner contraction® of the
two de Sitter (dS) groups.” As dS is semisimple, we can
easily write down both the Yang-Mills equations afhd the
corresponding Lagrangian for a dS gauge model. The com-
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parison of the two cases will allow us to see why and where
the procedure breaks down in the Poincaré model.

The relations between classical gauge models for P and
dS have been studied in detail>'® and here we shall only
recall the main poiats. In order to see what happens to gauge
fields in the contraction process it is convenient to look at the
contraction as acting on the group parameters w®
(a,b=1,...,5, a<b). The parameters o** (a,f = 1,...,4),
related to the Lorentz subgroup, remain untouched. The pa-
rameters @™ represent ‘“‘rotation” angles, compact or not,
depending on the relative sign of 1,, and 75, where 7, is
the diagonalized dS invariant metric. Contraction requires
redefining such angles as Lo® = a®, where the a® are the
translation parameters and L is a length parameter taken to
infinity in the contraction limit. A translation is thereby
viewed as the limit of some infinitesimal rotation with an
infinite radius. The dS generators J,, obey

[ch’Jef] = — #abcd,ef Jab’ (3'1)
where
S cter = M08 — 882" — 1,687 + 0,867,
(3.2)

with [ab] meaning antisymmetrization in the indices. If
A °®, are the gauge potentials for the dS gauge model, then
A *2, remain the same through the contraction process, but
A, must be redefined so that 4>, =L ~'B?,, where
B, is the translation gauge potential of the previous sec-
tion. This can be checked, for example, by comparing the
vacuum potentials 4 *°, =3d,0* and B*, =d,a”. By the
same process, if F ?°,,, are the dS field strengths, the F*,,
become the field strengths (2.1) related to the Lorentz sub-
group, while 7%, =LF .~ become the translation field
strengths (2.2). The Yang-Mills equations for the dS model,

a#Fabyv - gA ac’uFCb#V + gF“CF“'A Cb# = 0’ (3.3)

reduce exactly to the sourceless versions of (2.3) and (2.4)
in the contraction limit L — «, and the same happens to the
corresponding Bianchi identities.

The contraction procedure has been frequently used to
approach questions involving P,'! mainly because it allows a
point to point comparison to the better behaved dS group. It
has been so in the demonstration of the nonexistence of a
Lagrangian for the set of equations (2.3) and (2.4).> Equa-
tion (3.3) comes from the typical Lagrangian

f = - iFab,quab#v’ (3-4)

in which the algebra double indices are lowered and raised
by the Cartan—Killing metric of dS. In the contraction limit,
such a metric becomes degenerate and the field equations
lose some terms. In particular, the cubic term in B, present in
(3.3) and related to the four-leg vertex typical of gauge the-
ories, is suppressed (as discussed below).

Path integral quantization can be performed without
too much ado and Feynman rules of the usual kind are ob-
tained for the dS model. For the Pmodel, we start by making
the substitution 4 *°, = L ~'B“, and follow the same pro-
cedure while keeping in mind what happens at the limit.
Also, the ghost fields with (a5) indices must be substituted
in an analogous way, but as they will not be important for
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our central problem we shall not discuss them. In reality we
shall concentrate on the inconsistency of the P model, leav-
ing aside all the details having no bearing upon it. Once the
substitution is made, (3.4) becomes

It is clear that the limit cannot be taken immediately: only
the part

L= —3F?%,), (3.6)

corresponding to a Lorentz group gauge model, with only
(2.3) for the field equations, would remain. As is frequently
the case in the contraction formalism, we should first per-
form all the calculations and take the limit at the last step,
although here we shall keep an eye on the relations to the
field equations. Because it will be enough to make our point,
we shall only examine in detail the three-field vertex: (3.5) is
written as

L=y —(L™YN[(3,B%)*
+ zgfaﬂ,yS,ES (a[pA an]B }’”B YVB ev

+ 8, B, 4%°,B",)) +2(g*], (3.7

where we have kept the dS structure constants (3.2).

We can obtain (2.3) and (2.4) from (3.5) simply by
taking variations with respect to 44, and B,,,, respectively,
and then taking L— . An important point is that (2.4) is
obtained with an overall factor L ~2, which cancels out. A
consequence is that the contributions coming from the three-
field terms in (3.7), proportional to L ~%, will remain in
(2.4) but will be suppressed in (2.3). We see in this way how
it happens that the BA coupling, present in (2.4), vanishes in
(2.3), and find the same inconsistency of the previous sec-
tion. The same happens to the terms 4 2B ? omitted in (3.7).
Thetermsin B *havea L ~*factor and are totally suppressed.

Another consequence of (3.5) is that, once the B, be-
come (beside the 47? ) the fundamental fields in substitu-
tion to the 4 ©°,, the conjugate momenta become ill-defined.
The vanishing of their time components is usual in a gauge
theory, but here also the space components vanish: the mo-
menta conjugate to B® ; is 7%, = L ~>r%,,, so that in the limit
the canonical quantization is jeopardized.

In the Feynman rules for gauge models, the group de-
pendence rests basically in the structure constants,'? whose
cyclic symmetry is used precisely to make the vertices sym-
metric in the external legs.'® The cyclic symmetry is absent
for nonsemisimple groups, which suggests that the inconsis-
tency found here might be a common illness of all models
involving such groups.

We have seen that, as long as we take the Yang-Mills
equations as the very foundations of the theory, the Poincaré
model is inevitably inconsistent. Let us forget the equations
for a moment and use the contraction procedure to obtain a
quantized theory. This amounts to taking (3.5) seriously
and obtaining the resulting Feynman rules. The task is rath-
er lengthy albeit standard. The results are simple and, once
found, easily understood. Here we shall only describe the
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main points of the resulting theory, trying to justify them by
general arguments.

(i) The Lorentz sector constitutes a gauge subtheory,
with the usual rules.

(ii) Asseenin (3.5), the propagator of the B fields will
be just the usual one, in some fixed gauge, times a factor L %
the same applies to the corresponding ghosts.

(iii) Vertices are as usual, with the difference that each
B leg (or corresponding ghost) gains a factor L ~' (an ob-
vious consequence of the 4 , — L ~'B ¢, substitution).

Note that no final factor of L comes out from internal B
lines in a diagram, since the L 2 factor in the propagator is just
compensated by the L ~' factors in the two vertices connect-
ed. Graphs with external B legs will retain L —! factors.
However, if we calculate an S matrix element with N exter-
nal B legs, the same L ~— ¥ factor will appear in each term in
the perturbative series and, consequently, cancel out. Only
when graphs with different numbers of external B legs are
compared will the L ~! factors play a role.

The geometric setting for a P gauge model is best seen as
an associated bundle, with Minkowski space as the base
manifold and the fibers being tangent (also Minkowski)
spaces on which the group acts. In the analogous setting for a
dS model,? each tangent space is replaced by a dS space char-
acterized by a length parameter L. When L - «, each dS
space approaches a tangent Minkowski space. If we use con-
formal coordinates® for each dS space, its points will be pro-
jected on a Minkowski space. In such coordinates, the natu-
ral dS group parameters are precisely @ and a, and the
gauge fields become naturally 4 ®, and B . The quantized
theory sketched above is in reality a dS model, viewed in
conformal coordinates. To use an analogy, a dS model stands
to a P model like a parabola to its asymptote, which is ap-
proached more and more when L becomes larger and larger,
but it is never really attained. The dS model appears as a
“smoothing” of the incongruous P model and seems to be its
nearest quantizable theory. In Sec. IV we shall arrive again
at a dS model from a rather different approach.

IV. CONSISTENCY AND LAGRANGIAN CHARACTER

Lagrangian theories do not exhibit the inconsistency de-
scribed above. We could ask whether or not vertex consisten-
¢y implies the presence of a Lagrangian or, in other words,
whether only Lagrangian theories are quantizable in a co-
herent way. We shall not consider this very general question
here. We shall restrict ourselves to Egs. (2.3) and (2.4) in
the sourceless case and proceed to a kind of naive patchwork,
trying to see which terms should be dropped or added to
make them into consistent equations. We find that every
time they become consistent, they also become derivable
from a Lagrangian.

We can start by simply dropping all terms coupling B to
A in (2.4). The field equations become

3, Ff —gd =, FP 4 gF* 4", =0, (4.1)
d,(d*B*—3*B*) =0, 4.2)
which  are  derivable from the  Lagrangian

L= —~WF?,) —4(d*B*— 3 B*). They are the
field equations of gauge models for the Lorentz group .
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and for the Abelian translation group T'; ; . Their set would
describe a model for the direct product .¥’ ® T'; . Notice,
however, that, as the fields B*, are Lorentz vector fields,
they should in reality couple to a Lorentz gauge potential.
We take this into account by treating B, as a source field:
usual derivatives are replaced by covariant ones and a source
current appears in (4.1). As B“, is a vector, it is its rota-
tional that goes into the covariant derivative 7°,, given in
(2.2). Also the divergence in (4.2) becomes covariant. Ver-
tex consistency then fixes the source current, and the new
equations are

a”FaBﬂv _ gA "WF”B‘“' + gF"y“"A rﬂu —_ gT""“'Bﬁ”,
4.3)
3,7 — gAd %, T =0. (4.4)

These equations are derivable from .¥° = — 1F? — 172, from
which it can be checked that the source currentin (4.3) is, as
it should be, the spin density. We have been treating B “, as
“normal” vector fields with the canonical dimension
(mass)'. In reality, they have a defective dimension, as is
clear from the redefinition 4 *°, =L ~' B®, used in the
contraction procedure. In order to correct this in the above
equations, it is enough to add a factor L ~' to each B , field
(and consequently to every 7%,, ). The only novelty will be a
factor L ~? in the spin density.

We can now compare the resulting equations with the
sourceless cases of (2.3) and (2.4); the only difference is the
term gF“ ** B7, in (2.4). If we simply add this term to
(4.4), vertex inconsistency comes out, but now we can relate
it to a simple cause: such a term is obtained from a Lagran-
gian ¥’ = — (g/2)F,3 *"B“,B*?, when variations are tak-
en with respect to B, ; however, .7’ should also contribute
to (2.3) or (4.3) through its variations with respect to 4, .
This contribution to (2.3) reestablishes vertex consistency.
The new Lagrangian,

L = —IF " (F®,, +2gL ~*B*,B",)

— 4L T, (4.5)
leads to a rather complicated theory. Then comes a beautiful
point: this theory, as it is, is nonrenormalizable because of
the graphs with four external B legs and exchange of two or
more 4 ’s. When we look for the necessary counterterms, we
find that [ — (¢°/4)B°,B” B,*Bs;"] must be added to
(4.5). This is quite natural for the four-legged graphs be-
cause they have a zero divergence degree. This situation is
analogous to the case of scalar electrodynamics, where the
renormalization of the higher order graphs with four exter-
nal scalar legs, also of vanishing divergence degree, enforces
the presence of a A@ * term in the Lagrangian. '? The addition
of the B* term puts (4.5) into the form

L = —UF "+ gL "B, *Bg*)* — (L "%/4) (1"
(4.6)

This is the same Lagrangian as (3.5). The added B*
term leads to a cubic term in (2.4), just that one we have seen
suppressed by contraction in Sec. III. Therefore, summing
up, by adding to (2.3) and (2.4) the terms necessary to wash
out the vertex inconsistency, and then adding a last term to
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make the model renormalizable, we arrive at a de Sitter theo-
ry.

V. FINAL COMMENTS

The absence of a Lagrangian is a most grievous flaw in a
field theory. In the case considered here, the group contrac-
tion procedure can be used to show that the conjugate mo-
menta of the translation gauge potentials are vanishing, so
precluding a coherent canonical quantization. The existence
of a Lagrangian for the Yang-Mills equation is closely relat-
ed to the structure constants cyclic symmetry,” which fails
for nonsemisimple groups. Such a symmetry is used to ob-
tain the Feynman rules for gauge models,'® which have con-
sequently to be reexamined. We have seen that, for the Poin-
caré group, the very definition of a vertex becomes
impossible and quantization, at least in a perturbative ap-
proach, unfeasible. The addition of counterterms required
by consistency leads to an intricate theory. Interestingly
enough, the addition of a B * term required by renormalizabi-
lity turns the model into a gauge theory for the de Sitter
group, which appears as the nearest coherently quantizable
theory.
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This paper extends the results of an earlier article [J. Math. Phys. 27, 1154 (1986)] to include
the solution of the s-wave Bethe-Goldstone equation for the interaction of two nucleons
characterized by a potential with an infinite repulsive core and a nearby attractive well. The
solution again exhibits band-limiting behavior and is obtained in closed form via the prolate
spheroidal wave functions. It is shown that the attractive part of the interaction potential
perturbs the far-field scattered wave so that healing of the nucleon wave function is achieved
only when the attractive part is weak. Finally, asymptotic results for the case of small core

radius are also calculated.

I. INTRODUCTION

This paper is an extension of an earlier article, where we
treated the s-wave Bethe—Goldstone equation for a pure
hard core potential and obtained a closed form solution. The
results are in excellent agreement with the approximate iter-
ative solution found in the original paper by Bethe and Gold-
stone.” Here, we utilize the methods developed earlier and
apply them to the solution of the Bethe-Goldstone equation
for the so-called standard hard core potential of Moszkowski
and Scott.? It is simply an interaction potential with a repul-
sive hard core plus an attractive well. Again, we seek only the
s-wave solutions because they are the only ones that pene-
trate to small relative distances, where the effects of the sin-
gular potential are strongest. Any perturbative treatment of
the problem is still inapplicable in this case since the matrix
elements of the singular part of the interaction potential with
respect to the independent particle wave functions are all
divergent. The present problem exhibits band-limiting be-
havior and we are, once again, prompted to seek a solution in
terms of prolate spheroidal wave functions.

As a brief refresher, consider two nucleons interacting
in the Fermi sea according to the Brueckner independent
pair model. In the center-of-mass coordinate system, the
two-nucleon wave function ¥(r) satisfies the Schrodinger
equation**

[(##/m*)A + €ly(r) = Qro(NY(r), (LD

with relative coordinates r; effective mass m*; and the Pauli
projection operator Qp, which effectively removes from
v(r)¥(r) those Fourier components with relative momen-
tum k < kg, the Fermi momentum.

The projection operator, defined by

is idempotent, i.e., Q% = Q. Consequently,’ its spectrum is
o(Q¢ ) = {0,1}, which, when translated in terms of the Fer-
mi distribution, is

I/l,u)» k>kF,
A =[
O [Au) 0, otherwise.

If we consider only s-wave solutions in the form ¥(r)

(1.2)

(1.3)
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= r~'u(r), Eq. (1.1), together with Eq. (1.3), can be trans-
formed into the scalar integrodifferential equation (2.1).'?
This will be the focal point of the present paper.

We have demonstrated in the present paper that the far-
field scattered wave is perturbed, the severity of which de-
pends on the strength of the attractive part of the interaction
potential, contrary to the normal plane wave assumption
usually adopted in most nuclear matter calculations. Modu-
lation of the scattered wave is slight only, however, when the
attractive part is weak.

We have also shown that the contributions of the hard
core and the attractive part can be distinctively separated. In
short, the present paper concentrates only on the effects of
the attractive part of the interaction potential. To achieve
consistency with our earlier notations,’ all new terms repre-
senting the contributions from the attractive well are indi-
cated by the superscript asterisk (s). Finally, in some of the
present sections the calculations are quite involved. In order
to preserve the continuity of the discussions, we have dele-
gated some of these calculations to the Appendixes.

This paper is organized as follows: In Sec. II, we present
the s-wave Bethe—Goldstone equation for the standard hard
core potential. Section III briefly summarizes some useful
results concerning band-limited and prolate spheroidal wave
functions. A closed form solution of the Bethe—-Goldstone
equation is given in Sec. IV. In Sec. V, we demonstrate that
an approximation for small core radius ¢ (the case of most
physical significance) can be obtained quite readily. Section
Vlis concerned with the far-field scattering problem, where-
in we show that the scattered wave is perturbed. Finally, an
approximation of the normalization constant for small ¢ is
calculated in Sec. VII. '

l. THE s-WAVE EQUATION WITH THE STANDARD
HARD CORE POTENTIAL

Consider the dimensionless integrodifferential equa-
tion'

2 -
(:,.2 +K2)u(r) =v(ru(r) —J- (P u(r)dr
(¢]

(2.1a)
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where the kernel is
x(rr)=(1/m
X[sin(r—=rY/(r—r)—sin(r+r)/(r+r)].
(2.1b)
This will be referred to as the s-wave Bethe-Goldstone equa-
tion.
The interaction potential v(r) to be considered is the
phenomenological standard hard core potential of Mosz-
kowski and Scott, with a single bound state at zero energy

and an effective range of 2.5 fm (fermi) defined by (dimen-
sionless) '

+ oo,

—ptr—o
— pge T HT9,

r<e,

v(r) = [ (2.2)

r>c,

where v,, 1, and ¢ are dimensionless quantities consistent
with Eq. (2.1). More precisely, ¢ = kg, p = ji/kg, and
Vo = 2m*,b/#k %, with m%, the reduced nucleon effective
mass. The original parameters of Moszkowski and Scott? are
¢=04fm, i = 2.084 fm ™', and i, = 260 MeV. In the fol-
lowing analysis, it should be clear that all calculations are
done in terms of dimensionless quantities.

This more realistic choice of potential, although it over-
simplifies the actual nucleon-nucleon force, is a one-step
improvement of the grossly simplistic pure hard core poten-
tial. The attractive exponential well is chosen to be rather
weak so that it does not contain large momentum compo-
nents. This guarantees that the two-nucleon wave function
cannot be “bent” to produce more than one bound state. The
expression ‘“‘the attractive part is rather weak” is then taken
to mean that the attractive part of the interaction potential
does not cause appreciable modulation of the two-nucleon
wave function after scattering. This, as will be seen later, is
essential to the convergence of any nuclear matter calcula-
tions using this potential. A similar observation, albeit based
on a different approach from this paper, is discussed in Refs.
4 and 6. The criterion for weakness is determined in the
discussion following Eq. (6.5), wherein it is shown that the
depth of the attractive potential #, must be much smaller
than the effective kinetic energy of the nucleon pair in the
Fermi sea.

The two-nucleon wave function u(7) and its slope van-
ish inside the hard core and are finite elsewhere. Further-
more, in order to obtain a nontrivial solution of Eq. (2.1), it
is necessary for the slope to be discontinuous at the core
boundary r = ¢. Consequently, the product v(r)u(r) has a
S-function discontinuity at » = ¢ and must remain finite for
r> c. Finally, to include the attractive part of the potential,
we write

v(Pu(r) =A[8(r—c¢) —ve #*"=98(r —¢)]

+o(r)f(c—r), (2.3)
where 6(-) is the Heaviside step function, §(+) is the Dirac
delta function, and 4 is the normalization constant to be
determined approximately from the condition that the wave
function asymptotically approaches the unperturbed free-
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particle wave function so that there is no s-wave phase shift.
This condition is

lim [u(r)/r]—j,(Kr), (2.4)

r— + o

where j, is the spherical Bessel function of zeroth order.

This important stipulation [ (2.4)] is a consequence of
the Pauli projection operator Qr which effectively blocks
any interaction between nucleons at large separation. In ef-
fect, the nucleons return to their independent particle states
before the next collision occurs and the two-nucleon wave
function is said to have ““healed.” However, it will be shown
in Sec. VI that, unlike the pure hard-core problem, this is
only true when the attractive part of the interaction potential
is very weak. Otherwise, healing will not be complete and
there will be an appreciable phase shift. The strength of the
attractive well is embodied in the number v,. In Sec. V [cf.
Eqgs. (5.7) and (5.8f) ], the wave function is calculated with
an explicit corrective term due to v,. The overall normaliza-
tion constant 4 is also calculated in Sec. VII with corrective
terms arising from v, [cf. Eq. (7.8)]. It is interesting to note
that this “healing” phenomenon is related mathematically
to the fact that the kernel y (#,#) has no singularity.

A few words of clarification are necessary at this point.
In the absence of the attractive part of the interaction poten-
tial, we have v,=0 so that Eq. (2.3) reduces to the same
expression used in Ref. 1, in agreement with the original
work of Bethe and Goldstone.? It has been shown that for
this pure hard core problem, the asymptotic limit (2.4) is
reached very rapidly, resulting in virtually no scattering and
hence no modulation of the wave function for large separa-
tion distance r.">*® The healing of the wave function for
large r is complete in this case. A healing distance has also
been calculated® and was shown to be less than the internu-
cleon distance so that, in essence, the nucleons return to their
independent-particle wave function before the next collision
takes place. In the present problem, however, due to the
presence of the attractive well, we do not expect complete
healing. This means that, depending on the strength of the
attractive well, the far-field scattered wave may not quite
reach the plane wave limit, viz. j,(Kr). In fact, as demon-
strated by the result of Eq. (6.5), healing will be complete
only if the term involving v, is negligibly small. The wave
function in this case is said to be “wounded.” Gomez et al.,?
using very crude plane wave approximations, have calculat-
ed the phase shift due to the attractive part of the potential
(modeled as a weak square well); it turns out to be signifi-
cantly small for large separation distance. A similar discus-
sion concerning the weakness of the square well potential
can also be found in Ref. 8. The asymptotic limit (2.4) is
therefore used only as an approximation in calculating the
normalization constant 4 under the condition that the at-
tractive part is weak. This is entirely consistent within the
framework of Brueckner’s independent pair theory.

The extra contribution w(7) in Eq. (2.3) is nonvanish-
ing only inside the core and is to be determined from the
condition that u(r) vanishes inside the hard core. From Egs.
(2.1) and (2.3), this translates to
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w(r) — f x(r,rYo(r)dr
0

=AX(r,c)—v0Af (e #"=9dr, r<e,

2.5)
subject to the condition that
0, r>g¢
= 2.6
() {ﬁnite, r<c. (2.6)

Equation (2.5) is a Fredholm integral equation of the sec-
ond kind and can be solved for the unknown w(r) once the
integral

I(r,c)EJ x(rr)e U= gy 2.7)
is evaluated. Clearly, the integral I(r,c) accounts for the
contributions due to the attractive part of the potential. This
innocent looking term considerably complicates the calcula-
tions to follow.

The equation for a pure hard core, i.e., for v,=0, was
originally solved by Bethe and Goldstone using an approxi-
mate iterative procedure.” The approximate solution is valid
only for small ¢. Recognizing that condition (2.6) implies
that the function w(r) is band limited, we have solved the
corresponding hard core equation in closed form using pro-
late spheroidal wave functions. Here, the contribution @ (r)
remains band limited; this suggests that Eq. (2.5) can alsobe
solved using the method developed in Ref. 1.

To facilitate the solution of the integral equation (2.5)
via band-limited functions, it is first necessary to extend the
equation into the region — ¢ < 7 < 0. This requires the exten-
sion of @(7) and the nonhomogeneous part H(7,c), defined
by

H(re)=sy(re) —v I(rc), (2.8)
as an odd function of 7 in the interval — c<r<0, i.e,,
0 )
co(r)=[w(r)’ <r<e (2.92)
~o(—r), —c<r<0
H(rc), O<r<e,
c) = 2.9b
H(re) {—H(—r,c), —c<r<0, (2.99)
In doing so, Eq. (2.5) becomes
w(r) -1 -Ln(r—_,r—)w(r’)df =AH(rc), |ri<c,
mJ_. r—r
(2.10)
subject to the condition
0, [rl>c
= 2.11
(r) [ﬁnite, |7] <c. (211

The integral equation (2.10) is of the same form ob-
tained in Ref. 1, but with a very different nonhomogeneous
term H(r,c). The problem at hand is still of the same band-
limiting variety as before and its solution can be obtained
similarly using prolate spheroidal wave functions. In Ref. 1
we have presented a summary of the theory concerning the
band-limited solutions of the homogeneous integral equa-
tion
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1

Af() = S5 sme(t—s) ds,
-1

w(t—s)
via prolate spheroidal wave functions. This topic will be
touched upon briefly in Sec. III.

It|<1, (2.12)

1. SUMMARY OF KNOWN RESULTS ON BAND-LIMITED
FUNCTIONS AND PROLATE SPHEROIDAL FUNCTIONS

The following theorem summarizes the known results
regarding the eigenvalues and eigenfunctions of the integral
equation (2.12).

Theorem: For fe L,( — 1,1) the integral operator

Kf=

with a continuous and symmetric kernel for all — 1«1,
s<1, is a positive self-adjoint compact operator in
L,( — 1,1) so that the integral equation

Kf=4f |ri<1,
has a denumerable set of eigenvalues

sinc(t—s

)
d
1 w(t—s5) fisrds,

3.1)

1>4,>4,>>0,

to which each 4, is an associated real-valued eigenfunction
f:(2), which forms a complete set in L,( — 1,1) and which
satisfies the orthogonality condition

1
-1
and the eigenvalue problem
1 .
() A4,f(0) =f FloIet=9 4oy
—1 m(t—3s)
(3.2b)

The eigenfunctions f; (¢) are also bounded continuous solu-
tions of the differential operator

d d
L(H)Y=l=—@ut?*—-1= 2} . .
) [dz(t )dt+” ) (3.3)

satisfying the eigenvalue problem

Lfi=x.f»
with eigenvalues O < yo <y, < - .

The eigenfunctions f; (¢) are band limited and express-
ible in terms of prolate spheroidal wave functions of zeroth
order, S, (c,2), neZ™. The prolate spheroidal wave func-
tions form a complete set in L,( — 1,1) and are odd or even

functions of ¢ according to whether 7 is odd or even.
For fixed neZ™ and small ¢, we have

—'00<t<oo,

Aoy == [___22"("”3 __] 1
T L(2r)'(2n + 1)!
(2n + 1)c? 4 ]
_ )
XCXP[ n = D)2an 43y L HOE
(3.4a)
Son(6t) = P, (1) + & nn—D___p )

22n—-1D?@n+ 1)

__(n+DH(r+2)
22n+3)Y*2n+ 1)

Pm(r)] +0(Y,
(3.4b)
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where the P_’s are the Legendre polynomials so that, in the
limit as ¢ -0,

¥.(0)=n(n+1), neZ*, (3.52)
Son (,8) 5P, (1) . (3.5b)
O

The theory of prolate spheroidal wave functions appears
in several sources. The Theorem summarizes only selected
results pertinent to this paper. A list of references can be
found in Ref. 1.

IV. SOLUTION OF THE BETHE~-GOLDSTONE
EQUATION

After the change of variables

Since K is symmetric and compact, by the Hilbert-Schmidt
theorem the solution of Eq. (4.2) can be expanded in terms
of the prolate spheroidal wave functions in an absolutely and
uniformly convergent series

o0 in
=g+ Y (1 7

n=1 -

) (gL U f(),
’ (4.3)

where the eigenfunctions are normalized as follows:

fu () = [A,(c)/u,(€)]"2S,, (1),
1 (4.4)
12 (c) =f [Son(c,t)]?dt.
-1

The expansion coefficients can be calculated as

1
(g(t),f,,(l))=f g) f,(dt=1—up, 11, (4.5a)
-1

r=ct, ¥=cs, A 'o(ry=1), H(rc)=g(),
(4.1)  where
. (2.10) beco 2/¢)A 1), dd,
Eq 1 ec mes Iz((() /e)A,(¢) £, (1), n odd (45b)
) —f i) =) o gy, Jt]<l.  (42) » m even,
1 m(t—3s) and
|
et (! }
1 —_— —HtImiE —De(l —1¢ t)dt, dd ,
11=j Iete) f,(Ddt =47 J-_,e mAE[(p=Del=n1H s, n o (4.5¢)
—1

0, n even.

In arriving at I and II, we have used the parity f, ( — )
= ( — 1)"f, (¢) and the fact that g(¢) is an odd function of r.
The quantity I, representing the contribution of the hard
core, was calculated in Ref. 1. Again, it is clear that the
quantity IT is due to the contribution from the attractive part
of the potential. A derivation of II can be found in Appendix
A

Therefore, the complete solution of the integral equa-
tion (4.2) is

S (1)

e
_UO._.
w

2
1) = o(¢ —
S g()+n§d[0(l—/1,,)

1
xIm [J- e *E [(u—iDe(1—1")]
~1

><f,,(t')dt’”f,,(t), [t]<1. (4.6)

In terms of the functions S,, (¢,t), we have

243
f=g®)+ Y [———L——So"(c,l)

nioda Le(1 —/1,,)14,,
/1 2
—_ e Im{]*(c)}]S L (ct),
7(1—A4,)u, ° °
lt| <1, (4.7)
where
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r

1
I*(c)= {J e ME [(u—iDe(l ——t’)]f,,(t')dt’] .
-1
(4.8)

This is the complete closed form solution of the integral
equation for the extra contribution w(r). In principle, an
approximation can be obtained from Eq. (4.7) for any de-
sired order of ¢. Unfortunately, the integral 7 *(c) cannot be
integrated analytically in closed form. We shall present an
approximation for small ¢ in Appendix B.

The two-nucleon wave function vanishes inside the hard
core so that the integrodifferential equation (2.1) becomes

2 .
(; > +K2) u(r) =A4[8(r—c) —y(re) —vee #" 9]
-

-J x(r.rYo(r)dr
0

— AUOJ y(rr)e ¥ =gy,

r>c,

=F(r) — F*(r), r>c, (4.9)

where
F(ry=A[6(r—c) — y(re)] —J xy(r.,")o(r)dr
’ (4.10a)

and
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F*(ry=Ape+"~9 —AvOJ y(r)e #U = dy,
(4.10b)

With the requirement that #(0) = 0, Eq. (4.9) has the solu-
tion

u(r)=%f [F(s) — F*(s)] sin K(r —s)ds, r>c.
0

(4.11)

The closed form solution of the (dimensionless) s-wave
Bethe-Goldstone equation for the standard hard core poten-
tial is now complete apart from the normalization constant
A.

Thus far, no approximation schemes have been invoked
and the solution of the problem is exact. It may be math-
ematically aesthetic at this point, but all the subtleties of the
physics invoked remain to be seen. In Sec. V we shall seek for
an approximate solution for the small core radius; some in-
teresting observations will also be presented in Secs. VI and
VIL

V. APPROXIMATION FOR SMALL CORE RADIUS

Since the typical model of the nucleus exhibits only a
short-range hard-core potential, it is necessary to analyze the
problem only for the case of small core radius ¢. In terms of
the original interval 0 < 7 < ¢, Eq. (4.7) becomes
A7 '\o(r)=x(re)+ Y [B, ~B; Im{Z*(c)}]

n odd

XSOn (C, £>, 0<r<c, (5.13)
c
where
B, =[24;/c(1—24,)u,(c)]S,, (c1) (5.1b)
and
Bi=[AL/(1 —A4,)u,(c)]ve*. (5.1¢)

The integral in Eq. (4.10b) is simply I(r,c) given in Eq.
(2.7); thus

ATIF*(r) = vge U9 4 pl(rc) . (5.2)

For small ¢, we can crudely approximate /(r,c) as follows:
I(rc) Ef x(rnr)e #U =4y
- eﬂfr emw ST =T) 4y
¢ r— r’

oo . g
_ oy SIN(r+r
_3#0f e #/__(_'_{'Tldr'
c r+r

o .
_ _ . sins
= e#(¢ ”f e ds
c—r Ay

«© .
__e/,t(c+r)J‘ e—,us Smsds
c+r S

~e* =" tan= ! (1/u) — e+ tan~! (1/p),
for smalle, r<ec,

= —2e#sinh( urtan™" (1/u),
for small ¢,

r<c. (5.3)
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Hence, Eq. (5.2) approximately becomes
A 'F*(r) ~ve*[e # —2sinh( ur) tan~'(1/u)],
for small c, (5.4)

Upon substituting w(r) from Eq. (5.1a) and using the iden-
tity

f ¥ (5,5')Sg, (c, s_) ds' = 4,8, (c, f) R
0 [4 C

the quantity F(r) in Eq. (4.10a) becomes

r<c.

(5.5)

F(ry=A[6(r—c) —y(ro)] — j x (58 x(s',c)ds
0

— 3 [B.—B*Im{I*()}]S,, (cﬁ) (5.6)

n odd C
where
B,=A,B,, B*=A,B!.
The above expression is identical to the one obtained in Ref.
1, but with an additional term B *.

With the above expressions, the two-nucleon wave func-
tion from Eq. (4.11) becomes

u(r) =—Lf [F(s) — F*(s)] sin K(r — s)ds
K Jo

=(A4/K) A —1I 4 III 4+ III* — III**), (5.7)
with
I=f [8(s —c) — y(s,¢)] sin K(r — 5)ds, (5.8a)
0
II= f [ f X(s,s’)x(s’,c)ds’] sin K(r — s)ds
0 0
4* (r sinKr
217 (_k—_ K? ) (5.8b)

m= 3 J Son (c,-z—)sinK(r-—s)ds~0(c'°). (5.8¢)

n odd JO
The analysis for the above quantities has been done in Ref. 1.
The contributions of the attractive part of the potential
to the wave function are

I*= ¥ Bm{I*()}

n odd

X J' SOn (C: i) sin K(r-s)ds, (5.8d)
(o] C

HI** =A"' | F*(s)sinK(r—s)ds.

0

(5.8¢)

The integral in IIT* can be integrated approximately for
small ¢ by using the limiting value of S;,, in Eq. (3.4b). After
some work and using the results of the Theorem, it can be
shown that

II*~0(c%) .

For small ¢, the integral III**, upon using Eq. (5.3), be-
comes
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IIT* ~ [vge”/( u* + K2)] {[ g sin(Kr) — K sinh( ur)]
—2tan"'(1/u)
X [ p sin(Kr) — K cos(Kr) — Ke™*"]}. (5.8)

Equations (5.8¢c) and (5.8f) show that the contribu-
tions of IIT and ITI* are negligible and that the major contri-
butions to the wave function come from I and II, which
represents the hard core, and from ITI**, which represents
the attractive well. The contribution III** represents the
corrective term to the two-nucleon wave function in the
presence of the attractive well. Without the attractive part of
the potential, i.e., v,=0, the major contributions come from
I and II and the result is identical to the pure hard-core
problem solved in closed form in Ref. 1.

VI. FAR-FIELD SCATTERING

In this section, we analyze the asymptotic behavior of
the two-nucleon wave function for large separation distance
r. The two-nucleon wave function (4.11) can be rewritten as

u(r) =—l-jr [F(s) — F*(s)] sin K(r — s)ds
K Jb

=MJ’ [F(s) — F*(s)] cos Ks ds
K b

_ Cos Kr f [F(s) — F*(s)] sinKsds, r>c.
K o
(6.1)
The far-field scattering condition (2.4) requires that
lim | [F(s) — F*(s)] sin Ks ds—0 (6.22)
r— + « Jo
and
lim [F(s) — F*(s)] cos Ksds—1. (6.2b)

r— + o Jo

The condition (2.4) follows from the requirement that
the two-nucleon wave function u(r) asymptotically ap-
proaches the unperturbed free-particle wave function for
large separation distance . However, it will be shown in the
following that this is not entirely true unless the attractive
exponential well is rather weak so that it does not apprecia-
bly perturb the two-nucleon wave function for large separa-
tion distance r. We have also pointed out earlier that in the
presence of the attractive well, healing of the wave function
need not be complete. The following analysis demonstrates
1t.

In Ref. 1, we have shown that for small c,

lim F(s)sin Ksds—-0.

r— + o Jo

(6.3)

Let us now consider the limiting value for F *(s). Upon using
Eq. (4.10b), we have
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lim F*(s)sin Ksds

r— 4+ o Jo
= lim Avoe”‘f [e"“+J‘ e_“’;((s,r’)dr’]
Fes + o0 (0] [

X sin Ks ds

r— + o Je

= Avge"* (%) + Avge® lim e H
©

X [f x(s,r) sin Ks ds] dar,
0

pe

=#’:LfK—2 [K(1+ cos uc) + p sin Kc] ,

0<K<«1, (6.4)

where the interchange in the order of integration on the sec-
ond line is justified since the integrals involved are uniformly
convergent.® The integral between the square brackets is cal-
culated in Appendix C.

Combining Egs. (6.3) and (6.4), we arrive at the inter-
esting result

lim [F(s) — F*(s)] sin Ksds

r—+ o Jo
Avge#
- K2
0<K <1,

[K(1+ cos uc) + u sin Kc] ,
(6.5)

which shows that the plane wave limit is not reached and the
far-field scattered wave is therefore perturbed. This is an
important observation because it is assumed customarily in
most nuclear matter calculations that the nucleons return to
their independent particle states before the next collision oc-
curs. This should therefore be taken only as a rough approxi-
mation for a potential with a very weak attractive part. For
an attractive well with appreciable strength, the calculations
must therefore be handled with care. With the parameters
chosen for the Moszkowski and Scott® potential in Eq. (2.2)
and the fact that K < 1, the rhs of Eq. (6.5) has an order of
magnitude less than unity times Av,. Since A #0, clearly the
rhs of Eq (6.5) is negligibly small only if v, € 1. When trans-
lated in terms of conventional units, since v, = 2m¥ v,/
#kZ [cf. Eq. (2.2)], we have

Do<#kZ/2mt, ,
with m*, the effective nucleon mass in the Fermi sea. This
implies that the far-field scattered wave is not appreciably
perturbed only when the depth of the attractive potential is
much less than the effective kinetic energy of the nucleon
pair in the Fermi sea. Observe further that in the absence of
the attractive well, the rhs of Eq. (6.5) vanishes and we have
the same result obtained in Ref. 1. This is in agreement with
the original work of Bethe and Goldstone? for the pure hard-
core problem.

Although the above analysis was performed for a small
core radius, observe that Eq. (6.5) remains finite for c—0so
that, in effect, the conclusion reached is still true regardless
of the size of the radius (but it must be within reasonable
bounds of the phenomenological potential used in the calcu-
lation). This implies that the conclusion regarding the mod-
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ulation of the far-field scattered wave also holds for other
very repulsive phenomenological potentials, e.g., the Reid
soft-core potential. A “soft-core” potential has, by defini-
tion, a very repulsive core that goes to infinity only for »—0,
instead of extending over the region 0 < 7 < ¢. The important
aspect in this section is the strength of the attractive part of
the interaction potential. Theoretically, the attractive part
should not cause any appreciable modulation of the wave
function since any modulation would contain mostly Four-
ier components with wave numbers inside the Fermi sphere;
these components are not admitted in the Bethe~Goldstone
equation because they are occupied by other nucleons.*

Vil. NORMALIZATION CONSTANT A

Under the assumption that the attractive part of the in-
teraction potential is rather weak, we can find an approxima-
tion of the normalization constant 4 for a small core radius.

Now, considering Eq. (6.4) with cos Ks instead of
sin Ks, we have

lim F*(s)cos Ks ds

r— + o Jo

o

— ur
el‘

= Ap,e* (—2_—'[:?) + Ave™ lim
7

r—+ o Je

X [ f x(s,r') cos Ks ds]dr’ . (7.1)
0

After some manipulations and a change of variables, and in
the limit as »— + oo, the integral inside the square brackets
becomes

(1/m)(IV-cos K¥ + V-sin Kr') ,
where

.
IVEZJ'Eﬁi%Eéldt
0

=4si(r) —si[r(1 - K)] —-si[rQ+K)] +7

(7.2)

(7.3a)
and
Ven 1—K’ +2J" sin f cos Kt dt
+K t
=In|l — K|+ 2ci(¥)
—ci[7(1 -K)] —ci[F(1 +K)]. (7.3b)

In doing so, we have used the formula in Ref. 10 [Eq.
(2.641)] and the sine and cosine integrals defined by

_J smtd

x t

_f costd
x t

Consequently, the integral in Eq. (7.1), viz.

si(x) =
and

ci(x) =

VIEf e # (IV-cos K¥ + V-sin K7 )dr , (7.4)

can now be integrated approximately. After repeated appli-
cations of the formulas in Ref. 10 [Eqs. (6.261) and
(6.262) ] and some rather lengthy calculations, we obtain, in
the limit as ¢ -0,

1
g+ Knjl —K| K % +(2K+1) B 24 (14K)?
VI 2 2 - 2 2 +41n 2
p+K dr(pu”+K*) p+ (1 -K)
l+2K+,u )2+4K (1 = 2K+ p?)* + 4K %u?
~In[(1 — K2 +4?)? + 47K ? ——ln[( [
. H K] 1+ K 15"
-k [4tan"[———2’u ]-}-tan”‘ 20+ K ]-—tan_l 20— K ]
(@2 + K2 1—K?_ 42 142K — 12 1—2K — 2
_ 2uk _uk 2uk
+ tan '[ ] -1 —2tan” [ ] 7.5
142K +u? e 1 —2K+p4° 1 -K?*4p? 7

Hence, for small ¢, Eq. (7.1) is

lim F*(s) cos Ks ds~ Av,e "‘[—2'“—- + VI] .
r—+w Jo ur+K?
(7.6)

Also, the first integral in Eq. (6.2b), representing the pure
hard core, has already been calculated in Ref. 1:

lim F(s)cos Ks ds

r— + o JO
=A Iim [[6(s~c) —x(s0)]
r— + o Jo
—f x(ssHx(se)ds — Y B,S,, (c, f)]
0 n" odd [
X cos Ks ds. (7.7)
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U

Finally, using Eqs. (7.6) and (7.7), the normalization
constant 4 can now be determined easily from Eq. (6.2b),
viz.

A '~ [pure hard core terms Eq. (7.7)

—vee”(u/(p*+K?) +VI)]. (7.8)

With this, knowledge of the two-nucleon wave function

is now complete. Equations (5.7), (5.8), and (7.8) consti-
tute the complete closed form solution of the problem for the
small core radius c. Although we have performed a detailed
analysis only for small ¢, in principle a similar analysis can
also be carried out for other values of ¢; however, this is a
somewhat academic exercise of seemingly no known impor-
tance since the currently accepted nuclear model has a smal}
core radius of ¢=0.4 fm. Similar important quantities such

Michasl K. Ong 1483



as the reaction matrix and the binding energy can also be
determined, but the calculations involved are quite difficult
and cumbersome. Finally, observe that in the absence of the
attractive part of the interaction potential, i.e., v,=0, Eq.
(7.8) reduces to the same result obtained in Ref. 1.

In conclusion, it might be added that with the success of
the present method, perhaps the Bethe-Goldstone equation,
using more realistic (and currently popularly used) nu-
cleon—nucleon potentials, e.g., the Hamada-Johnston and
Reid soft-core potentials, may now also be amenable to a
closed form solution.

APPENDIX A: DERIVATION OF EQ. (4.5¢)
Consider Eq. (4.5¢),

1
IIEJ I(r,c) £, (rdr, (Al)
-1
where
l(r,c)EJw x(rnrYe #7—dy (A2)

Upon the substitution for y (7,7) from Eq. (2.1b) into (A2),
using the formula in Ref. 10 [Eq. (3.944)], and after a
change of variables, we obtain

sin §

wl(r,c) =e”“_’)J- e Hs ds

c—r N

.,g .
_e#(c_,)J' p—ws SIS o
c+r s

= (ie* =7/ {T[0,(p + D (c—n]
—T[0,(u—i)(c—r)]}— (ie"*"/2)
X{T[0,(p+ D) (c+n)]
—Tl0.(p—D(c+n]}, (A3)

where I' (-, ") is the incomplete gamma function. Expressing
I'(0,z) in terms of the exponential integral

E (2) =Jw£;—tdt, |arg(2)| <7, (A4)
viz. I'(0,z) = E,(z), and using the fact that, for zeC,
Im f(z) = (i/2) [ f*(2) — f(D)],
(A3) becomes
I(re) = (e*/m) Im{e " *E,[(c—r)(u —i)]
—e*E[(c+n(p—01} p>1. (AS5)

Thus from (A1) we have

IIEJ‘l l I(ete) £, ()dt = —727_— J: I(cte) f,(t)dt, n odd,
) (A6)

where we have used the parity of f, (¢) and the fact that

I(ct,c) isoddin z. Now insert (A5) into (A6) and again use

the parity conditions to obtain
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1

11=e_;f e  Im{E, [ (p —)e(1 = 1)]}
-1
X f,(t)dt, n odd. (A7)

In Appendix B, an approximation of the integral in Eq.
(A7) for small ¢ will be presented.

APPENDIX B: APPROXIMATION OF EQ. (A7) FOR
SMALL ¢

Unfortunately, the integral in (A7) cannot be integrat-
ed analytically in closed form. Although in principle one
could use the expansion for the exponential integral,'

E(2)=—-y—Inz— i ﬂi,

por larg(z)| <,
n=1 .

(B1)
and obtain an approximation of (A7) for small ¢, the calcu-
lations are too cumbersome to warrant any merit. Also, the

contribution of Eq. (5.8d) is quite small. Specifically, using
the results of the Theorem one can show that

B:‘~0(C9) ’

which implies that as far as the quantity III* in Eq. (5.8d) is
concerned, the integral in (A7) is not very significant.

Nevertheless, one could use the crude approximation in
Eq. (5.3) to calculate the integral II in (A7). Instead of
(A7), consider (A1) with (A2) approximated by Eq. (5.3).
This gives

1
IIEf I(cte) £, (t)dt
-1

~—=2{A, )/ (c)) 2 e tan"" (1/u)

1
Xf sinh( ut)P, (t)dr . (B2)
-1
The integral in Eq. (B2) becomes
1
J sinh( ut) P, (t)dt
-1
1 1
—2i-=11 [ e
2 -1
1
J- e MP. (t)dt, n odd,
=3J1 (B3)

0, n even.

Using the integrals (see Refs. 12 and 10 [Eq. (3.387)], re-
spectively)

1 ( _ 1),, 1
f AP, (H)dt = T—f 2= D" (nde
—1 -1

n

n!
(B4)
and
1
[ a-rvema
-1
= (m)? /)"t 2T+ DI, , (0,
n>—1, (B5)
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where I, | ,,, () is the modified Bessel function of the first
kind, Eq. (B2), together with (B3) becomes

H~(—1"F124, (c)/uk(c)) 2e™
Xtan~'(1/u) 2o/u)"*I, . (@), n odd only.
(B6)

This completes the calculation of Eq. (4.5¢). In spite of
the crudeness in using the approximation Eq. (5.8d), the
above result is a very reasonable estimate.

APPENDIX C: EVALUATION OF EQ. (6.4)
We want to show that

lim X(s,r )sinKsds=sin Kr, 0<K<«l1.

r— + o

The mtegral in (C1), after a suitable change of variables, is

(C1)

f x(s,7) sin Ks ds
0

J[51n(s—r) sin(s-{-r’)]sinsts
s+ 7

r—r

sin ¢

—t—smK(t+r)dt (C2)

mTJ—r—-r
In the limit as r— + o0, (C2) becomes
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2smKr’J‘ sin f cos Kt dt

7/2, 0<K<«l1,
7/4, K=1,

0, K>1,
where the integral can be found in Ref. 10. Thus, for relative

momentum inside the Fermi sphere, i.e., K=k /kg < 1, the
integral is sin X»’. This proves (Cl1).

_ 2sinKr
T

(C3)
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Variational nature of dispersion equations revisited
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Corrections and clarifications are made of some past treatments of the variational nature of the
eigenfrequency calculation for dispersion eguations and new results are presented. The main
conclusions are the following: (1) Any relation between a normal mode and its dual must be
consistent with the fact that the boundary conditions satisfied by the normal mode may differ
from the adjoint boundary conditions satisfied by the dual. This will affect whether or not a
given bilinear form will yield a variational resuit for the eigenfrequency. (2) If a dispersion
matrix is constructed from the dispersion operator by using left and right basis functions that
satisfy homogeneous boundary conditions on the dual eigenfunction and the eigenfunction,
respectively, then generally a second-order accurate eigenfrequency is obtained by solving the
matrix form of the dispersion equation. (3) When solving for the normal modes in terms of
perturbation potentials, the adjoint boundary conditions are gauge dependent. For cases where
the adjoint boundary conditions allow only the trivial solution for the dual eigenfunction, it
may be possibie to obtain variational results for the eigenfrequency by requiring that the trial
functions for the normal mode and its dual satisfy veriarional boundary conditions.

{. INTROBDUCTION

The variational nature of the eigenvalue problem for the
linearized Viasov-Maxwell (VM) equations and related
systems has been studied by many authors (for example, see
Refs. 1-8). The eguation for a normal mode can be ex-
pressed as the requirement that the dispersion operator act-
ing on the eigenfunction equal zero. Similarly, the dual ei-
genfunction is an eigenfunction of the adjoint dispersion
operator corresponding 1o zero eigenvalue. By the variation-
al nature of the eigenvalue problem we mean that, if an eigen-
function and its dual are known to first order, then the eigen-
frequency generally will be accurate to second order. Such a
property obvicusly is desirable. The variational result in its
most general form appears to have been proved first in Ref,
4. The main purposes of the current paper are to clarify
mathematical aspects of this problem that do not seem to
have been appreciated by some plasma physicists who do
variational calculations, and to prove a theorem extending
the validity of the variational result to the solution of a finite-
dimensional matrix problem which approximates the disper-
sion equation. Much of our discussion will be valid for the
variational nature of dispersion equations in general, not just
those that arise in plasma physics. However, some of cur
resuits may not apply when dealing with singular eigenfunc-
tions, such as continuum modes in magnetohydrodynamics
(MHD).

A dispersion functional, which is a bilinear form, can be
defined as the inner product of a function that we call the
“left function”” with the dispersion operator acting on a func-
tion that we call the “right function.” The right function
must lie in the same Hilbert space as the eigenfunction,
which is specified by requiring that the eigenfunction satisfy
certain boundary conditions and have certain differentiabil-
ity and integrability properties. A variational resuit for an

» Current address: Cray Research Inc., 1090 Industrial Boulevard, Chippe-
wa Falls, Wisconsin 54729.
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eigenfrequency calculated as a root of the dispersion func-
tional will hold if the left function lies in the Hilbert space of
the dual eigenfunction. That is, if the dispersion functional is
caiculated with a right function that is a first-order accurate
approximation to the eigenfunction and with a left function
that is a first-order accurate approximation to the dual ei-
genfunction, then a second-order accurate eigenfrequency
will be a root of the dispersion functional. This is the result of
Theorem [ of Ref. 4. The variational result generally wili not
hotd if the eigenfrequency is calculated as a root of a disper-
sion functional in which the left function is in the space of the
eigenfunction itself. This is because the dispersion operator
generally is not Hermitian. Even for real omega the disper-
sion gperator generally is not Hermitian unless there are no
particle resonances. To use a dispersion functional in which
the left function is in the space of the dual eigenfucntion
requires finding approximations to the eigenfunction gnd its
dual. For a certain class of equilibria, Berk er al.®” were able
to circumvent this difficulty by defining a nonstandard inner
product and adjoint operator in such a way that the dual
eigenfunction is simply proportional to the eigenfunction. In
a separate publication,” it is shown that the same simple rela-
tion between the normal mode and its dual can be derived
using standard definitions of the inner product and adjoint
operator, even though the dispersion operator is not Hermi-
tian.

For proving stability theorems it can be useful to define
a dispersion functional for which both the left and right func-
tions are the eigenfunction itself (see, for example, Refs. 10
and 11). Furthermore, although such a dispersion func-
tional may not give variational results for eigenfrequencies,
nevertheless approximate eigenfrequencies can be computed
by using the dispersion functional.

An element of a dispersion matrix is the inner product of
a “left basis function” with the dispersion operator acting on
a “right basis function.” We assume that the dispersion
problem has been formulated such that the eigenfunction
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satisfies homogeneous boundary conditions, and we assume
that each right basis function satisfies those boundary condi-
tions. For problems in which the adjoint boundary condi-
tions are the same as the boundary conditions on the eigen-
function, we can choose the left and right bases to be the
same. In this case Theorem I of Ref. 4 shows that eigenfre-
quencies calculated from this dispersion matrix generally
will be variational. The significance of this theorem derives
from the fact that it is not necessary to have an approxima-
tion to the eigenfunction or its dual in order to construct a
dispersion matrix. We merely need that the expansion func-
tions used in constructing the dispersion matrix be a suitable
basis for constructing first-order accurate expansions of
both the eigenfunction and its dual. Later in this paper we
prove a theorem stating that the variational resuit holds fora
matrix calculation even if the adjoint boundary conditions
force the left and right bases to be different.

The main conclusions of this work are the following:

(1) Apparent relations between a normal mode and its
dual, such as those suggested in Refs. 4-8, may not be valid
because the normal mode and its dual may satisfy different
boundary conditions. This is because integrodifferential op-
erators, like plasma dispersion operators, generally are un-
bounded. The adjoint operator will always exist, but the ad-
joint boundary conditions may restrict the domain of the
adjoint operator to be different than the domain of the origi-
nal eperator. If an approximation to the dual eigenfunction
does not satisfy appropriate adjoint boundary conditions,
then the eigenfrequency calculation will not be variational.

(2) When solving a matrix problem that approximates
the dispersion equation, a variational result for the eigenfre-
quency will hold even when the adjoint boundary conditions
are different than the boundary conditions on the normal
mode as long as the left basis functions used in constructing
the dispersion matrix form a suitable basis for the dual.

{3} When solving the dispersion equation in terms of
perturbation potentials, the adjoint boundary conditions are
gauge dependent. We illustrate this with the Vlasov-Max-
well (VM) system. We show that the VM system is a formal-
ty self-adjoint function of «, but that the adjoint boundary
conditions depend on the gauge choice. If the adjoint bound-
ary conditions allow only the trivial solution for the dual
eigenfunction, it may still be possible to obtain a variational
result if the left and right functions are made to satisfy vari-
ational adjoint boundary conditions and variational bound-
ary conditions, respectively.

In another publication® the following is shown:

(1) The kinetic part of the general muliidimensional
dispersion operator'? is a “Hermitian function of w,”® where
@ is the complex Laplace transform frequency. The result is
obtained without using Liouville eigenfunctions,® which are
not well-defined mathematically for multidimensional equi-
iibria.'? Loosely speaking a Hermitian function of @ means
that the dispersion operator wonld be Hermitian in the usual
sense if w were treated as though it were real when complex
conjugating. If the dispersion operator is a “‘self~adjoint
function of @,”” then relation (19) between the eigenfunction
and its dual is valid.

(2) if the equilibrivm admits “conjugate orbits %’

and
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if the “conjugate-orbit parity condition” ® is satisfied, then

the kinetic part of the dispersion matrix will be symmetric.

(3) If the dispersion matrix is symmetric and if the ad-
joint boundary conditions are the same as the boundary con-
ditions on the normal mode, then the dual eigenfunction is
simply proportional to the complex conjugate of the eigen-
function.

(4} The kinetic part of the dispersion functional for
multidimensional VM equilibria can be analytically contin-
ued into the lower half of the @ plane. The analytic continu-
ation of the dispersion operator onto the real » axis shows
that relation (19} is valid even for real w.

The oufline for this paper is as follows. Mathematical
aspects of adjoint operators are considered in Sec. I1. These
ideas are illustrated with a simple mathematical example.
Section I reviews the theorems of Ref. 4 with emphasis on
the generality of the results. An additional theorem is pre-
sented that discusses the variational nature of the dispersion
matrix problem for the case where the left and right bases are
different from cone another. This theorem covers the case not
treated by Theorem Ii of Ref. 4. In Sec. I'V we discuss formal
self-adjointness of the VM system and the gauge dependence
of the adjoint boundary conditions. We summarize in Sec. V
by presenting 2 fow chart showing how variational results
can arise for dispersion operators with a multitude of differ-
ent properties. Theorem 11I is provied in the Appendix.

. MATHEMATICAL CONSIDERATIONS
A. Adjoints

Let us review the relevant aspects of operator theory
that pertain o adjoints. Reference 13 is suggested asa source
of information on linear operator theory.

The essential mathematical features of adjoint operators
that we wish to discuss here can be revealed by considering
the case of scalar equations in one spatial variable. Let x be
the independent spatial variable, chosen to be in the range
0,11, and w be the Laplace transform variable for functions
that are Laplace transformed in time. We assume that we are
dealing with linear operators defined on some Hilbert space
#°, and the domain of an operator 4 will be denoted & (4).
The domain & {A4) is either the entire Hilbert space or a
subset thereof. It is the space of functions on which 4 oper-
ates; in a boundary value problem, & (4) is determined at
least in part by the boundary conditions. For example, we
might choose the Hilbert space such that any element 1 in 5¢°
satisfies

u(x,w) absolutely continuous; «, &', and 1" in . {V(0,1) .
(0

Here .27 (0,1) denotes the space of complex functions that
are square integrable on the domain [,1]. Restrictions that
determine Z (4) would be in the nature of boundary condi-
tions, which vary from problem to problem.

In this paper we are particularly concerned with quanti-
ties that depend on a complex parameter. For example, in
the case of the VM equations, the dispersion operator
D(x,») depends on the Laplace-transform variable w as well
as on the spatial coordinate x. It will be necessary to distin-
guish between two kinds of complex conjugates and between
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two kinds of adjoints along the lines introduced in Appendix
E of Ref. 8. Suppose tht a guantity 4(«) depends on a com-
plex parameter w. Here 4 (@) may be a scalar, vector, opera-
tor, or matrix. We wish 1o allow for functions 4(«) that
have a branch cut along the real @ axis and appropriate defi-
nitions in the upper and lower half w planes. Let 4 " {w) and
A 7(w) denote the branches of 4 () in the upper and lower
half » planes, respectively. Then by the symbol 4(w) we
mean

A (—M(w),

Imw>0,
Ao = [A Nw),

Im @ <0. (2)
Note that 4(w) does notr denote the function obtained by
analytically continuing 4 /(@) into the lower half of the
plane. In this paper we do not make explicit use of functions
having branch cuts along the real @ axis, but in another pub-
tication” we have. We define 4 *(@), the “conjugate func-
tion” of w associated with 4A{w), by

A*w) = [4(a™)]¥, {3)

where the quantity on the right is the complexz conjugate of
A{w*). Similarly, we define 4 (@), the “adjoint function”
of w associated with 4(w), by

AN (w) = [4(e™)]*, (4}
where the quantity on the right is the adjoint of 4(w*). If
A{w) is an analytic function of w in some domain (for exam-
ple, Im @ > 0) and is analytically continued outside that do-
main, then the resulting 4 *{w) and 4 *(w) are analytic func-
tions of @ everywhere. Because of the necessity of
introducing the notion of conjugate and adjoint functions of
a parameter, there is a possibility of confusion when indicat-
ing the operations of complex conjugating or taking the ad-
joint. In order to avoid that confusion, we shail generally
indicate complex conjugates with brackets and an asterisk
and indicate adjoints with brackets and a dagger, as on the
right-hand sides of (3} and (4). For exampie, to indicate the
complex conjugate of A{w), we shall write {4(w)]* or
[A1%*; and for the adjoint of 4 («), we shall write [4(w) ]  or
4 1", It is important to remember that, in general, the con-
jugate function 4 *(w) is not equal to the complex conjugate
[4{w)]* and that the adjoint function 4 () isnot equal to
the adjoint [4(w) 1"

Mathematicians distinguish between three related con-
cepts. An operator A is calied formally self-adjoint '* if the
operators 4 and [A }' are identical, {4 11 = 4. An operator
A is calleg Hermitian' if for all v and u in & (4), we have
(v, 4u) = (Av,u). Anoperator A is called self-adjoint 15ifitis
Hermitian and if. % (4) = 2 ([4 7). A dispersion operator
D(x,0) may be formally self-adjoint, Hermitian, or self-ad-
joint except for its dependence on the complex parameter .
Thatis, it might have one of these properties if @ were treated
as a real parameter. In these cases we would refer to D(x,w)
as a formally self-adjoint, Hermitian, or seif-adjoint finction
of .® It is useful to make this distinction, because certain
properties of the sohution of the dispersion equation follow if
the dispersion operator is a formally self-adjoint function of
[N

An operator 4 is bounded if for all ¥ in its domain there
exists a real positive constant ¢ such that
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fldufl<cllufl,

where |J«] is an appropriately defined norm of an element .
If we are considering a bounded linear operator 4, its domain
and the domain of its adjoint can be chosen to be the entire
Hilbert space 57" This is because when 4 1s bounded we are
guaranteed that for all v and » in ¥ there exists 2 bounded
linear operator [A ]7, called the adjoint of 4, such that

(v,du) = ([41"vu}, (5)
where the inner product of v and » is defined by
(v,u):'[dx{v]*u. {6)

The definition of an integral operator 4 acting on ¥ in
D(A4) is

Au:de'a(x,x’)u(x’) . (N

The operator 4 in (7) will be bounded if the kernel a(x,x")
satisfies

fdxjdx'}a%x,x’)kw , (3)

although condition (8) is not necessary for boundedness. If
A4 is a bounded integral operator, then the kernel of its ad-
jeint, a{x,x"), is defined by

a(x,x") = [a(x'x)]*. (93

If the kernel of the adjoint equals the kernel of A4, then 4 is
self-adjoint.

¥ 4 1s an urbounded operator, like the derivative opera-
tor, the situation is different. Unbounded linear operators
can be defined only with domains that are subsets of the
Hilbert space. The subset of elements v in # for which (5) is
valid for any u in & (4) is called the domain of the adjoint,
Z({A 1Y) In general, Z(4) # % ({4 ]"). For example, if
A is a differential operator, in the process of converting the
left-hand side of {5) into the right-hand side of (5), integra-
tions by parts are performed that lead to boundary terms,
The form (5) will result only if the boundary terms are made
to vanish. The conditions on v that make the boundary terms
vanish, for given boundary conditions on u, are the so-called
adjoint boundary conditions. Thus, for given boundary con-
ditions on the elements u in % (A4), the elements v in
D ([A 1) are the subset of elements in # that satisfy the
adjoint boundary conditions. For unbounded operators, like
differential and integrodifferential operators, the adjoint op-
erator exists only if we restrict the domain of the adjoint
operator to satisfy the adjoint boundary conditions.

B. An example

The example in this subsection iflustrates several points.
First, it shows with a realistic problem how the adjoint
boundary conditions can be different than the original
boundary conditions even though the operator is formally
self-adjoint. Second, the exampie shows that even though an
operator may be formally self-adjoint {or a formally self-
adjoint function of @), when boundary conditions are taken
into account the operator may not be Hermitian or self-ad-
joint (or a Hermitian or self-adjoint function of w). Thus,
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when determining Hermiticity or self-adjointness of an oper-
ator one must consider the boundary conditions as well.
Third, the example shows how apparently general relations
between an eigenfunction and its dual may not be valid after
boundary conditions are applied. This illustrates why it is
important to determine if an eigenfunction and its dual liein
the same space.
Consider the simple boundary value problem

! )
Dxe)d(xw) =0, B(é) E<¢ (0,@,) =0, {10}
¢(1,0)
where the operator D is
d? . d .
D(x,w)2@+2!vE+K2(w), (11)

where v is a real constant and o is a complex number tc be
determined from the dispersion relation. In (10) we have
symbolically written the set of boundary conditions on ¢4 as
B{¢) = 0. If the function K{w) is real except for its depen-
dence on w (Lewis and Symon term this a ““real function of
@” %), then

[K(w)]* = K(o*) . (12}

The adjoint operator [P{x,w}}' is that overator for
which

(D hu) = (v,Du) (13)

forallvin Z (D) and v in & (D). If we substitute (11)
for Din (13} and do some integrations by parts we find

(v,Du) = (1D 1To,u) + F(v,u), (14}
where
D))" = 1+ 2iv 4 (K2 (15)
dx® dx
and

Jvu)y = [p(L,o)]*¢' (L) — [v(Ce) %' (0,e)
— (Lo} *u(le) + [vV(Qo)*u(lw)
+ 2iv{ [v(L@) 1*u(l,0)

— [p(0,0) 1*u(0,w) 1} =0. (16)
The adjoint dispersion equation is
[ Dix) d(x,0) =0, B(d)+0, (17)

where the adjoint boundary conditions E(c}) = have not
yet been specified.

Comparing (11) and (15) we see that if (o) were a
real constant, independent of @, then the operator (11}
would be formally self-adjoint. If we were to allow K{w) to
be a real function of @, as in {12), then D{x,0) would be a
formally self-adjoint function of @. That is, (11), {12}, and
{15) would imply that the adjoint operator at the point @
were the operator itself with @ replaced by o*:

[B(xw)1T = D (xw*) = D(x0%) .

Eguations {17) and (18} imply
Dix,w*)d(x,w) =0.

If we substitute o* for @ in the last equation we obtain
D(x,w)«}(x,w*) =0.

(18)
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Comparing this equation to (10) we see that the dual eigen-
function would be related to the eigenfunction by

$(x,w) = Plx,m*) (19)

if the adjoint boundary conditions satisfied by the dual eigen-
function were the same as the boundary conditions satisfied
by the eigenfunction. This is a result quoted in Refs. 4 and 8,
and a related but even sharper result is derived in Refs. 6 and
7. However, as we shall see, both of these results are invalid if
the adjoint boundary conditions are different than the
boundary conditions on the eigenfunction.

The general solutions of {10} and (17) for the normal
mode and its dual can be found easily:

d(x,w) = a, exp{i{ — v+ [V + KX (@) }1'?}x}

+aexp{ —Hv+ [V + K@}V x) (20)

and
$(x.0) =a expli{ — v+ (¥ + [K*(@)]*} )]

+ @, expl — iy + {v* + [K (&) ¥} ¥)x] . (21)
When the property (12) is used we see that the general solu-
tions of the equations for ¢{x,@) and ¢{x,w} can indeed be
related according to (19) by taking @, =&, and 4, = q,.
When the boundary conditions in (10) are applied to the

general solution (20) we obtain
T

Plx,w) = alaexp(i{ — v+ [V + K w)]"?}x)

+< —v 4 Ev2+Kz(w)]”2)
v+ [V -+ K w) ]2

Xexpf — i{v + [ -e-K?(w):i“z}x)} , (22}

with the accompanying dispersion relation
dlw) ={v+ [V + K*(&)]'*} exp {ilV* + K2 (@) 1'%}
+{—v+ [V + K )]}
Xexpi — iV + KH{w)]'?} =0. (23)
To determine the adjoint boundary conditions we re-
turn to (14) and (16) and require that J{v,u) vanish. Be-

cause of the boundary conditions on ¢, we see that the ad-
joint boundary conditions are

(L) l* = [$'(0,w)]* — 2iv[$(0,w) 1* =0,
o1

= #{Lw) ) _
54 “(é’(o,w) +2iv§(0,@)/ 0.
Notice that if v#0 the adjoint boundary conditions are dif-
Serent than those in (10}, while if v = Q they are the same.
Also it is evident from { 14) that if the boundary conditions
on ¢ were that ¢(0,w) = ¢{1,w) = 0, then the ¢ would satis-
fy the same boundary conditions, independent of v. Thus,
whether or not the adjoint boundary conditions are different
from the boundary conditions on the normal mode depends
in detail on the latter boundary conditions and the differen-
tial operator. For v#0, since & ({ D }1) #.% (D), the prob-
lem is not self-adjoint. Moreover, the problem is not even
Hermitian, since (14} is not satisfied for all « and v in
G (D).

(24)
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For v+0, the solution (21) that satisfies the adjoint
boundary conditions is

() = a;é;exp(i{ — v+ [V K e*) 1))

, ( v+ [V + K X w*)]"? )
TNV R AR w1

xexp{ — v+ [V’ + Kz(w*)]”z}x}} ,  (25)
where we have used (12). The adjoint dispersion relation is
d(w) =(—v+{V + [K (@) ]*}}
X expli{v’ + [K*(2)]*}'?)
+ v+ {7 + (K3 ()P
xexp{ — v’ + (K@)} ¥} =0. (26)

Notice that (26) is the complex conjugate of (22). Compar-
ing (25} and (22) we see that relation (19} is no longer
satisfied! The reascn for this is that relation (19) is valid only
when the solution of the dispersion eguation and the solution
of the adjoint equation are in the same function space. When
boundary conditions are imposed, relation (21} is not neces-
sarily true. It depends on whether or not the adjoint bound-
ary conditions are different from the boundary conditions on
the normal mode itself.

The discussion of this section relates to earlier works on
the variational nature of dispersion equations in the follow-
ing way. Some dispersion operators, like the integrodifferen-
tial dispersion operator of the linearized VM system, are
unbounded. This is because derivative operators are general-
ly unbounded. Berk ef a/.%7 express the differential terms as
an “integral operator” by multiplying the derivatives by del-
ta functions and integrating over space. However, the kernel
of such an “integral operator”™ will not satisfy condition (8),
so boundedness of such an integral representation of the dif-
ferential terms is not assured. {In fact, we know that we are
really dealing with differential operator terms, and therefore
adjoint boundary conditions must be considered. ) Further-
more, self-adjoininess of an integral operator can be estab-
lished by examining whether or not {9} is true only if the
integral operator is in fact bounded.’® Therefore, by not
mentioning boundary conditions and merely examining
whether (9) is satisfied, Berk et al.%” were not justified in
claiming self-adjointness of the dispersion operator. [ Merely

‘examining (9) is equivalent to testing for formal self-ad-
jointness of the dispersion operator, not self-adjoininess of
the dispersion operator. ] The impact of the adjoint bound-
ary conditions on the dual eigenfunction has often not been
" considered. We have seen that, unless the boundary condi-
tions are such that ¥ (4) = 2 ({4 1), apparently general
relations between an eigenfunction and its dual, such as rela-
tion (19), may not be valid. Use of relation (19) to construct
a dispersion functional may not lead to a variational calcula-
tion of eigenfrequencies.

. VARIATIONAL NATURE OF DISPERSION
EQUATIONS

In this section we state and discuss three theorems that
deal with the variational nature of eigenvalue calculations
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that involve a complex parameter w. The first two theorems
are Theorems I and II of Ref. 4. Suppose we are solving an
eigenvalue problem in which the operator, eigenfunctions,
and eigenvaiues all depend on a complex parameter w. In
Ref. 4 it is shown that the eigenvalues of an operator are
equal to the vaiue of a dispersion functional constructed as
the inner product of the normalized dual eigenfunction with
the operator acting on the normalized eigenfunction. The
specific question is, how accurately can the w be calculated
for which the eigenvalue (which depends on @) equals a
given compliex number? This guestion can be asked about
any operator, and nc assumption must be made about the
operator’s being self-adjoint according to any definition.
This is 2 more general problem than the problem of finding
normal modes in plasma physics. The connection that the
work of Ref. 4 has with solving the dispersion equation in
plasma physics is that, in the latter problem, we seek to vary
the complex parameter @ until the dispersion operator has a
zero eigenvalue (normal mode). ( Thus we refer to w only as
an eigenfreguency, not an eigenvalue. }

Let the operator be D(x,w), where x stands for the set of
independent spatial variables. Then we have the following
theorem from Ref. 4 as applied to a dispersion operator.

Theorem I: Let and {ZJ approximate 1o order € an eigen-
function and its dual, respectively, of the operator D(x.w)
corresponding to the eigenfrequency @, Let o' be an ap-
proximate eigenfrequency obtained as a root of a dispersion
functional constructed with ¢ and ¢ as trial functions. If
D(x,w) is an analytic function of @ in the neighborhood of
@, then o' will approximate w, to order €%, except in special
circumstances. (These special circumstances are exhibited
i Ref. 4.}

Theorem 1 is useful when the eigenfrequency is caiculat-
ed as a root of a dispersion functional that is constructed
with known forms for the eigenfunction and its dual. How-
ever, the variational result can also hold when one solves a
finite-dimensional matrix problem that approximates the
dispersion equation. In this case we do not need o priori ap-
preximations for the eigenfunction or the dual. We only
need to choose appropriately the right and left basis func-
tions that are used for constructing the dispersion matrix.
The right basis functions must be such that some linear com-
bination of them would be a first-order approximation to the
eigenfunction. The left basis functions must be such that
some linear combination of them would be a first-order ap-
proximation to the dual. Theorem I of Ref. 4 deals with the
matrix case in which the adjoint boundary conditions are the
same as the boundary conditions on the eigenfunction, so
that the eigenfunction and its dual are in the same function
space. Theorem III, which we shall prove in Appendix B,
deals with the matrix case in which the adjoint boundary
conditions are different than the boundary conditions on the
eigenfunction. In the remainder of this section we suppress
the dependence of operators and functions on x.

Theorem EI: Let w, yield a zero eigenvalue of the opera-
tor B(w}, and let ¢ be the corresponding eigenvector nor-
malized to unity:

Doyl =0,

ligll =1. (27)
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Let 5'be a subspace within which ¢ can be approximated to
order e:

¢ = Pp + €&, (28)
where P is a prajection operator from the Hilbert space #°
onto §, and £ is a vector normalized to unity. Assume Jike-

wise that the dual ¢ can be approximated to order € in §. Let
B{w) be the operator (@) restricted to the subspace S:

D(w) = PD(w)P. {29}
Let ' yield a zero eigenvalue of D(w):

D(w')¢ =0, (30)
where ¢ is a vector in § normalized to unity,

Pé = 4. 3L

Then the eigenvector ¢ approximaies ¢ to order € and, if w, is
a simple root of the dispersion relation associated with (27),
o’ approximates o, to order €.

The proof of this theorem is given in Ref. 4, but the proof
is not valid if the adjoint boundary conditions on the dual are
different than the boundary conditions on the eigenfunction.
For example, suppose that a boundary condition were that
the slope of the eigenfunction vanish at x = 0, while an ad-
joint boundary condition required that a linear combination
of the dual and its derivative vanish at x = 0 (as in the exam-
ple of Sec. I B). We would expand the eigenfunction in a
basis whose elements had zero slope at x = 0. However, tak-
ing a linear combination of these basis functions could only
satisfy the boundary conditions of the dual in the special case
that the dual also happened to vanish at the origin. Hence the
dual could not generally be approximated to first order in
that basis. We can extend Theorem II by showing that the
variational result again holds if we assume that the left basis
functions used to form the dispersion matrix are a basis with
which the dual can be approximated to first order. We state
the theorem here and prove it in Appendix B. {(In cur treat-
ment of Theorem I we assume explicitly that the approxi-
mate eigenfrequency o’ is in the neighborhood of the exact
eigenfrequency e, {see Eq. (38)]. This assumption aiso was
made for Theorems I and II of Ref. 4 [see Eqgs. (15), (38},
and (44) of Ref. 4], although in Ref, 4 we did not include the
assumption as part of the statement of the theorems. The
statement and proof given here of Theorem 11 are preferable
to the treatment of Theorem Il in Ref. 4.}

Theorem IIl: Let w, be a simple zero of one, and only
one, eigenvalue of the operator Z{w), and let ¢ be the corre-
sponding eigenvector normalized to unity:

D(wg)g =0, gl =1 (32)
Let S be a subspace within which ¢ can be approximated to
order €:

¢ = Pg + €€, (33)
where P is a projection operator from the Hilbert space 7%
onto S, and £ is a vector normalized to unity. Assume that
the dual ¢ can be approximated to order € in a subspace 5

b =P + €E, (34}

where P is the projection operator from Z ([D1") onto S,
and ¢ and £ are vectors normalized to unity. Both §and £ are
assumed to have bounded derivatives as required. Let D{w)
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be the operator D{w) restricted to the subspaces S and 5

D(w) = PD(w)P. (35)
Let o' yield a zero eigenvalue of D(w):

D(w'}p =0, (36}
where ¢ is a vector in § normalized to unity,

P = ¢. (37)

Assume that @' is near @, in the sense that

lo' — ag) < €%  for some o satisfying O<a<l. (38)

Then the eigenvector ¢ approximates ¢ to order €, where
a<f<1. Also, since o, is a simple root of the dispersion
relation associated with (32}, the dispersion relation asso-
ciated with (36) will have a root &' that approximates @, to
order €*®. This theorem is proved in Appendix A.

V. VLASOV-RMAXWELL SYSTEM

In this section we discuss the formal self-adjointness of
the VM system, and the gauge dependence of the adjoint
boundary conditions. This will all be done in the context of
conducting boundary conditions for the normal modes, and
for cases where the plasma density vanishes at the conduct-
ing wall. Under these circumstances we will conclude the
following: (a) the VM dispersion operator is a formaily self-
adjoint function of w; (b) for the gauge cheice ¢,=0, the
VM dispersion operator is a self-adjoint function of ; and
{c) for the gauge choice 4,, =0, the VM dispersion operator
is not even a Hermitian function of . For this case, the
adjoint boundary conditions are different than the boundary
conditions on the eigenfunction, and the adjoint boundary
conditions allow only the trivial solution of the adjoint dis-
persion equation. However, we are able to construct var-
ational boundary conditions to be satisfied by the eigenfunc-
tion and its dual such that a variational result still follows.
The variational boundary conditions are consistent with the
physical conducting boundary conditions.

Our emphasis has beer: on boundary conditions that are
imposed at physical interfaces in a plasma system. There also
may be regularity conditions imposed in the interior of the
plasma. Regularity conditions are imposed o eliminate sin-
gular solutions that might otherwise arise due to a change in
the coordinate system used to solve the problem. Just as
there are regularity conditions on normal modes, there are
adjoint regularity conditions on duals. (The example in Sec.
I B contains boundary conditions at the origin, which could
be interpreted as regularity conditions.) For dispersion op-
erators that include a kinetic contribution, the determina-
tion of regularity conditions inside the plasma may require
knowing how the kinetic species contributes asymptotically
to the dispersion operator in the vicinity of the singular
peint. For the VM system this would involve solving the
Viasov equation asymptotically near the singular point. By
computing appropriate moments of the perturbation distri-
bution function, we could determine how the charge density
and current density in Maxwell’s equations affect the disper-
sion eguation at the singular point.

The linearized VM system can be written in: the form
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A<®=Efdpfs.f.;i’ (3%)
where the array of perturbation potentials is
451)
D= ( , 40
A, (40)
and the charge-current kernel is
, 1\
T =g . 41
A s qs< el (41)

Here m, and ¢, are the mass and charge of particles of species
s, respectively, and f,; denotes the corresponding perturba-
tion distribution function. The canonical momentum vector

p is defined by®
p=mV+qAdc, (42)

where A, is the equilibrium vector potential. The field opera-
tor of the VM system is defined by

Alxw) @
Vg Cya
i ¢
R @* Wps”
95— VX(UXA) + S AT A
5 - B

(43}
The plasma frequency for species s is defined by

jdpfse ,

where f,, is the equilibrium distribution function for species
5.

2

dirg,

2
Wy~ =
my

By choosing to write the VM equations with the kernel
& . defined by (41), we have guaranteed that the VM sys-
tem will be “completely Hamiltonian.”® For completely
Hamiltonian systems the kinetic part of the dispersion oper-
ator is a formally self-adjoint function of @,® so it only re-
mains to show that A{x,) is a formally self-adjoint function
of w for the VM system. Also, for cases where the plasma
density vanishes at the conducting wall, the adjoint bound-
ary conditions are determined by the field part of the disper-
sion operator alone.

Define the vectors u and v by

) =)

By straightforward use of vector identities we can cast
{v,A(x,@) u) into the form

(44)

(v,Alx,0) B} = (A(x,0*) vu) + J(vu)/dr7,

where J is given by

(45)

J(v,e) = j do [(EVE* — E*VE ) + (lw/c) (£ *a + £a%)

+ (B¥XVXa —axXVxa*}] {46}
and the integral in (46) is taken over the surface of the con-
ductor. The adjoint boundary conditions are chosen to make
J(v,u) vanish. Thus, from (5}, we see that indeed A(x,@) is
a formally self-adjoint function of w:

Alxw) = A (xw)=[Alxe*) . (47)
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In what follows, we assume that the potential functions
u and v defined in (44 ) satisfy the same gauge condition. Cur
formalism does not require us to make this choice. However,
we have not investigated possible advantages of choosing
different gauges for u and v.

For the gauge choice ¢, =0, both £ and §~f are identically
zero, so that (47) reduces to

J{v,u) = f dol(aXa*)(Va) — (AXa)y(Vxa*)},
(43)

where do = do # and 4 is the outward unit normal from the
conducting surface. For the present gauge choice, the condi-
tion that the tangential components of the electric field van-
ish on the conductor yields the following boundary condi-
tion on the normal mode:

Bla)y=aXa=0. (49}

Eguation (49} makes the second term in {(48) vanish. The
only way that the first term in (48} can vanish for all vectors
a that satisfy (49) is for & to satisfy

B(v)=fXa=0. (50)

Thus the adjoint boundary conditions (50) are the same as
the boundary conditions on the normal mode (49)
{ie., Z(A) = Z([A]")]. Since (45) holds with J = 0 for
all v and u that satisfy (49), we have established that Aisa
Hermitian function of . Since % (A) = Z ([A]T), we also
have established that A is a self-adjoint function of @.

For examining the gauge choice 4,, = 0, we specialize to
a conducting cylinder of radius ¢. In this case we can Fourier
analyze all perturbation guantitites in € and z and consider
each mode separately. Accordingly, we assume that the @
and z dependence of the perturbations is exp{i(m8 + kz)].
Then the integrai over do in (46) gives a factor (2m)%/k%,
where the period in the z direction is 27/k. Since 4, =0,
botha, and @ , are identically zero and we have from (47)

Jvu) o — E¥(2)8,6(a) + £(a)d,E*(a)
+ dg*(a)d,a,(a) —asa)d,a,(a)

+ a,%*(a)d,a,(a} — a,(a}d.&,*(a), (51

where d, = d /dr and, for any f(r}, J,fla) means (Jf/
r}|,. .- Now impose that u satisfy the conducting bound-
ary conditions:
—mé(a)/a+ a)ae(a)/c) o
—ké(a) + wa,(aY/e [

IFweuse (52) toeliminatea,{a) and a, (a) from (51), (51}
becomes
J(vu) « £(a)[3,& *(a) — (me/aw)d,a,*(a)

— (ke/0)8,8,*(a)] — E*(a)8,£(a)
+ @,*(a)d.a,(a) + a,*(a)d,a,(a) . (53)

If £ and a merely satisfy the conducting boundary conditions
{52), then £(a), d,£{a), Jd,as{a), and 8,a,(a} are arbi-
trary, independent guantitites on the boundary. Therefore,
(53) can vanish only if the adjoint boundary conditions are

B(u)E( (52)
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3.&*(a) — (mc/am) d,a,*(a) — (ke/w) 8,a,%(a)

£(a)
ag(a)
a,{a)

E(V)E

Since the boundary conditions on the normal mode are dif-
ferent than the adjoint boundary conditions (B £ B}, the do-
rmain of the dispersion operator is different than the domain
of the adjoint dispersicn operator. Therefore, the dispersion
operator for the gauge choice 4, = 0 is not a self-adjoint
function of @. Furthermore, J{v,u) will not be zero for vand
u both in Z(A). Thus the dispersion operator for the gauge
chioice 4,;, = O is also not a Hermitian fanction of w.

Equation (54} specifies four independent conditions to
be satisfied by the dual eigenfunction at the conducting wall.
Comparing this to the fwo boundary conditions of {52) im-
posed on the normal mode at the conductor, we see that the
adioint boundary conditions (34} will allow only the rrivial
solution for the dual eigenfunction. Obviously we cannot
calculate cigenfrequencies by using a left function or a left
basis which is identically zerc. However, we show now that
we can séill obtain variational results by restricting the class
of functions v and v to satisfy what we term variational
boundary conditions.

Theorems II annd I both invoke Theorem I of Ref. 4, so
fet us recall in the proof of Theorem I the key step where the
guestion of boundary conditions enters. In Theorem [ we
assumed we had first-order approximations to an eigenfunc-
tion and its dual:

= v, + evy,

#’" =¥y + 6{’1’

(53)
(56}
where v, is the exact normal mode and v, is a solution of the
adjoint dispersion equation:

Dawgivy =0, B(vy) =0, (5T7)

(D319, =0. (58)
We require that v, satisfy the physical boundary conditions,
but we have rot yet specified the boundary conditions on ¥,
Here v, and ¥, are suitably normalized vectors that satisfy
the same boundary conditions as v, and ¥, respectively.

The question of boundary conditions enters in Theorem
I in going from Eq. (11) to Eq. (12} of Ref. 4. There we
assumed that the boundary conditions were such that

{(Tp D{mg)vy) = 0. (59)
By the definition of the adjoint operator, the left-hand side of
{59) has the form

(VoD (@03 v} = {] Do) 11 06,v) + T (7,7, (60)
Therefore, because of (58), (59) will hoid if the boundary
conditions on ¥, and v, are such that

J(¥gv,) = 0. (61)
The wvariational boundary conditions aliuded 1o earlier are
those boundary conditions on %, and v;, dencted by
B'(#,) =0 and B'(v,} =0, respectively, that make (61)
valid for nontrivial ¥, that are solutions of (58} and for non-

1483 J. Math. Phys., Vol. 28, No. 6, June 1988

=0. (54)

f
trivial v, that aiready satisfy the physical boundary condi-
tions,

B{v)) =0 (62}

Mote that, for our purpose here of making (59) valid, ¥, does
not represent any member of 2 general class of functions, but
rather ¥, is simply a solution of the adjoint dispersion egua-
tion. To avoid that ¥, be trivial, we require that the number
of variational boundary conditions on v, be the same as the
number of physical boundary conditions on v,. On the other
hand, v, in (61) does represent any element of a class of
functions that satisfy the physical boundary conditions
(62). We will want to require that v, satisfy additiona!
boundary conditions that are consistent with any solution of
the dispersion equation.

Now let us leave this general discussion of variaticnal
boundary conditions and, as an example, derive specific vari-
ational boundary conditions for the VM system in cylindri-
cal geometry with conducting boundary conditions on the
normal mode and with the gauge choice 4, =0. We consider
the form of J(v,n) given by (53), where now v represents a
sclution of the adjoint dispersion equation and where u satis-
fies the conducting boundary conditions {52). Since v is a
solution of the adjoint dispersion equation, and since the
dispersion operator is & formally self-adjoint function of w at

‘the conducting wali {where the plasma source terms vanish

in the VM system}, v must satisfy the r component of the
adjoint Ampére eguation,

(w*/c)6,E(a) — (m/a)(1/a+ 3, )a,(a)

—kda,(a)=0. (63)
Using (63} in (53) we obtzin
J(v.8) « (em/oa®)E(a)a,” (@) — E*(a)d,E(a)
+83,*(a)d,a.(a) +a,*(a)d,a,{a) . (64)

As one of our variational boundary conditions on u, let us
require that u satisfy the r component of Ampére’s equation
at the wall,

{w/c)d,£(ay — (m/a)Y(L/a + 3. )ag(a) —kd,a,(a) =0.

(65)
I we use (63) and {65) in {64) we obtain
J(vw) «3,&(a) | — (m/a)E(a) + (0*/c)ay(a) ]*
+d,a,(a){ (m/a)a,(a) — kizy{a)]*. {66)

Since d,6(a) and J,a,(a) are arbitrary guantities on the
boundary, the only way that (66) can be made to vanish is by
requiring £ and & to satisfy the conditions

— (m/a)E(a) + (w*/c)a,(a) =0 (67)

and
(m/a)a,(a) — kay(a)y=0. (68)
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Equations (67) and (68) imply

— k&(a} + (0¥/c)a,(a) =0, (69)

]

Thus we will obtain a variationa! result for the eigenfre-
quency if we choose left and right functions that satis{y the
following variational boundary conditions:

{w/c)d.E(a) — (m/ay(V/a+ 8. Yag(a) — &k 3,a,{a)

B'lw)= — (m/a)ela) + (w/clag(a) =0 (70)
— kf(a) + (w/c)a, (a)
and
(w*/e) 3,E(a) — (m/a)(1/a + 3,)a,(a) ~ k 8,4, (a)
Bi(v)= — (m/a)E(a) + (w*/c)az{a) =0. (71)

~ k&(a) + (0*/c)a,(a)

Notice from (70) and {71) the interesting result that the
variational adjoint boundary conditions are the same as the
variational boundary conditions with & replaced by w*! No-
tice also that this implies that the dual of an eigenfunction
B {w) equals ®(»*), a result already obtained in Refs. 4, §,
and 9. Since (71) is meant to be used only with left functions
v that are solutions of the adjoint dispersion equation, the
first element of (71) will be satisfied automatically, since it is
just one of the adjoint dispersion equations at the wall. [At
the wall the plasma terms in the VM system vanish and the
full VM dispersion operator just becomes the field operator
A of (43) with @, = 0.] Thus we really impose only fwo
new conditions on v, which is the correct number of bound-
ary conditions to guarantee that a nontrivial v exist. Also,
there is no difficulty in requiring the right funciions u to
satisfy conducting boundary conditions as well as the » com-
ponent of Ampére’s equation at the wall.

We reiterate that it may be possible to obtain variational
results for eigenfrequencies even though the adjoint bound-
ary conditions allow only the trivial solution for the dual
eigenfunction. When obtaining eigenfrequencies as roots of a
dispersion functional, a variational result will foliow if the
left and right functions satisfy appropriate variational
boundary conditions. Simlarly, when obtaining eigenfre-
guencies by solving a dispersion matrix problem, a variation-
al result will follow if the left and right bases satisfy appropri-
ate variational boundary conditions.

VY. SUMMARY

We have seen that, for unbounded operators, such as
integrodifferential dispersion operators, the dual eigenfunc-
tions satisfy adjoint boundary conditions that may or may
not be the same as the boundary conditions imposed on the
eigenfunction itself. If the two sets of boundary conditions
are different, then a dispersion functional constructed as-
suming that the dual and the eigenfunction lie in the same
function space generally cannot be used as the basis for a
variational calculation of the ecigenfrequency. A variational
result follows for eigenfreguencies calculated from solving
the finite-dimensional matrix problem that approximates
the dispersion equation if the dispersion matrix is construct-
ed from left and right bases that satisfy the adjoint boundary
conditions and boundary conditions on the normal mode,
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respectively. If the adjoint boundary conditions and bound-
ary conditions on the normal mode are the same, then the left
and right bases should be the same. When solving for the
normal modes using potentials, the adjoint boundary condi-
tions are gauge dependent, even for conducting boundaries.
If the adjoint boundary conditions only allow for the trivial
solution of the adjoint dispersion equation, it still may be
possible to obtain variational results if the left and right func-
tions satisfy appropriate variational boundary conditions.

We close with a flow chart in Fig. | that summarizes the
courses of action that must be taken to obtain variational
results for a dispersion operator which may have any of a
wide spectrum of symmetry properties. For the purpose of
this chart we use the notation of Egs. (55)~(62). When
computing eigenfrequencies with a dispersion functional, we
seek solutions of

($,D( ) =0, (72}
where the eigenfrequency «' is only approximate, since the
right and left functions are only first-order approximations
to the eigenfunction and its dual |see (55) and (56)]. When

computing eigenfrequencies from a dispersion matrix, we
seek soiutions of

det D, (') =0, (733
where the dispersion matrix is defined by
Dm)’((‘}) :{ﬁn’D(w)ﬂn) (74)

Equation (74) is obtained by expanding ¥ and # in appropri-
ate right and left bases, respectively:
N

Plx) = 3 a,(2),(x) (75)
n=1
and
- N
Plxw') = 3y @, (@), (x). (76)
W=1

The boundary conditions on # (or the right basis) will be
denoted by B, = 0, where B, iseither B, which represents the
physicat boundary conditions on the normal mode, or B',
which represents the variational boundary conditions on the
normal mode. The boundary conditions on ;'} {or the Ieft
basis) will be denoted by B,, where 8, is either B (if the
boundary conditions on the eigenfunction and its dual are
the same), B, which represents the adjoint boundary condi-
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tions, or B ', which represents the variational adjoint bound-
ary conditions. ¥ @, is the exact eigenfrequency, the calcula-
tion of the approximate eigenfrequency «’ is said to be
variational if

&' = wy + O(€), (77)
where ¢ is the small number appearing in (55) and (56).
There is one possibility which aids in cbtaining variational
results that was not discussed in detail in this paper, but
which is included in the fiow chart for completeness. This
possibility is discussed in detail in Ref. 5 but was discovered
first by Berk ef al. in Ref. 6. The basic idea is this: If the
dispersion operator and the eguilibrium possess certain
properties, it is possible to conclude that the dispersion func-
tional or dispersion matrix is a real function of @ [see Eq.
(12} 1. Then it follows that the complex conjugate of the
exact dual eigenfunction ¥, is merely proportional to the
exact eigenfunction v,. In this case, if # is a first-order accu-
rate approximation to v, then #, a first-order accurate ap-
proximation to ¥, follows immediately.

To use the flow chart, begin with the first box. The rules
are that one can exit a box only along a path that goes away
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i

s, Bemy 8
Bon s {0 B {0} )

from the box, and one can exit an intersection of paths only
along a path that goes away from the intersection.

The flow chart illustrates that it is possible to obtain
variational results for a wide range of operators and that,
contrary to the common belief, having Hermitian or seif-
adjoint operators is nof necessary.
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APPENDIX: PROOF OF THEOREM It

In this Appendix we state and prove Theorem I1f of Sec.
I1I. Again we suppress the x dependence of the operators
and eigenfunctions.
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Theorem I Assume all eigenvectors in this proof satis-
fy appropriate boundary conditions. Let @, be a simple zerc
of one, and only one, cigenvalue of the operator D{(w), and
let ¢ be the corresponding eigenvector normalized to unity:

Doy =0, |iél=1 {Al)
Let S be a subspace within which ¢ can be approximated to
order €:

¢ = Pg + €&, (A2}

where P is a projection operator from the Hilbert space #7
onio S, agld & is a vector normalized to unity. Assume t}lat
the dual ¢ can be approximated to order € in 2 subspace §:

$="Pp+ e, (A3)
where P is the projection operator from 2 ([ D [7) ontc s,
and ¢ and £ are vectors normalized to unity. Both £ and £ are

assumed to have bounded derivatives, as required. Let Qi @)
be the operator D{w) restricted to the subspaces § and 5t

D(w) = PD(w)P. (A4)
Let o' yield a zero eigenvalue of D{(w),
D(a")¢ =0, (A5)

where ¢ is the corresponding eigenvector in S normalized to
unity,

Pp=¢. (A6)
Assume that o' is near @, in the sense that
l@' — @) < €%, for some a satisfying S <a<gl. (A7)

Then, the eigenvector ¢ approximates ¢ to order €°, where
a<f<l. Also, since m, is a simple root of the dispersion
relation associated with (A1}, the dispersion relation asso-
ciated with (A3) will have a root @' that approximates @, to
order €%,

Proof: By the assumed analyticity of D{w) as in
Theorem 1, expand 2{®') in a Taylor series,

D'y = Dlwy) + (0" — @)D {wy) + -7,
where we assume that

D'(wy)d= a’;;"” $#0.

Operate on { A1) with P and use (A2), (A3), and {(A8):
0= PD(w,)¢
=P[D(w') — (&' — @) D {ewy) + -
or, to first order by using (A4),
~ D(a')¢
= ePD(wy)f — (& — wo)PD (wo )P+ -+, (A9}

where dots represent higher-order terms in (@’ — @,). Add
(AS) to (AS):

D(w') (¢ — &)
= ePD(wy)€ — (& — @g)PD (' )PP+ -+ . (A1D)

In view of definition (A3 ) and since P? = P, wecanreplace ¢
by Pg on the left in (A10),

(A8)

1 Pp + €b),

D(a') (¢ — Pg)
= ePD(wo)€ — (&0 — @o) PD () Ph + -+ . (All)
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In analogy with definition (A4), let [D(w)}" be the
operator [ D{w) ]! restricted to the subspaces § and S (pro-
jection operators are always Hermitian):

[D(a)} =P (D()]'P. (A12)

The right-hand side of (A12) is indeed the adjoint of (A4).
Let N be the projection operator onto the null space of
D(w'), so that for any fin § we have

D(o")Nf=0. (A13)
The vector f has the unique decomposition
f=Nf+ {1 ~Ny (A14)

Since ¢ — Pdisavectorin S, using (Al12) and (A13) wesee
that

D(0') (¢ — Pp) = D(0)(1 —N) (¢ — Pp).  (AlS5)
If N is the projection operator onto the null space of
[D(a')]", define

Dy(e) = (1—N)D@) (1~ N). (A16)
Within the subspace orthogonal to the null space of D(w 1,
D, has an inverse, D 5 . Operate with (1 — N) on (Al1),

use (A15), and solve for ¢ — Pé. In view of (A2} we can
write the solution in the form

p=¢—e + D5 (1-W)

X [eBD{w)é — (&' — wo)PD ' (wo) P+ -}
(A1T)
By virtue of (A7) we have
=6+ 0, (A18)
where
a<B<L (A19)

This is the first conclusion of the theorem. A similar argu-
ment shows that é approximates ¢ to order €°. In concluding
the resutt ( A18) we are assuming that ¢is small enough that
there are no other roots of the dispersion relation in the
neighborhood of w, that is specified by (A7). A simple ex-
tension of Theorem I shows that if ¢ and Q approximate ¢
and ¢ respectively, to order €°, then the eigenfrequency cal-
culated as a root of the dispersion functional will approxi-
mate @, to order €°. Thus the second conclusion of
Theorem 11l is proved. Furthermore, it is easy to show that
the eigenfrequency o' calculated from the finite-dimensional
approximation to the dispersion equatnon is exactly the same
value of @« that would be calculated using the approxima-
tions Q and ¢ as trial functions in a dispersion functional.
That is, since @ lies in S and Q liesin S

($,D(0" )8} = (P3,D(w Y PB) = (3,D(0')g).  (A20)

The root of the leftmost member of (A20) is the eigenfre-
quency calculated from the finite-dimensional matrix prob-
lem, and the root of the rightmost member of {A20) is the
eigenfrequency calculated as a root of a dispersion func-
tional.
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Spectral properties of an optical polaron in a magnetic field
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An optical polaron, which is exposed to a homogeneous magnetic field, is considered. Making
use of functional analytical methods of Frohlich [Fortschr. Phys. 22, 159 (1974)], it is proved
that the ground-state energy, the magnetic polaron mass, and the number of virtual phonons in
the ground state are analytical functions of the electron-phonon coupling parameter and the
magnetic field strength. Consequently, a discontinuous stripping transition, which was claimed
recently by several authors, does not exist. In fact, some authors have stated that the
discontinuities they encounter might indeed be artifacts due to the approximation. The
spectrum of the momentum-decomposed Frohlich Hamiltonian is analyzed; bounds and
smoothness properties of the ground state and the discrete excited states are derived. All

results hold also for lower spatial dimensions.

I.INTRODUCTION AND STATEMENT OF THE PROBLEM

In the present paper we discuss spectral properties of the
momentum-decomposed Fréhlich Hamiltonian of an opti-
cal polaron in a constant uniform magnetic field.

The standard (three-dimensional) polaron model is de-
fined by the well-known Hamiltonian H,, proposed by
Frohlich, Pelzer, and Zienau,'

He == (p+ el AP + [k Aw(kia a,

+Jd3ka”2(g(k)ake""‘+H.c.) n

with ,
o(k) =wy>0 2)

and
g(k) = fiwy (A/2mag) /4 (4m) 2 (2m) 32k | !
EL4
=Qlk|~\ (3)
Here, m, x, p are the mass, the position, and momentum
operator of the (spinless) electron; k, w(k) are the wave
vector and frequency of the phonons (i.e., spinless bosons);
g(k) is the electron-phonon coupling, & being the dimen-
sionless electron-phonon coupling parameter, and |e| the
elementary charge. As usual, we set henceforth fi = wy = m
= |e| = 1 and keep a and B as the only parameters. Let the
magnetic field B = (0,0,B), B>0, be along the x, axis.
Then, in the Landau gauge, the vector potential A may be
written as A(x) = (0,B8x,,0).
In the case of free optical polarons (B = 0), the analyti-
cal properties of the ground-state energy were unclear for a
long time, until Spohn? applied the beautiful functional ana-
lytical work of Fréhlich® directly to prove the analyticity of
the ground-state energy and the polaron mass as a function
of the coupling parameter. In this paper, we want to genera-
lize this result to arbitrary magnetic fields. Making use of
operator methods developed by Frohlich,* we do show that
the ground-state energy, the ground-state wave function,
and expectation values of the ground state as well as the
magnetic polaron mass are analytical functions in the cou-
pling parameter a and the magnetic field strength B (B > 0).

1498 J. Math. Phys. 29 (6), June 1988

0022-2488/88/061498-07$02.50

The same holds true for the energies and wave functions of
the momentum-decomposed discrete excited states, i.e., the
Landau levels below the one-phonon continuum.

This paper represents the first rigorous study of analyti-
cal properties in optical polaron systems for arbitrary cou-
pling and arbitrary magnetic field strength at zero tempera-
ture. Only for very small a, Alvarez-Estrada* has
established analytical properties by using several perturba-
tion approaches. We note that Gerlach and the author have
proved in a previous work® under rather general conditions
that the (formal) free energy of an acoustical or optical po-
laron system, exposed to a homogeneous magnetic field, is
analytic in the temperature T (0 < T < « ), coupling param-
eter @, and magnetic field strength B (0 < B). But the limit
T—0 was not studied there.

The most important consequence of our results con-
cerns a so-called stripping transition, which was first studied
by Peeters and Devreese.®” In a series of papers, Peeters and
Devreese have calculated the ground-state energy,®’ the po-
laron mass,”® the polaron radius® as well as the number of
virtual phonons in the ground state® and the magnetoabsorp-
tion spectrum '® within the anisotropic Feynman approxima-
tion. They do find nonanalytical behavior of these quantities
at certain critical values of @ and B. They indicate that this
might be an artifact of their approximation. We note that
Gorshkov, Zabrodin, Rodriguez, and Fedyanin'® have al-
ready questioned these discontinuous transitions. A similar
nonanalytical behavior is found for a two-dimensional po-
laron (see the recent work of Wu Xiaoguang, Peeters, and
Devreese'?). Within the Fock approximation, Lépine and
Matz'? and Lépine'* get discontinuous transitions, too. In
fact, there may be large changes in the polaron quantities as a
function of a or B, but these changes are continuous. All
discontinuities reported in the references quoted above are
artifacts of the the approximations rather than intrinsic
properties of the Fréhlich Hamiltonian. In fact, in Refs. 6-9,
Peeters and Devreese carefully stated that the discontinui-
ties they encounter could be artifacts of their approximation.

The basic steps of the proof are as follows: In Sec. I1, we
introduce the corresponding momentum decomposed Ham-
iltonian H(Q) whose spectral properties are under study.
Two different cutoffs are successively introduced which
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clearly have to be removed later: a UV cutoff in the coupling
and a lattice cutoff which leads to a discrete phonon momen-
tum space. Then, it is proved that the ground state energy of
the momentum decomposed cutoff Hamiltonian belongs to
the discrete part of the spectrum, if the momentum Q fulfills
a simple inequality. After that, we show that the same result
is also valid if the lattice cutoff is removed. In Sec. I1, it is
proved that this result even holds, if the UV cutoff is re-
moved, using a dressing transformation. After having shown
that the ground state of H(Q) is nondegenerate (see Sec.
IV), we derive bounds on the ground state energy of H(Q)
(see Sec. V) that guarantee that the inequality mentioned
above is fulfilled. Since this finally implies that the ground
state of H(Q) is discrete and nondegenerate, we are able to
apply analytic perturbation theory in Sec. VI which estab-
lishes smoothness properties of the ground state and the dis-
crete excited states. Finally, in Sec. VII we give other exam-
ples, to which our methods are applicable.

Il. SPECTRAL PROPERTIES OF THE HAMILTONIAN
WITH UV CUTOFF

First, we perform a Lee-Low—Pines transformation.
Defining

U = exp( — i(Px, + P3x3)), 4)
where

P=J-af3kkak+ak &)
is the phonon momentum, we obtain

Hp:=U"'H U= G2 + H,,, + H, (6a)
with

Hypp = f d*k at ay, (6b)

H, =a”2fd3k (g(k)ay exp(ik,x,) + H.c.) (6¢c)
and

G = (p,Bx, + p, — P,,p; — P3). (6d)
Furthermore,

U-p,U=p,—P, i=23. N

Clearly, H,. does not depend on x, and x5, i.e., p, and p,, now
playing the role of the total momentum [see (7)], are con-
served quantities which may be replaced by ¢ numbers Q,
and Q,. Mathematically, this means that H, admits a direct
integral decomposition as follows:

FIF':'I szdQ3H(Q)9 Q=(0’Q2aQ3)- (8)

Here, H(Q), being the Hamiltonian corresponding to fixed
total momentum Q, and @, is given by

H(Q) =H0(Q) +H19 (9a)
Hy(Q) = Hy,, + G(Q)?*/2, (9b)
G(Q) = (p,Bx, + @, — P,,05s — Py). (9¢)

It is well-known that, for B> 0, the spectrum of H(Q) is
independent of Q, (see, e.g., Devreese!®). Nevertheless we
retain the trivial @, dependence.
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For the underlying Hilbert space 77, it is convenient to
take

X =Fe L*R), (10)
where
F= o L2(R*)®" (11)
m=0

is the usual Fock space of the phonons, @ denoting the
symmetrical tensor product. We define UV cutoff Hamilto-
nians H,(Q), H,, by replacing g(k) in (9a) and (6c) by
g (k)=g(k)-6(r — k), 0 <r < . Then, according to a re-
sult of Nelson,'® we may state: For all €> 0 there exists a
number b(7,€) < « such that

| H 1 ¥l <€l Hop ¥l + b ||| <ell Ho(Q) || + b |,
for all |¢)eD (Ho(Q)). (12)

Clearly, H,(Q) is self-adjoint and bounded from below.
Consequently, the Kato—Rellich theorem'” ensures us that
H,_(Q) is self-adjoint and bounded from below.

Now we introduce a second cutoff: We replace the
phonon momentum space R® by amomentum lattice I, (see
Refs. 3 and 18 for a detailed discussion),

rd = {kGR3lk} = nj/Ad’ nJGZ,

Ay =2ApAeR™, j=12,3}. (13)
To each keR? we associate a k| €T’ ;, namely,
k|g = (ny,non3) /Ay m; = (kiA,), (14)
where
(@)= largest in.teger<a, ifa<O,
smallest integer>a, if a>0.

The continuum limit is obtained by taking the limit d— 0.
We now define a subspace S, C L ?(R?) of step functions,

feS, & flk) = flk[,). (15)

For geL *(R?) let g|; denote the orthogonal projection of g
onto S,. We need some further definitions,

F,= o 5,9, (16)

F;s( ezlsf,@")(s)Fd. (17)
Then we have

F=F,eF. (18)

We introduce the d cutoff in the Hamiltonian in the follow-
ing way:

H,(Q)=Hy, +H,,, (19)
7
H,, =fd3kak+ak +-2‘—
" (Bx, + @, — Py|,)? + (Q; — Py|,)? ’ (20)

2 2
H, = a”zfd3k((g,(k)|,, exp(ik,|,°x,)a, + H.c.),

21)
where now
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P|, =fd3k k| a7 ay.

One easily verifies that (12) remains true for the new d cut-
off Hamiltonian H,, (Q). Consequently, H,, (Q) is self-ad-
joint and bounded from below, too. Let E(7,Q), E(d,r,Q) be
the ground-state energy of the Hamiltonians

H.(Q), H,(Q).
Lemma 2. 1: Suppose that the momentum Q is such that

inf (E(rd Q — (0kzk)) + 1 — E(rd,Q)=A(nd,Q) >O0.

(22)
Then the interval [E(r,d,Q),E(r,d,Q) + A(r,d,Q)[ be-
longs to the discrete part of spec(H,, (Q) | F, ® L*(R)),

where | denotes (as usual) the restriction.
Proof: First, we define a new subspace JC.S, by

feIs flk) =0, forlk|,>r+3/A,. (23)
Moreover, let T’ = {kel ;| |k|<” + 3/A,} and
W= o JO Wls( ® Jl©'"),
m=0 m=1
Wi=Ww, @W. (24)

Clearly, F;, = Weo W'and H,,(Q), H,,, leave Winvariant.

We consider (4 — H,,) ™' | We L*(R).Since H,,, isa
Kato potential with respect to H,, the following von Neu-
mann resolvent expansion converges in norm:

]

(8 —H,) '= (19'-H0d)_1(i [Hldr(ﬂ—HOd)_l]n)'
n=0
(25)

For Re ¢ sufficiently small, the second factor of (25) defines
a bounded operator. According to Glimm and Jaffe'® there
exists an isomorphism between J and the square summable
complex functions of the momentum lattice ', consisting of
afinite number of lattice vectors. Hence the eigenvalue prob-
lem of H,, | W® L*(R) is completely solvable and the
eigenvalues £, can be numbered by natural numbes n, where
E,~>o as n— . Therefore (see, e.g. Ref 19),
(8 —Hy,)~! is compact and, because of (25),
(3 —H,) '} We L*(R) is compact for all Jdéspec(H,,
| We L2 (R)).
In a second step, we estimate infspec(H,, (Q)
P W'® L?*(R)). Let us consider a vector |y)eW'® L *(R),
which has the form [y) =1[6)(®)|p), where |p)eW
®L2(R), |0)eW,, |0)=18(k"™)), k"= (k',...ky). Let
|6 ) be an eigenstate of the phonon number operator with
eigenvalue N3>1 and let |8 ) fulfill

N —~
Pl,|6) = 2 ¥|,(0), where K| e\,

Jj=1

Then, [[x| =[] llp || and

{x|H |X> = (@ |Hy, |p) (6 |0)
and therefore

WH @I = 3 010 + (o 1@ 5 OkL1akAL) )ip) (016

j=1

N
>(1+B(dn@— 3 Ok41kAL) ) )l (1 +inf B(drQ ~ Ok} (el

j=1

The same inequalities are valid for vectors which are finite
linear combinations of pairwise orthogonal vectors of the
form |8(k™))®|g ), NeN. Since these vectors are dense in
W'e L?(R) we conclude

inf spec(H,,(Q) | W'® L*(R))

>1+inf E(d,r,Q — (0,kpks,)). (26)
k

Third, let f be a positive C* function on R such that
S0) =1, fix) =0if x>A(r,d,Q) > 0. Then we know from
(26),

f(Hdr(Q) _E(d’r’Q)) r Wl@Lz(]R) =0.

On the other hand, the compactness of (& — H,)™!
} We L*(R) implies that f(H,(Q)— E(d,rQ))
} We L*(R) is compact.

Since F,@ L*(R) = (We L*(R))s(W*'oL?(R)), it
follows that f(H,, (Q) — E(d,r,Q)) | F,® L*(R) is com-
pact. This immediately implies Lemma 2.1. 0

Now we can proceed along similar lines as Frohlich does
(see Theorem 2.3 in Ref. 3). The only difference is that our
Hilbert space is F, ® L 2(R) (instead of F,;) and that in our
case a priori f(H,,(Q) — E(d,r,Q)) | F, ® L*(R) is com-
pact, whereas in Ref. 3 the fotal spectrum is discrete. Never-
theless, Frohlich’s proof can directly be mimicked. As a con-
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r

sequence, we arrive at the following theorem, where the d
cutoff is removed and a phonon gap in the spectrum is estab-
lished.

Therorem 2.2: Suppose that the momentum Q is such
that

lI;(le(r,Q - (O,kz,k;;)) +1-— E(’)Q) EA(’)Q) > 0.
27)
Then the interval [E(r,Q),E(r,Q) + A(#Q)[ belongs
to the discrete part of spec (H,(Q) | F® L*(R)).
IIl. REMOVING THE UV CUTOFF

To remove the UV cutoff, we use a canonical transfor-
mation, which was proposed by Gross®° and mathematically
studied by Nelson.'®* We define

H,7(Q) =e"H,(Q)e 7,

where

(28)

T=T,, =fd3k (B.a (K)a, explik,x,) —H.c.) (29)

and
B (K)=B(k) = —a'?2g, (K)O(k — A)/(2+k?),
1<A<r. (30)
H. Ldwen 1500



A lengthy but straightforward calculation, similar to those
in Refs. 16 and 20, yields

H,7(Q) = Hy(Q) +a'? f d’k(g, (k)e*=a, + H.c.)

+ (@ + D*)?/2 - GP — P*G + 3, (31)
where we have used the abbreviation
L) =jd3kk,8,A (K)exp(ik,x))a,. (32)
Here 2 is a finite self-energy, given by
s = f d%k [|B(K)|* + aV/%g* (k)B(k)
+a'%g(k)B* (k)] (33)

We have to estimate each term in (31). As an example, we
discuss the term involving the magnetic field. For all
|¥YeD(H §/*) we have

(¥ (G® + ®*G|¢)|
<2 z |'G:¢|H|¢x¢||

i=1
<|H 9| C(A) || H i | KCM) || H )
where C(A)-0as A— .

Hence

|G® + ®*-G|<C(A)H,. (34)
Estimating the remaining terms in analogy to Ref. 3 (see Sec.
2.2in Ref. 3), it follows that for all € > O there exists a A < o
such that

|HI(Q) — Hyl<eH, + b(A), (35)

where b(A) is uniform in 7 < oo and Q. Mimicking Froh-
lich’s proof (see Theorem 2.4 in Ref. 3) we get the following
theorem.

Theorem 3.1: Let A be fixed and r— .

norm-lim (¢ — H,”(Q))~ ' = (¢ — HT(Q))™!
exists, where (¢ — H 7(Q)) is the resolvent of a unique s.a.
operator H 7(Q) bounded from below. Here H 7(Q) can be
related to the Hermitian forms induced by (35) by a variant
of Friedrich’s extension theorem (see Nelson!®).

s-lim exp(T,, )=exp(T_,)

r— co

exists. Therefore

H(Q)=exp( — T A)H"(Q)exp(T,,,)
is self-adjoint and bounded below. O

Again, we follow Frohlich (Theorem 2.7 in Ref. 3) and
obtain that Theorem 2.2 is even valid in the limit 7 — oo, i.€.,
the following lemma.

Lemma 3.2: Let E(Q) denote the ground-state energy
of H(Q). Suppose that the momentum Q is such that

irﬁf(E(Q ~ (0kp,k3)) + 1 — E(Q))=A(Q) >0. (36)

Then the interval [E(Q),E(Q) + A(Q)[ belongs to the
discrete part of spec H(Q).
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IV. NONDEGENERACY OF THE MOMENTUM
DECOMPOSED GROUND STATE

Keeping in mind that we intend to apply a generalized
version of the Perron-Frobenius theorem, it is useful to con-
sider a slightly different cutoff Hamiltonian H ; (Q). (Of
course, the cutoff is removed later.) In doing so, we now
replace in (6c) and (9a) the coupling g(k) by

8. (k)= —gk)u, (k')
= —g(k)(B(n—k*)

+ 0kt —n)exp(— (k' —n))), (37
where
k2=Fk? 4+ k2, (38)
Note that
g.(k)eL*(R?), for n<ow. (39)

Additionally, for the first component of the phonon Fock
space we now choose the g representation (Schrédinger rep-
resentation) instead of the momentum representation. In
this new representation the Hamiltonians read

H(Q)=H;+Hy H; =fd3lb.+b. LG,

(40)
1/2
Hiy = (Z_a) Qfa”lu,, (k)
T
XKolk*(x, — )b +b,1), (41)
where now
G = (p,Bx, + @, — P;,0;— Pj}),
b = (217)—”2fdklak exp(ik,q), (42)

and
P; =Jd3lk,.b,+b,, i=23, 1= (qkyk;), (43)

and where K,(x) denotes a strictly positive Bessel function
of imaginary argument. By a canonical transformation,
analogous to that in Sec. III, one proves for all
|@ ),|®YeD(H ) and for & < inf spec H(Q),

lim (@|(H,(Q) =)' |®) =(p|(H'(Q) — &) |D),
(44)

where H'(Q) is s.a., bounded below, and has the same spec-
trum as H(Q). Because of (39) the following expansion
converges in norm:

(H,(Q)—9)!
—Hy—H'S [(= DH}(H; — )]
m=0
(45)
Computing the kernel

»|@{0]b, by, |(H(Q) —3)'|b,} b7 0) ® |x),
u,u'€lN,, (46)

we see by inspection of (45) that (46) is strictly positive for

a > 0: With respect to the electron coordinate in the Schré-
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dinger representation (i.e., with fixed positive phonon wave
function), (H § — &) ~'is positivity improving as resolvent
of a harmonic oscillator. With respect to the phonon coordi-
nate, (H{ — ) ' is positivity preserving and it preserves
the support. Furthermore, H }, is positivity preserving with
respect to the electron coordinate because of the positivity of
K,. Moreover, for a suitable choice of m in (45) it can be
achieved that

(¥l @ 0lby b, (— Hin (Hs — ) 7')"|byF+b," [0)
(47)

Consequently, (H ;,(Q) — &)~ is positivity improving in
the chosen representation. Since (46) is monotonically in-
creasing with n, we get with (44) that (H' — &) ! is posi-
tivity improving. From Sec. III we know that under condi-
tion (36) infspec H'(Q) = E(Q) is an eigenvalue of
H'(Q). Therefore (see, e.g., Ref. 19) E(Q) isasimple eigen-
value, or, equivalently, the ground state is nondegenerate.

®|x)>0.

V. BOUNDS ON THE GROUND-STATE ENERGY

Lemma 3. 1: For the ground-state energy £(Q) we have
the bounds

() E(Q)<E(0) + 03/2, (48)

(ii) E(Q)>E(0). (49)

Proof: (i) follows from the fact that E(Q) — Q3/2isa
concave symmetrical function of @, since the Hamiltonian
H(Q) — Q%/2 couples linear to Q,. (ii) We use the same
procedure as in (37) and (40)—(43) transforming now the
third component of the phonon coordinate into the Schro-
dinger representation, i.e.,

k?=k?+k3, 1= (k,kyq).
Thereby we obtain new Hamiltonians IzI,, (Q), jiop,,,
G(Q)*/2, H,,, and the phonon momentum operator P. Be-

cause of Theorem 3.1, it suffices to show (49) for #n < «.One
easily sees (e.g., by a Dyson expansion) that

exp( — tL)=exp( — t(leop,, +?I,,, + Ef/Z + 62/2))
(50)

is positivity preserving for ¢> 0. Now, we follow an idea of
Gross®! and write

B 12
exp( - £E75)

= (2mt) V2 f dy exp( - g)exp(iy(Q3 —B,)). (51)

Hence, we have, since exp( — iyP,) preserves positivity,

lexp( — 1G5(Q)*/2lexp( — tL) )|
—1/2 >
<Qat)y~'? | dy exp( — }Zit-)
Xexp(iyi)exp( —tL)||e >
<exp( — t53(0)2/2)exp( —tL)|le 1),
for |p)eD(H,).
One proceeds by induction to obtain

(52)
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|(exp( — 1G5(Q)*/(2K))exp( — 1L /k))* |@)|
<(exp( — tG5(0)%/(2k))exp( — tL /k))*||@ |}, (53)

which—because of the Trotter product formula—implies
finally

llexp( — A, (Q))|@ Y| <llexp( — tH, (@) lg [l (54)

Hence (49) is established.
From Lemma 5.1 it follows immediately that (36) is
fulfilled, if

Q%<2 (55)

We note that we can prove, using a new functional inte-
gral method developed by Gerlach et al.,?? that the contin-
uum edge of H(Q) begins exactly at the point E(0) + 1
involving scattering states with one real phonon (see Dev-
reese”? for a review). This yields the bound

E(Q)<E(0) + 1. (56)

VI. ANALYTICAL PERTURBATION THEORY

To establish analytical properties in Q, a, and B, we
start from the canonically transformed Hamiltonian
H."(Q)=H,"(Q.\a,B), see (28). Let now Q,a,B be fixed,
where Q; <2, >0, B>0. We consider small deviations
around these fixed parameters. The Q, dependence is trivial.
Concerning the Q; dependence we have

H,7((0,2,,0; + x),Ja,B)
= H,7(Qa,B) + k(@ — P, — @, — ®3*) + /2.
(57)
It is easily seen that P, is form bounded:
|Py|<aH,"(Q a,B) + b, for r<co. (58)
Therefore, the associated operators H 7((0,0,,05

+ k),Ja,B) are a holomorphic family of s.a. operators of
type (B) inin the sense of Kato.'” The @ dependence can be
treated in a similar way:

H,"(QYa +7.B)=H,"(QJa,B) + yH",.  (59)
The estimations in Ref. 3 used in Sec. III show that H ", is
form bounded with constants independent of r (r< o).

Hence H"(Q,Ja + ¥,B) forms a holomorphic family of
type (B) in the sense of Kato in ¥, too.

The dependence on the magnetic field strength B is
more difficult. We use a scaling transformation

—l/2pl, (60)
(61)

Written in these new operators the resulting Hamiltonian
H,"(Q) has the form

¥=B'?x,, p=B

a,=B%agm, at =B*‘ajn,.

- ~2
B7(Q) = —B‘j +fd3k a3, + B a'?

Xf d’k gz (k)(exp(ik,%)d, + H.c.)
+B3/2(&;+$+)2/2

—BY*%(G-® +®*-G) + 3, (62)
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where G and ® are given as in (8), (32) replacing the old
operators with the new ones and the old quantities 8(k), A,
r, Q with

B(k) = —2a'%g,(k)8(k— A)/(2 + Bk?),  (63)
A=B'Y2A, 7=B~Y% Q=B"'2Q. (64)

Note that the operators %, p, dy , @, fulfill the same commu-
tator relations as x,, p,, @, a;" . Therefore, H,7(Q) has the
same spectrum as H,7(Q). More properly, the Hamiltonian
H,7(Q) is obtained from H,7(Q) by a canonical transfor-
mation, what is easily seen using Wigner’s theorem (see
Bargmann®*). Now, the B dependence manifests itself main-
ly as simple prefactors before the single parts of the Hamilto-
nian H,7(Q). It is easily seen by developing (63) in its pow-
er series that

H,7(Q+a,B +é€)

—H,7(Qa,B) + 3 €G"(Qa,B), |e|<B,
n=1
(65)

where in the sense of forms

|G " (Qua.B)|<c"@HT(Qa,B) +b’), for r<ow.
(66)

Therefore we can repeat our statement that we are dealing
with a holomorphic family of type (B) in €. It now follows
from standard perturbation theory (see Kato'’) and from
the fact that E(Q) is an isolated simple eigenvalue that the
ground-state energy E(Q) is jointly real analytic in «,” B,
and Q for @3>0, B> 0, Q32 <2. The same holds true for the
energies of the discrete excited states lying in the spectral
interval [E(0),E(0) + 1[, where we have to exclude possi-
ble degenerate points.?® Furthermore, the associated wave
functions are analytic in «, B, and Q. This, in turn, has im-
mediate consequences on expectation values of operators
which are independent of , B, Q like the number of virtual
phonons or the polaron radius, etc. (see Peeters and Dev-
reese’). Again, all these quantities are analytic in , B, and
Q. From Lemma 5.1 we know that the ground-state energy
E(a,B) of the original Hamiltonian H/ is obtained by tak-
ing E(0). Especially, E.(a,B) is analytic in « and B.

Another quantity, which is of interest, is the magnetic
polaron mass. Peeters and Devreese’ have defined parallel
and perpendicular magnetic polaron masses in the aniso-
tropic Feynman approximation. One way to define a parallel
magnetic polaron mass m” a priori without using any ap-
proximation is

J’E(Q)

L ¢ : (67)
m 903 Q=0

Another possibility to define a cyclotron mass m* (depend-
ing on a and B) at weak or intermediate magnetic fields is

E (0) — E(0) =B/(2m*), (68)

where E|(Q) is the energy of the first excited state, i.e., the
second Landau level. It follows immediately that both
masses m” and m* are analytic in & and B.
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VII. EXTENSION TO OTHER PROBLEMS

First, the dispersions and the coupling can be general-
ized to

o(k) = w(k)>0>0, (69)

2
gy =g, [akBBL o 50 0
c+k?

Additionally, performing the scaling transformation (60),
(61), we have to assume that g(k) is representable as a finite
or infinite linear combination of powers k?(peR) in a do-
main of R®. Then, the same proof goes through with two
exceptions: The uniqueness proof of the ground state and
Lemma 5.1 (ii) have to be modified. The condition w,>0
cannot be weakened with our methods, since the gap in the
spectrum, which makes perturbation theory possible, does
not remain. For more singular couplings g(k) one has to
renormalize in a well-known way (see Nelson'®).

Furthermore, the space dimension d is not relevant for
our proof, if we take

lg(k) [P~k ' 4. (71)

Several branches of optical phonons can easily be included in
the proof. Whether or not we consider a discrete k summa-
tion or a k integration has no influence on the phase transi-
tion problem. The methods worked out in Secs. I1 and I are
applicable, if the unperturbed Hamiltonian with discrete,
cutoff k sums has a compact resolvent, where conserved
components of the total momentum are replaced by C
numbers. For example, the problem of a polaron in an exter-
nal potential V(x), where ¥(x) — o as |x| — oo is tractable.
Another example concerns the polaron in an external uni-
form electric field. Since the resulting Hamiltonian is un-
bounded, it has to be renormalized. We cut off the potential
as follows:

le|Ex,, forx,>L,

0, forx, < L. (72)

V(ix) = {

Then, all results concerning the ground-state energy, etc.,
hold. Especially, the ground-state energy is analytic in the
coupling parameter a and the electric field strength
E(E>0).
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Spectral properties of a three-dimensional optical polaron, bound in an external potential, are
studied. If the associated one-particle Hamiltonian has a bound state, it is proved that the
ground-state energy of the polaron and expectation values of the ground state are analytical
functions of the coupling parameter a and the potential strength 8. Especially in the case of a
Coulomb potential, all changes in the polaron state are continuous, disproving claims of
several variational calculations. If, on the other hand, the one-particle Hamiltonian has no
bound state, the existence of a pinning transition is shown for the polaron. As physically
relevant potentials for the pinning transition, a spherical square well and a screened Coulomb
potential are considered. Their phase diagrams are given in the effective-mass approximation.

I. INTRODUCTION

An electron, bound to a defect in polar semiconductors
(such as an impurity or a vacancy) and interacting with the
longitudinal optical phonons, is called a bound polaron.
Since the earlier papers of Buimistrov and Pekar' and Platz-
man® and Larsen,? this important problem has received con-
siderable attention, as recent publications show (see, e.g.,
Adamowski* and the references therein, as well as Mason
and Das Sarma® and Degani and Hipolito®). The present
paper is concerned with analytical and spectral properties of
a polaron in a generalized external potential V(r).

The bound (three-dimensional) polaron is described by
the well-known Fréhlich Hamiltonian,” which reads as fol-
lows:

Hg(a,B) = Hy, +0°/2—BV(r) + &' ?Hye, (1)
where

H,, =fd3k w(k)a* (k)a(k) (2)
and

Hy = fd3k [g(k)a(k)exp(i kr) + H.c.]. 3)

Here, r and p are the position and momentum operator of the
electron, respectively, and k, @ (k), a* (k), and a(k) are the
wave vector, frequency, creation, and annihilation operators
of the phonons, respectively (i.e., a scalar Bose field); g(k)
denotes the electron-phonon coupling, @ being the coupling
parameter. Setting m = 7 = 1, we keep a and £3 as the only
parameters (a,5>0).

Henceforth, the following conditions (4)—(6) on @ (k)
and g(k) are assumed:

infw(k)=w,>0, 4)
k

(k) being a continuous function of k. Thus (4) implies that
we are dealing with optical phonons. Furthermore we as-
sume

2
d3k 18K |g(k)| 5
J 1+k2 ©)
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and reflection symmetry
o(—k) =w(k), g(—k)=g(k). (6)

For more UV-singular couplings g(k) one has to renormal-
ize by the scheme proposed by Nelson.® For the potential
V(r) we treat the case

VeR + L 2 (R%), (7
where R is the Rollnik class

Ver ¢ [d’xd% %ﬂ . (8)

Statement (7) means that for any positive €, ¥ is represent-
able as V'=/f, + g., where f,€R and |g,| is bounded by e.
Additionally, we assume that the associated one-particle
Hamiltonian

H,(B) = p*/2 — BV(r) 9

is essentially self-adjoint and bounded from below and has at
least one bound state with strictly negative energy Ey(8).
The last assumption is abandoned in Sec. IV.

Physically most relevant cases are o(k)=w,>0 (i.e.,
dispersionless optical phonons) and g(k)~ 1/k for polar
scattering or g(k) ~O(k, — k), k;> 0, for deformation po-
tential scattering. Possible choices for the external potential
V(r) are a Coulomb potential [F(r) = 1/r], a screened
Coulomb potential {¥V(r) =exp( — kor)/r, ky,>0], or a
spherical square well [ V(r) =©(a —r), a>0]. Thecase
of anisotropic bound polarons is included in our general as-
sumptions (4)—(6), too.

The analytical properties of the ground-state energy of
an optical polaron, subject to an external potential ¥(r), are
known only for a small class of potentials: In the case of free
optical polarons (¥'=0) Spohn® recently proved the analy-
ticity of the ground-state energy using the functional analyti-
cal work of Frohlich'® whereas Gerlach and the author!!"!2
showed that the (formal) free energy is analytic in & and in
the temperature T for 0 < T < oc. In Ref. 13, the methods of
Frohlich are generalized to an optical polaron, exposed to a
homogeneous magnetic field or to an external potential ¥(r)
with lim V(r) = o, implying the analyticity of the

r— oo
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ground-state energy in a and 8. Apparently, this is another
class of potentials as the class of impurity potentials, defined
by (7). We remark that a third interesting class of potentials,
which is not treated in this paper, concerns periodic poten-
tials. They are, however, well studied in connection with
quantum Brownian motion (see, e.g., Fisher and Zwerger, '
and references therein).

The aim of the present paper is twofold.

First, we prove that the ground-state energy as well as
the mean number of virtual phonons and the polaron radius
of a bound polaron are analytical functions of the coupling
parameter and the potential strength. A crucial assumption
for this result is that the associated one-particle Hamiltonian
(9) has a bound state. For long-range potentials (e.g., for a
Coulomb potential ) such a bound ground state exists for any
potential strength.

Consequently, for long-range potentials a discontinuous
“phase transition” (i.e., a nonanalyticity of the ground-state
energy) does not exist. From the beginning of the polaron
story up to now, the question of whether or not an optical
polaron, bound in a Coulomb potential, shows up a “phase
transition,” was controversially discussed in the literature. It
was mainly studied with the help of variational calculations
yielding an upper bound on the exact ground-state energy.
The physical background of such a “phase transition” be-
comes clear in the work of Toyozawa.'® He gets a transition
from a shallow state, formed by the external potential, to a
deep self-trapped state, caused by a lattice distortion. This
process is called shallow—deep instability.

On the one hand, Larsen,*'® Tokuda, Shoji, and Yon-
eya,'” and Tokuda'!® obtain a variational bound on the
ground-state energy of a bound polaron that exhibits a non-
analyticity, whereas Matsuura'® and Mason and Das
Sarma,’ on the other hand, emphasize that their results are
smooth quantities. In view of our proof, we remark that the
nonanalyticities quoted above are nothing more than arti-
facts of the approximations made, but not intrinsic proper-
ties of the Frohlich Hamiltonian. Takegahara and Kasuya®®
describe different states of the bound polaron by different
sections in the a-8 plane. However, note that, in view of our
result, the properties of a bound polaron cannot be described
within a phase transition concept.

The situation becomes quite different for an attractive
three-dimensional short-range potential. This is the second
concern of the present paper. In this case, the potential
strength must exceed a critical value, to generate a bound
ground state of the one-particle Hamiltonian (9). This phe-
nomenon is well understood in atomic physics; we refer, for
instance, to Glaser et al.,>' Reed and Simon,?? and Simon.??
As the potential strengh 3 increases, a bound ground state
arises from the continuum edge; the ground state undergoes
a localization transition, the associated ground state energy
being nonanalytic in 5.

It is an interesting task to study the influence of the
phonon interaction on this transition. In the framework of a
discrete model for an exciton, this was examined by Shino-
zuka and Toyozawa.?* In the adiabatic approximation, they
found a localization transition of the ground state, which
they called impurity assisted self-trapping. It is connected
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with a nonanalyticity of the ground-state energy. Shinozuka
and Toyozawa also give the phase diagram in the -3 plane
[see Fig. 2(b) in Ref. 24] Note, however, that they get even
a discontinuous transition for 8 = 0, which was shown?’ to
be an artifact of their approximation.

It was Spohn®® who described the polaron approxima-
tively as a single particle with phonon-induced altered mass.
In this so-called effective-mass approximation, it turns out
that the localization transition persists for phonon coupling
a > 0. Its critical line in the a-B plane, however, does not
intersect the a axis. Spohn called this transition pinning
transition; we shall use this term, too. In this paper, we prove
that the exact ground state undergoes a pinning transition
for any a>0. Consequently, the effective mass approxima-
tion reflects the right qualitative behavior of the analyticity
of the ground-state energy. Furthermore, we discuss the re-
lationship of the exact critical line to the one obtained in the
effective mass approximation.

The organization of the present paper is as follows: In
Sec. I1, we show that H(a,B) is a well-defined self-adjoint
operator. If the one-particle Hamiltonian has a bound state,
we prove that the ground-state energy belongs to the discrete
part of the spectrum of H(a,8) and is nondegenerate. In
doing so, we make use of functional analytical methods of
Fréhlich, ' which clarified spectral properties of the free op-
tical polaron. Moreover, we determine the continuum edge
of H(a,) and show the stability of bound states under the
influence of the phonon interaction. The consequences (like
analyticity properties of the ground state), following from
Sec. II, and extensions of our theory are pointed out in Sec.
IIL. Section IV is devoted to a discussion on the pinning
transition. Applying our methods of Sec. II, we prove the
existence of a pinning transition and discuss further proper-
ties of the pinning transition and the effective-mass approxi-
mation. In particular, a spherical square well and a screened
Coulomb potential are considered. In Sec. V, we conclude
our results.

Il. SPECTRAL PROPERTIES OF A BOUND POLARON

It will be profitable to transform the Frohlich Hamilto-
nian (1) by a Lee-Low-Pines transformation. Defining the
unitary operator

U=exp(—iPr), (10)
where
P=Jd3kka+(k)a(k) (1)

is the phonon momentum, we shall discuss hereafter the uni-
tarily equivalent Hamiltonian

H(aB)=U""Hp (a,f)U = H,,, +4(p —P)> — BV (1)
+ a''?H,. (12)

In (12), H, is given by
Hy = [0k (gkato + g (00a* (0). (13)

To begin with, we pose the Frohlich Hamiltonian on a
mathematically rigorous level. We first specify the underly-
ing Hilbert space. It is taken to be #° = F® L *(R*), where
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F= eO(Lz(]RP)”' (14)
is the usual Fock space for the phonons, (§) denoting the
symmetrical tensor product.

In (13), we replace the coupling g(k) by
g(k)O(p — k), where p < « is a UV cutoff, which makes
g(k) square integrable and which is to be removed later.
Thereby we obtain the Hamiltonian H(a,B,p) [resp.
H, (p)]. Following Nelson,® it is easily proved that H; (p) is
a Kato potential with respect to H,,, with relative bound
zero. Since Hy,, + (p — P)2/2 — BV(r) is essentially self-
adjoint, the Kato—Rellich theorem assures us that H(«, 5,
p) is bounded from below and essentially self-adjoint, too.

We now construct a discrete momentum lattice I'; for
the phonon momentum space R? in analogy to Fréhlich'®
and Glimm and Jaffe?’:

Fd = {k€R3|k] = nj/Ad, nIEZ, Ad = ZdAo,

AgeR™, j=1,2,3}. (15)
To each keR?® we associate a k| €T, namely
k|; = (nunyn3) /Ay, = [KAL] (16)
where
largest integer <a, ifa<0,
lal= . .
smallest integer > a, if a>0.

Furthermore, we define a subspace S; C L 2(R?) of step func-
tions:

FeS,; & flk) = flk|y). 17)

For geL ?(R?) let g|, denote the orthogonal projection of g
onto S,. This notation is readily generalized for locally inte-
grable g. Then, let

F,= o SO (18)
m=0
and
Fi=( & 51O ®F. (19)
m=1
Clearly,
Now we are able to define a new d cutoff Hamiltonian
Hd (a)ﬁfp) =H0phd + (p— Pld)2/2 —ﬁV(l‘)
+a'?Hy, (p), (21)
with
HOphd =fd3k (o(k)l,,a"'(k)a(k), (22)
Pi, =fd3k k|,a* (k)a(k), (23)
and
Hu(p) = f d% [g(k)|sa(k) +g* ()| a* (1) ]
XO(p — k). 24)

Using the same methods as for H(a,8,0), one easily verifies
that Hy(a,B,p) is self-adjoint and bounded from below, too.
Moreover, we define a new subspace JC S, by
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feJ & F(k) =0, for |k|, >p + 3/A,. (25)
Let
T,={kel,| |ki<p + 3/A,} (26)
and
W= ;J, W, = ;J@m,
m=20 m=0 (27)

Wi=w @®W.

Clearly, F, = We W* and H,(a,Bp) as well as H,(p)
leave Winvariant.

We remark that there exists a canonical isomorphism
between the Hamiltonian H,(a,B,p) | We L*(R?) ( } de-
notes, as usual, the restriction) and the Hamiltonian
H(a,f,N) of the interaction of an electron with N= |I~“d|

phonon modes, confined to the Hilbert space
F(N) ® L%*(R?), where
FW) = o (€0, (28)
m=0

which was pointed out by Glimm and Jaffe.”’ Clearly, N
depends on d and p. Therefore, for the sake of simplicity, we
consider henceforth the latter Hamiltonian

H(a,B.N) = Hy(N) + a'’H, (N), (29)
with
N
Hy(N) = Zw(kj)a+(kj)a(kj)
/=
- 2
L =PI sy, (30)
N
P(V) = Ska*(k)a(k)), (31)
=1
N
H (N) = Z [g(k,)a(k,) +g*(kj)a+(k,)] (32)

i=1

The N dependence of H(a,[3,N) should not be confused with
the p dependence of H(a,B,p). The quantities H(a,3,N) and
H(aBp) are different Hamiltonians. In (30)-(32),
{k;| jeNy} = [',. At the end of this section, we remove the
discrete momentum lattice. Then we come back to our origi-
nal Hamiltonians H, (a,B,p) and H(a,f,p).

In the case #=0, the spectral properties are well under-
stood. It has been shown ' that H(a,0,N) is representable as
a direct integral:

H(a,0N) = f d’Q Hg (a,0,N), (33)

Q being the “C-number” of the conserved total momentum
(see also Ref. 28). In Ref. 28, it is proved that

igf(inf spec Hy (,0,N)) = inf spec Hy_, (2,0,N), (34)
and Frohlich'® has shown that the normalized ground state
|®o) of Hyo (@,0,N), lying in F(N), is nondegenerate up to
an arbitrary phase factor. We are now prepared to prove the
following proposition.

Proposition 1:

(Do|P(V) Do) = 0. (35)
Proof: By Wigner's theorem, there exists a unitary oper-
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ator U such that

Ua(k))U™'=a(—k;), (36)

Ua* (k) U~'=a*(—k,), (37)
for all kjefd. Then, we find

UHg_o(2,0,N)U =" = Hy_o (2,0,N) (38)
and

UP(N)U ~'= —P(N). (39)
Because of the nondegeneracy of |®,), (38) implies

U|P,) =exp (il)[®,), AeR. (40)

Therefore, by (39) and (40),

= — (D,|P(N)|®,), which implies (35).
We now determine the essential spectrum of H(«,3,N).
Lemma 2:

O (H(a,B,N)) = 0 (H(a,0,N)). (41)

Proof: By Weyl’s theorem (see, e.g., Ref. 22), we have to
prove that V'is a relative form compact perturbation, i.e.,
that for {¢ spec H(a,B,N)U spec H(a,0,N),

(H(a,BN) — &)™ — (Ho(N) + a'PHy (N) — &)™
=B (H(a,BN) — £) 'V (Hy(N)
+al/2HI (N) _;)—l

(Do|P(N) | Do)
O

(42)

is compact. We use the norm-convergent resolvent expan-
sions

(H(a,BN) — &)~
= f‘, [(Ho(N) — BV — £) Y (— a2 H (N))]"

X(HO(N) —BV—Q‘)“I,
(Ho(N) + a'°Hy (N) — §)™!
= (Hy(N) _g)_l

x(éo [ —a'2H (N)Ho(N) — &)™) ) (44)

(43)

For Re ¢ sufficiently small and negative, the second factor of
(44) as well as the first factor of (43) define bounded opera-
tors. Therefore, to establish the compactness of (42) it is suffi-
cient to show that

(Ho(N) =BV = &) 'V(Hy(N) - §)! (45)
is compact. Now, we observe that the operators a* (kj) and
a(k;), commute with (45). Hence we can classify the
spectrum of (45) by a set of natural numbers
L=(n,..,ny), n,eN’, where the spectrum of (45) tends
to zero as |L| — oo . Therefore, all that remains to prove is that
(45), restricted to a subspace with L fixed, is compact. Choos-
ing new momentum and position operators

P.=p— z kjnjs (46)
n =T (47)

this problem is clearly the same as studying the one-particle
problem
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Al | -t
(Z(O(kj)nj +7—BV(1'.,)—§) V(l',,)
o

=1

N l)z -1
x(z w(k,)nj+7"—§) . (48)
y=1
The compactness of (48) was shown by Reed and Simon (see
pp- 117-118 in Ref. 22). This implies that (42) is compact,
too, and our proof of Lemma 2 is finished. O
We are now able to prove the existence and stability of
bound states and state the following theorem.
Theorem 3: Let N(H) denote the number of bound states
of the Hamiltonian H, i.e., the number of states lying below
the continuum edge. Then,

N(H(a,B8,N))>N (H,(B)). (49)

Progf: The idea of the proof is to apply a generalization of
the Rayleigh-Ritz principle. Let |@, ) be the normalized ei-
genfunctions of the one-particle Hamiltonian (9):

He (B) |¢n> = En |¢n>1
with E, <0, neN°’, n<N(H,(B)). (50)

Consider the “trial functions” |gp,) ® |®y)eD (H(a,B,N)).
Because of Proposition 1, we obtain
(@n] ® (Po| H(a,B,N) D) © |@,,)

= 5,,", (q)OIHQs() (a)O’N) |q)0>

+ A@a | Ho (B @) — (@ D|@ ) (Po|P(N) | D)

=4, (inf spec H(a,0,N) + E,). (51
Hence the Rayleigh—Ritz technique tells us that we have
found upper bounds on the exact bound states, which—be-
cause of Lemma 2—belong to the discrete part of spec
H(a,B,N). Consequently, (49) is established. O

Returning to our original Hamiltonian H(a,8,0), we
state the following lemma.

Lemma 4: Let E(a,Bp) = inf spec H(a,B,p) and let f;
be a positive C = function on R with /5 (0) = land f;(x) =0
for x>4. Then f5(H(a,B.p) — E(a.B,p)) is compact, if

8 < A(p) =min(w,E(a,0,0) — E(a,Bp))>0. (52)

Proof: First, via the isomorphism mentioned above all
our spectral results for H(a,3,N) are directly transferable to
the Hamiltonian H, (a,8,0) | We L*(R?).

Let

E,(aBp) =infspec H,(a,Bp) | F, ® L*(R*).

The same calculations as in Ref. 13 (the second step of the
proof of lemma 2.1 in Ref. 13) yield

inf spec (H, (a,Bp) | W' L*(R*))>w, + E (a,Bp).
(53)

Since F, = Wa W, it follows from Lemma 2 that
fs(Hy(@Bp) —E (a,Bp)) | Fye L*(R?)

is compact, if
8 <A, =min (we,E,(a,0,0) — E,(a,B,p))

From Theorem 3 we know that A, > 0.
We apply this argumentation once more: The same calcu-
lations as in Ref. 10 (Corollary 2.2.iii) can be used to show
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inf spec H, (a,B,p) | F; ® L*(R?)

>w, + inf spec H, (a,f,p) | F& L*(R%). (54)
Since F = F,; ® F1, it follows that

inf spec H, (a,B,p) | F® L*(R*) = E,(a,B,p)
and that

fslH (a.Bp) —E (a.pp)) | Fe L*(R?)

is compact, if § < A ;. The methods used by Frohlich (Lemma
2.1 in Ref. 10) show that H,(a,f,p) —H(a,B,p) in norm
resolvent  convergence as d-o. Consequently,
E,(app)—E(aBp) a d-w and [fi{H(aBp)
— E(a,B,p)) remains compact if 8 < A(p). The same proof
as in Theorem 3 results in A(p) >0, which completes the
proof of Lemma 4. O

All what remains to do is to remove the UV cutoff p.

Theorem 5: Let E(a,B) = inf spec H(a,8) and f; as in
Lemma 4. Then, f;(H(a,8) — E(a,3)) is compact, if § < A
where

A=min(wy,E(2,0) — E(a,)}>0. (55)
Proof: Transforming the Hamiltonian H(a,5,0) with the
canonical transformation e”, where

T=T,, =fd3k(CpA(k)a(k) - H.c) (56)
with
Coa (kK)=C(k)
= —a'’g(k)O(g — k)O(k — A)/(w(k)
+k%/2), 0<A<p, (57)
we obtain
e'H(a,Bple T
=H"(a,Bp)=HyB) + a'’H, (p) + (Z+ Z)?/2
—(—-PYZ-Z"(p—P) +3,

(58)
where
Hy(B) = Hy,, + (p —P)*/2 — BV (r), (59)
Z=Jd3k kC,, (k)a(k), (60)
and
3= fd3k [w(k)|Ck)|? + a'’g* (k) C(k)
+ a'%g(k)C*(k)] < co. (61)

Again we can use Frohlich’s methods (see Sec. 2.2 in Ref. 10)
to prove the following facts: For all € > 0 there existsa A < o
such that

|H "(a,Bp) — Hy(B)|<eHy(B) + b(A), (62)
where b(A) is uniform in p< 0. Furthermore

norm-lim (§ — H (a,Bp)) ' = — H (a,B))"! (63)

p— o
exists, where H”"(a,) is a unique self-adjoint operator
bounded from below. Also

s-lim exp(T,,, ) =exp (T4 )

P
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exists as a unitary operator. Therefore
H(a,p)=exp(— T, ,)H (a.B)exp(T,,)

is self-adjoint and bounded from below, too. Finally, the
norm-resolvent convergence (63) together with Lemma 4 im-
plies that /5 (H(a,3) — E(a,B))remains compact for 6 < A. [
We now determine the continuum edge of H(a,3).
Theorem 6: Let E(a,3) = inf spec H(a,f3). The contin-
uum edge begins exactly at the point

Q=min(E(a,B) + w, E(a,0)). (64)

Proof: This Q) is a lower bound for the continuum edge
because Theorem 5 implies that all eigenvalues smaller than ()
are discrete. Furthermore, without loss of generality we may
assume that the number of eigenvalues being smaller than €} is
finite. Otherwise these infinite eigenvalues have to accumu-
late at ) and (64) is trivially proved.

Suppose first

E(a0)<E(ap) + w,. (65)

Since the absolute continuous spectrum of H, () begins at
zero, we can always find functions |, YeL ?(R?) (neN) with
(Yu|¥m) = 6, and with (¢, |Hz(B)|¢,,) = 6, E,, Where
E, >0 and E, -0 as n— . Choosing the trial functions
|®y) ® [¢, ), where |®,) denotes the ground state of the free
polaron Hamiltonian subjected to total momentum Q=0, we
calculate, as in the proof of Theorem 3,

(¢n| ® <¢0|®0> ® ld/m) = 5nm
and

<¢n| ® <¢0|H(a’B’) Iq)()) ® Mm) = 5nm(E(a’0) +En)'
(66)

Since E, — 0 as n — «, a modification of the mini-max princi-
ple (see, e.g., Reed and Simon,?? Theorem XIII.1) ensures us
that E(a,0) is the bottom of the essential spectrum of
H(a,B).

In the second case
E(a,B) + w, < E(a)0), (67)

we again use a trial function argument, but now with different
fuctions involving one-phonon states. By (4) we know that
there exists a geR> with (k) — w, as k—q. Without loss of
generality we assume ¢ < oo, the case ¢ = o« can be treated
quite similarly. We choose € > 0 fixed.

First, we need some definitions. Let U(d,q) denote a ball
around q with radius 8. We construct “disks” D(n) as fol-
lows:

D(n) = U2~ "@)\U(e2~""\,q). (68)

Let H(q) be the Hamiltonian that results if one replaces p in
H(a,3,) by p— q, q being a C-number. Obviously, H(q) is
unitarily equivalent to H(a,3). The ground state of H(q) is
denoted by ¢¥(q)es”. Furthermore, we define a projection
operator P, (4ACR?) that annihilates all phonon parts with
momentum keA by )

P=3 d3k,---fd3k";(A(kl)---x,,(k,,)

n=1

Xa(k,) --a(k,), (69)

where y, (k) is the characteristic function equal to 1 if ke
and O otherwise.
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We are now able to give the explicit form of our trial
functions @, , neN,

q)ne = [(PU(e,q) !t'((I)) @ Pne ]/” (PU(e,q) 'ﬁ(q)) @'pns %
(70)

where @, is a one-phonon state, ¢, >0, whose momentum
distribution is explicitly given by

|@ne (K) |2 d3k = ¥ peny (K)d k. (71

For € sufficiently small, ®,.e¥# and &, 0. Since
U(e,q) 2 D(n) and since the D(n) are pairwise disjunct, one
calculates

<¢n€ |¢m€> = 5"1"‘!’ (QHE |H(a’ﬁ) |¢m€> = E’l (6)5’1"‘1'

(72)

Further inspection of E, shows that E, (¢) »w, + E(a,B,€)
as n— oo, where w,(€) »w, and E(a,fB,€) - E(a,f) as €-0.
Since €> 0 can be chosen arbitrarily small, again the mini-
max principle tells us that the continuum edge has the upper
bound v, + E(a.,B).
Putting all facts together, we finally finish the proof of
Theorem 6. O
The physical interpretation of the two possibilities (64)
for the continuum edge is easily understood. In the case (67)
the continuum involves scattering states with one real phonon
of energy w, present. On the other hand, if (65) holds, the
continuum at E(a,0) consists of delocalized electron states.
Obviously, the Rayleigh-Ritz argument of Theorem 3
can be done for H(a.5), too. If (65) holds, this implies the
existence and stability of the bound states and gives further-
more simple upper bounds on the associated energies.
Corollary 7: Let E(a,0) < E(a,) + wyand let N(H) be
the number of states of the Hamiltonian H below the contin-
uum edge. Then,

N(H(a,p))>N(H, (B), (73)
O
Weknow from Theorem 5 that E(«,f3) is an eigenvalue. Now
we prove the next lemma.
Lemma 8: The ground state of H(a,f3) is nondegenerate.

Proof: We represent the underlying Hilbert space now as

for all a>0.

L*(Qdu) @ L*(R*d*x), (74)

where L >(Q,du) is the phonon Q space, which is isomorphic
“to the Fock space F (see Simon®® for a detailed discussion). If
one takes the Schridinger representation (r representation)
for the electron coordinate, the operator
L= — BV(r) + a'’H, (75)
acts as a multiplication operator. The operator L can be ap-
proximated by bounded multiplication operators L,, such
that H,+ L,—-H(a,8) and H(a,8) — L,—-H, in the
strong resolvent sense as 7 — o« . This holds for arbitrary cutoff
p< oo. We know from the proof of Theorem 5 that the opera-
tors Hy + L, and H(a,3) — L,, are uniformly bounded from
below. Therefore, Theorem XII1.45 of Reed and Simon?? is
applicable (see also Ref. 28). This implies that, in order to
prove Lemma 8, we have to show that exp(— Hy,,
— (p — P)?/2) is positivity improving in the chosen repre-
sentation. We write exp( — (p — P)?/2) as Fourier transform
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exp(— (p—P)%/2)

= (27) 32 d3ﬂ,exp(—%/12)e“"e"'“’. (76)
Now, exp( — H,,, ) is positivity improving and exp( — iAp)
is positivity preserving with respect to the phonon @ space;
exp(iAp) acts as translational operator in the r representation
of the electron coordinate. Since exp( — 44 2) is strictly posi-
tive, we get that exp( — Hyy,, — (p — P)?) is positivity im-
proving in the chosen representation. This implies that
exp( — H(a,B)) is positivity improving and consequently
E(a,f) is a simple eigenvalue. 0O

Summarizing, we have proved in this section that the
Hamiltonian H(a,8) for a bound optical polaron is a well-
defined self-adjoint operator, bounded from below. If the one-
particle Hamiltonian (9) has a bound ground state, then also
H(a,f) has adiscrete bound ground state that is nondegener-
ate. This ground state is separated from the continuous spec-
trum by a gap whose magnitude was exactly determined: It is
the minimum of the phonon dispersion w, or the difference
E(a,0) — E(a,B)>|Ey ()|, where E,(B) is the ground-state
energy of the one-particle Hamiltonian (9).

Hll. CONSEQUENCES AND GENERALIZATIONS

To begin with, we state that the associated forms of the
resolvent of Eq. (63) (¢ — H "(a,B))~ " are an analytic family
of type (B) in the sense of Kato*® in both parameters a (see
Fréhlich'®) and B (see Simon*') for a,8>0. Since Lemma 8
implies that E(a,f3) is an isolated, simple eigenvalue for >0
[B being such that H,(f) has a negative eigenvalue], the
standard analytical perturbation theory (see Kato®®) is appli-
cable. It follows from Hartog’s theorem that E{,f3) is jointly
real analytic in a and /3 in the specified domain. The same is
true for the discrete excited states, if they are not degenerate.
Moreover, the associated wave functions are analytic in « and
B, too.

Let |¥5(a,B) ) be the wave function of the ground state of
H(a,). Then the mean number of virtual phonons in the
ground state is defined by

N(@B) = (Yo(aB)] f d*k a* ®ak) [do@B).  (77)

Furthermore, several possibilities were proposed to define a
polaron radius and a self-induced potential as quantities de-
rived from the ground-state expectation values of H; (see,
e.g., Peeters and Devreese®?). Clearly, N(a,8) as well as the
polaron radius and the self-induced potential are analytic in a
and f3 for a>0, B as above.

We conclude that all changes in the bound polaron state
are not accompanied by a nonanalytical behavior, but are
smooth transitions.

We now add some remarks on possible extensions of our
theory. First, one may consider an optical polaron in arbitrary
spatial dimension (see Peeters, Wu Xiaoguang, and Dev-
reese’®). The conditions (4)-(8) are readily generalized to
arbitrary dimensions (see Simon>! for an extension of the
Rollnik condition). Then, the same proof is possible.

We mention two physical interesting examples. First,
Sak?* (see also Degani and Hipolito®) considers an electron
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that couples to the optical surface phonon modes and is bound
in the perpendicular direction to a Coulomb potential result-
ing from its image charge. The associated Hamiltonian H, can
be cast into the form

H, = (Q,—P)/2+ (@, — B)*/2+py/2 — BV(r3)

+ wsf d’ka*(k)a(k) +a'?| d*%kk =2

Xexp( — kyr3)[a(k) + a* (k)] (78)
The Hilbert space #°; belonging to H, is
H =FoL*([0,00]). (79)

The parameters @, and @, correspond to the conserved com-
ponents of the momentum. To get inf spec H,, one may set
Q, = @, = 0 (see Ref. 28). For V(r,) we do not take 1/7,, as
Sak does, but for mathematical and physical reasons (see
Cole®®) we have to take a cutoff potential:

1/z, forz>b,
Vz) = [l/b, forz < b,
where the cutoff 4 is a strictly positive constant. Without go-
ing into the mathematical details, we remark that our meth-
ods are applicable to H_. In particular, the ground-state ener-
gy is analytic in a and §. This is in a marked contrast to the
work of Tokuda.'® The above model can be extended to in-
clude bulk phonon effects, which was discussed recently by
Gu and Zheng.>®
A second example concerns a quasi-two-dimensional po-
laron in polar quantum wells, bound to a two-dimensional
Coulomb potential, which was studied by Mason and Das
Sarma.’

(80)

IV. THE PINNING TRANSITION

Up to now, for all potentials considered, the associated
ground-state energies are analytic in @ or 5. One may ask the
question the other way around: Which potentials lead to a
ground-state energy that is nonanalytic in a or 8 ? This brings
us back directly to our condition that the one-particle Hamil-
tonian (9) has at least one bound state. In one or two dimen-
sions, itis well known that an attractive potential always leads
to a bound state. No so in three dimensions; the question of
whether or not the one-particle Hamiltonian has a bound
state depends sensitively on the mass of the particle for short-
range potentials. The idea of Spohn®® is to describe the po-
laron problem approximately as a one-particle problem with
an effective mass m(a) and to study then the occurrence of
bound states with increasing a. For a suitable static binding
potential, at a critical coupling @, a pinning transition is ob-
tained, i.e., by the phonon-induced mass enhancement of the
electron, a new bound state suddenly arises from the contin-
uum.

To get a connection with our results, we consider a slight-
ly different situation: Let a be fixed and vary 8 (SeR). For
the sake of definiteness, let ¥ be an element of the Rollnik
class R [see (8)] and let V be negative (¥<0). The occur-
rence of bound states of H,(8) is well understood (see Refs
21-23). The Birman-Schwinger bound shows that for all
BEeR the number of bound states N (H,(f)) is finite and that
NH,(B))=0 for B<pB. where B, >0. Therefore,
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inf spec H, (f) is nonanalytic for 8 = ., corresponding to a
localization transition (pinning transition) of the ground
state.

We prove that such a transition is obtained even if the
electron—phonon coupling is nonzero and state the following.

Theorem 4.9: Let the potential ¥ be in the Rollnik class R
for spatial dimension d = 3 and let ¥<0. Let the ground-state
energy of the one-particle Hamiltonian H, (8) be nonanalytic
for 8 = B. > 0. Then the ground-state energy E(a,B) of the
bound polaron is nonanalytic for 8 = B, (a), where B_.(a) is
a unique number with

0<B. . (a)<B.,

and B, (a) is continuous in & for 0<a < .

Proof: Clearly, E(a,f8) is monotone decreasing (and con-
cave) in B. From Theorem 6, it then follows that
E(a,f) = E(a,0), for f<0. On the other hand, we know
from Corollary 7 that E(a,B) < E(a,0) for 8> B, and that
E(a,p) is analytic in 8 for 8> B.. Thus E(a,B) cannot be
analytic in £ in the total interval [0,5, ] because the identity
theorem for holomorphic functions requires that then
E(a,f)=E(a,0). Therefore, there exists a nonanalyticity
B.(a),with0<B (a)<B.. At = B,(a), E(a,) abandons
the continuum edge. Because of the monotonicity of E(a,f)
in B, E(a,B) is separated by a gap from the continuum for all
B> B.(a). Analytical perturbation theory ensures us that
E(a,3) is analyticin § for all 8> . (a). Therefore the non-
analyticity B, (a) is a unique number with 0<S_ (a)<B.. The
continuity of 8. () in « follows directly from analytical per-
turbation theory and from the monotonicity of E(a,3) in 5.

a

We remark that the same proof can be done to show that
the energy of the nth discrete excited state is nonanalytic at
the point where it is pushed out of the continuum edge.

Clearly, B.(0)=p_. and we conjecture that 5. (a) is
monotone decreasing in  and that §,(a) -0 as a— «. An
estimation on 3, (), which is better than (81), however, re-
quires a nontrivial extension of our result. We leave this as an
open problem.

We summarize our results in two figures. In Fig. 1 we
sketch E(a,) for three different fixed values of ¢ and vary 5.

In Fig. 2, we give a qualitative picture of the phase dia-
gram of the pinning transition in the a-8 plane describing the

(81)

RELATIVE BINDING ENERGY

/ CONTINUOUS  SPECTRUM

7

N\

0 fda,) B (e, ) B N
a,>a, a,>0 a=0
£(0,0)
Ela,,B)-E(q, 0]\ Elq,B)-Ela,0)

FIG. 1. Qualitative picture of the pinning transition: relative binding energy
versus potential strength 8 for different values of the coupling a.
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FIG. 2. Phase diagram of the pinning transition (qualitative picture). The
solid line represents the exact solution, the dashed line the effective-mass ap-
proximation.

pinning transition from a delocalized to a localized state.

Let us now discuss the effective-mass approximation
[i.e., the approximation of the polaron as a single-particle
with mass m (a) ] in some more detail. For a Coulomb poten-
tial, Mason and Das Sarma® compare the ground-state energy
shifts for fixed small @ and varied 3 between the “‘exact”
(variational) solution and the effective-mass approximation.
It turns out that the effective-mass approximation yields an
overestimation of the energy shift, being asymptotically cor-
rect for small B but becoming worse for intermediate and
large . Transferring this result to a short-range potential the
situation is quite the same. One may conjecture that the one-
particle approximation leads to a value of 8. (a) that is too
small. This belief is based on the intuitive argument that a
bound electron cannot use all phonons in such a way to raise
its effective mass as a free electron. The one-particle approxi-
mation should only work for small ¢, 8 being small, too.

By a simple scaling argument, one finds the critical cou-
pling strength in the effective-mass approximation by
Bc (@) egrs

B.(@)g =B./m(a), (82)

if m(0) = m = 1. Therefore, critical lines for different poten-
tials, but for the same dispersion and coupling function, are
proportional in the effective-mass approximation, the poten-
tial merely determines the prefactor 3,. We have also indicat-
ed the qualitative behavior of the critical line for the effective-
mass approximation in Fig. 2 (dashed line).

A finite temperature 7> 0 destroys the pinning transi-
tion. This can be seen considering the (formal) free energy
(instead of the ground-state energy) in the path integral rep-
resentation. The free energy is analytic in all parameters a >0,
>0, and T'> 0, if the potential ¥(r) is short range or if V(r)
is a long-range Coulomb potential. As for details, we refer to
Ref. 25.

Finally, we give the phase diagram in the effective mass
approximation for an optical Frohlich polaron for two con-
crete examples: First a spherical square well

Vir) =06(1—-r), (83)
and, second, a screened Coulomb potential
V(r) =exp( —r)/r. (84)
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In the case of a spherical square well the eigenvalues and
eigenfunctions are well-known (see, e.g., Messiah®’). In par-
ticular, the critical potential strength turns out to be

B. =B.(0) = 7/8 =1.233 7005... . (85)

For a screened Coulomb potential, S, is not known ana-
lytically. Kesarwani and Varshni*® determine 3, numerically
as

0.839 9032<8.<0.839 9039. (86)
For the usual Frohlich model
ok) =1, gk)=(87)"k, (87)

the polaron mass m(a) was calculated in Ref. 39. Conse-
quently, all variables of (82) are known. The limiting cases
(see, again, Ref. 39) are

B.(@)ey =B.- (1 —a/6) + O(a?), as a—0, (88)
B.(a)s =44.05B.-a”* as a—w. (89)

The effective-mass approximation of the phase diagrams for
the Frohlich polaron and a spherical square well (resp. a
screened Coulomb potential) are shown in Fig. 3.

A variational calculation of B, () is in progress and will
be published elsewhere.

Concerning experimental consequences, we finally state
that first experimental evidences of the pinning transition
were observed by Dmochowski er al.*° They found bound
polaron states very close in energy and differing strongly in
localization. Such a situation just occurs in the neighborhood
of the pinning transition.

V. CONCLUSIONS

Summarizing, we have proved the analyticity of polaron
quantities in the coupling parameter and the potential
strength, if the potential is long range (e.g., for a Coulomb
potential) or if the one-particle Hamiltonian has a bound
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FIG. 3. Critical lines of the pinning transition in the a-3 plane in the effective-
mass approximation for a spherical square well and a screened Coulomb po-
tential for a Frohlich polaron.
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state. Consequently, no “phase transitions” occur and the
shallow—deep instability is continuous in this case.

For a short-range attractive potential we have shown the
existence of a pinning transition, which depends on the elec-
tron—phonon coupling. This pinning transition is connected
with a nonanalyticity of the ground-state energy and with a
potential assisted localization transition of the ground state
from a delocalized to a localized state as the potential strength
increases. We have discussed this pinning transition for a
spherical square well and a screened Coulomb potential, giv-
ing the phase diagram in the effective-mass approximation.
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The Vaidya-Patel solution of a rotating homogeneous fluid in the presence of a Maxwellian
source-free electromagnetic field is interpretated as an inflationary scenario with a gauge field
with local U(1) symmetry, a vacuum energy, and a rotating perfect fluid. An explicit solution
is found to be expressible in terms of known solutions representing the radiation filled
Robertson-Walker universe with a cosmological term. In the case that the rotating fluid is
radiation, the discussion of the model is considerably simplified. How the time scale of
transition into a pseudo-de Sitter stage, as observed by an observer following the rotating fluid,

is affected by vorticity is also studied.

I. INTRODUCTION

The spacelike part of the Robertson—Walker metric was
discussed by Bianchi' in 1898. This metric represents the
most general isotropic and homogeneous space-time geome-
try. The three different Robertson-Walker metrics are spe-
cial cases of universes of Bianchi types I, V, and IX in which
the three-space is flat, hyperbolic, or closed, respectively.
These isotropic special cases of the Bianchi models have
since been extensively explored, and a large number of gen-
eral relativistic cosmological models with this form of the
metric has been constructed. Vaidya and Patel® have recent-
ly shown that the closed Robertson—Walker metric can also
be a solution of Einstein’s field equations with a rotating
homogeneous fluid in the presence of a Maxwellian source-
free electromagnetic field. This solution has lately been gen-
eralized to the axisymmetric case by Patel and Pandya.?

In this paper we will rederive the Vaidya—~Patel solution
using a more conventional definition of the scale factor than
that of Vaidya and Patel. In the case that the fluid satisfies
the equation of state P={p, the Lorentz transformation
between the fluid-comoving system and the coordinate-co-
moving system involves a constant Lorentz factor, which
simplifies the study of this particular case considerably. In
this case we will further find that exact expressions for the
evolution of the scale factor can be stated in terms of well-
known solutions of the field equations of the Friedmann-
Robertson—-Walker equation with a closed space-time filled
with radiation and a cosmological term.

The solution, which is discussed here, is a model of a
rotating inflationary scenerio in which the energy-momen-
tum density is described as an ultrarelativistic fluid, a vacu-
um energy, and a source-free gauge field with a local U(1)
gauge symmetry. We shall study how vorticity affects the
time scale of transition into an inflationary era in this model.

In the case of a rotating universe with inflation, a rotat-

) Present address.
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ing generalization of the de Sitter solution would be useful.
Both Vaidya* and Grén® have presented solutions that were
interpretated as rotating generalizations of the de Sitter uni-
verse. In Vaidya’s model, the geodesic condition, which is
natural in a true vaccum solution, restricts the parameter m
to the value zero, which corresponds to zero vorticity. The
model of Gron has, among other models, been criticized by
Jantzen.® His model should not be interpreted as a rotating
universe model, but rather as a universe with shear.”®

In the case of true vacuum solutions there cannot be
vorticity in a physical sense. The angular momentum of the
vacuum fluid will always be zero. Thus there does not exist a
rotating generalization of the de Sitter vacuum solutions
without a nonvacuum fluid content.

Il. THE DYNAMICAL EQUATIONS

The closed Robertson-Walker metric may be written”
as

ds? =dt? — R*[cos® 0 dy? + d6* + sin? 0 dp?] Q.1

in spheroidal polar coordinates. Following Vaidya and Patel
we introduce the coordinate transformation

df =dg + dy, (2.2a)
du = (1/R)dt — dy, (2.2b)
a=26. (2.2¢)
Then one achieves
ds® = 2R (du + sin*(a/2)dpB )dt
— R?*[(du + sin*(a/2)dB )?
+ 1(da? +sin a dB?)]. 2.3)
A non-Lorentz tetrad basis is introduced through
0" = dr + R sin’(a/2)dB — R dy, (2.42)
0? = (R /2)da, (2.4b)
0¥ = (R /2)sin a dB, (2.4¢c)
0 =1dr — (R /2)sin*(a/2)dB + (R /2)dy. (2.4d)
© 1988 American Institute of Physics 1514



The metric in the 0 basis takes the form

0 o 0 1
0 -1 0 O
0 o -1 o}
1 0 0 o

which we call non-Lorentz because of its nondiagonal form.
In the 0 basis the Ricci tensor has the following components:

Bk om
Ra = Res, =%+2(§)2+}2—2, (2.5¢)
Russy = —_21?-+2(%)2+73—2. (2.5d)

The parentheses mean that the basis is the 0 basis. The field
equations of Einstein are

R.s —Rg.; = 87T 5 + Agp, (2.6)
where the energy-momentum tensor is the sum of a perfect
fluid term (p + p) v, U5 — pg.g, the energy-momentum ten-
sor of the U(1) gauge field E,;, and a flowing null radiation
ow, wg, where o is the density of the flowing null radiation.
The energy-momentum tensor of the gauge field is given by

Ejgz= — g”’FaaFB,, + 18 F5, F o7, (2.7a)
Fp=A4,5 —Ag,, (2.7b)
F“ﬂ;ﬂ =0. (2.7¢)

The four-velocity of the fluid is denoted by v%, and the flow
vector of the following null radiation is denoted by w”. The
vectors v* and w* satisfy

o, =1, ww, =0, vw,=1L (2:8)

In the O basis the four-velocity is taken to be v,
= (1/24,0,0,A4), whereas the flowing null radiation has the
four-velocity w,, = (1/4,0,0,0).

From the field equations we then find

Fyy =F3 =F,) = F3,, =0, (2.9)

leaving only the terms F,,, and F,;, nonzero. The energy-
momentum tensor must therefore have the nonvanishing
components

E;, = Eg = E = %((F(zs) )2+ (Fi1a )2)-
Since the energy density of radiation should decay as R ~* we
may write

Eas, =b%/(2RY), (2.11)

where b is a constant. Then using the Maxwell equations, we
find

Fuy =A/R and F,;, = —24/R?
leading to the equation of the vector potential,
A*'=A/R,

(2.10)

(2.12a)
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whereas the rest of the contravariant components are zero in
the coordinated basis. This A satisfies

A*+44*/R*=b%/R2 (2.12b)

The gravitational field equations in the tetrad basis may be
written as

Riapy =87 [(p +DPIV(ayvi) —3(P —P)8ap) ]

— Agapy + 8TE 45 + 8TOW W 5. (2.13)

From these equations one gets the following relations de-
duced in the paper of Vaidya and Patel (due to the difference
in the definitions of R and a conformal difference in time
coordinates the equations look slightly different):

4rrb? ( R (R>2 1)
87P=A — 22+ (=) +—=), 14
i R ® T\&) Txrz) 1%

127b? RY 3
2 2 —1
/12=(1-8”.”—/R..> , (2.14c)
14+R?—RR

2 D2 D 2 2

870 = 87b 1+1.? —Rl'i!——41rb /R ]’ (2.14d)
R? |1+R?*—RR—8wb?*/R?
whereas the vorticity scalar of the pel"fect fluid is
o= (A%~ 1)/RA. (2.14¢)

The motion of the fluid is geodesic only if the vorticity is
vanishing. If there is vorticity, observers comoving with the
fluid will experience a pressure gradient in the U(1) gauge
field pressure 477b 2/R *, causing a nongeodesic motion.

Ili. KINEMATICAL PROPERTIES OF THE MODEL

From the field equations one may readily derive the
Friedmann equations:

. 2 2
R2=€-R2+%+4sz —1, G.1)
. 2

R=BRrR_2T p13pR -T2 (3.2)

3 3 R’

In the rest of the paper, we shall discuss a model in
which the rotating fluid is radiation with equation of state
P =1 p. The results obtained will depend on this assump-
tion. The energy density of radiation will be proportional to
R ~*.Using that P = | p one finds that the b ? term acts as an
additional radiation term in Eqgs. (3.1) and (3.2). The first-
order equation (3.1) may be integrated to give solutions of
the classes M,, M,, 4,, A,, S,, and O,, which were classified
and studied by Stabell and Refsdal® and by Harrison.'®
These solutions have been discussed in the literature, and we
shall not repeat this discussion here.

The four-velocity of the fluid in the 0-tetrad basis is

v=(1721)06" 4 1 09, (3.3)
We may introduce a comoving tetrad basis ¢, where
v = ¢°, through the transformation
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o’ = (1721)0" + 1 0¥, (3.4a)
o' =07, (3.4b)
¢’ =09, (3.4c)
o’ = (1/2)0" — 1 09, (3.4d)

Expansion, vorticity, and shear may be expressed in
terms of the structure coefficients of the comoving tetrad
basis o“. The structure coefficients are defined through the
relation

do” =1C“, 0* A"

To calculate the structure coefficients we will have to
know the time evolution of A. In the case of the equation of
state P = } p we find that A is constant. This may be conclud-
ed by substituting the expressions Eqgs. (3.1) and (3.2) for
R Z,R into the expression (2.14c) for A. Then using that
p~R ~*, we find that 4 has the constant value

A= (143b%2p:)"% po=pR* (3.5)

We define the expansion tensor 6,,, as the symmetric part of
the covariant derivative of the four-velocity of the cosmic
fluid'":

6

nv = v(,u;v) » (36)
where parentheses indicate the symmetric combination.
Using that the ¢ basis is comoving with the fluid and

orthonormal, we find
a

— 4]
wv = Vipy — I-‘0(,uV) v

= - FO(;;V) Z%(C‘u()v +Cv0#)’ (3'7)
where [y, are the symmetricized connection coefficients
of the comoving ¢ basis field.

Since the structure constants in an orthonormal basis

satisfy the relations C#,, = — C",,, we deduce
9“#=C”oﬂ, 0¢, =0, u#w (3.8)

In the present model, the expansion is equal in all three
spatial directions. Thus we find

3R(1
6=0", =Cl +C +Cl, =77€(4 ”)'
(3.9)

Since the expansion is isotropic, the observers comoving
with the rotating fluid will not observe any shear. This may
easily be verified using the definition of the shear tensor as
the traceless part of the expansion tensor. We write

0., =6, —1i6h,,, (3.10)
where 4, is the projection tensor 4, = g,,, — v, v,. Hence
the shear scalar o = }o,,,0*" is given by

o= %[(C(ln )2 + (C(2)2 )2 + (ng )2

—CpCo —C5Co —C5Co%]s (3.11)

which is zero in the present model. An analogous argument
can be carried through for the vorticity tensor, defined as the
antisymmetric part of the covariant derivative of the velocity
vector, to find a general expression for the components of the
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vorticity vector in terms of the structure coefficients of the
fluid-comoving basis. Thus one finds that

@, =4C°,,. (3.12)

The structure coefficient C9, gives vorticity in the three-
direction. As both C9, and C9, are zero, the vorticity scalar

1S
>R A RA

(3.13)

which is Eq. (2.14e). The Robertson—Walker coordinate-
comoving tetrad basis ©” (the Lorentz basis in which the
time coordinate ¢ is the proper time) is deduced with the aid
of Egs. (2.4). Demanding a Lorentz basis with d = «°, we
find

o’ =06 4 18", (3.14a)
o' =0“—18", (3.14b)
o’ =02, (3.14¢)
w® = 0%, (3.14d)

Because both this and the o basis are of the Lorentz type (the
metric is locally Minkowski), there is Lorentz transforma-
tion between the two systems ¢ and o:

o = 7(0? — uo'), (3.15a)

o’ =y( — o'+ ua’). (3.15b)
Using Eqgs. (3.4a)~(3.4d) and (3.14a)-(3.14d) to express
these equations in terms of the 0 basis, we find that the Lor-
entz factor is given by

y=L1(1/4 + A). (3.16)

This is the time dilation factor between the fluid-comoving
basis and the coordinate-comoving basis. This difference
should be taken into account when discussing the time scale
of transition into an inflationary era.

The vacuum A term can be regarded as the first approxi-
mation of a homogeneous scalar field for which the potential
dominates the energy-momentum tensor. Such scalar fields
are called inflation fields because they can be the driving
force for inflation.

Let @ = @(¢) be a complex inflation field. We define a
gauge-covariant derivative

D,=D,—igd, (3.17)
where D, is the ordinary covariant derivative, g is a coupling
constant, and 4,, is the U(1) gauge vector. The Lagrangian
of this charged inflation field is then

& = D*e)'(D,@) — Vigph. (3.18)

We define the four-velocity of the inflation fluid (false
vacuum fluid) to be proportional to the current
j*= —(1/g)(3L/34,),

j*=ilgtDtp — (D p)lp ] —2g4%ptp. (3.19)
Since the A vector is directed in the coordinate time direc-

tion, Eq. (2.12a), we find that the current form j is propor-
tional to dz and thus

u=ds (3.20)

O. Grdn and H. H. Soleng 1516



which is a four-velocity field without vorticity.

If the inflation field is real there is no current, but we
may follow Belinskii and Khalatnikov,'? and define a four-
velocity of the inflation fluid as

u,=P,(P,P*)"'? (3.21)

where P, is the conjugate momentum of the inflation field.
Using the Lagrangian

L= D, @D p — V(p), (3.22)
we find
P, =—a¥£—=Dacp, (3.23)
3(D°p)

which again leads to Eq. (3.20). During the decay of the
false vacuum the rotating fluid will be diluted by a huge
factor by this nonrotating fluid. The coupling to a hypersur-
face orthogonal gauge vector field does not affect the nonro-
tating nature of the inflation field.

IV. ASYMPTOTIC BEHAVIOR

The parameter 4 () determining the gauge vector po-
tential through Eq. (2.12a) satisfies Eq. (2.12b). In the
asymptotic region where R grows exponentially, 4 satisfies

"4 4442 =p2 4.1)

The general solution of this asymptotic equation is

b ( . (ZAO) 2, _m _,,,)
A = — sin{ arcsin + —(e —e ")), (4.2)
2 b H (
For large times A approaches the constant value
A, =£—sin(arcsin ( ZA") —le‘”'"). (4.3)
2 b H

where A4, is the value of 4 at #,; the beginning of the inflation-
ary era. In the comoving basis of the rotating fluid, the o
basis, the field tensor F,,, takes the form

0 0 0 —A/R
ol 0 0 —24/R? 0
71 0 24/R? 0 0

A/R 0 0 0

(4.4)

The components of the gauge vector (2.12) as well as the
components of the field tensor F,, will decay exponentially
during inflation.

Using Eq. (3.13) the vorticity is also seen to decay ex-
ponentially during inflation:

© = wee M. (4.5)

V. CONCLUDING REMARKS

Until the advent of the inflationary cosmological mod-
els, the very slow rate of cosmic rotation was explained by
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invoking Mach’s principle. Ellis and Olive'? pointed out that
inflation could solve the problem of slow cosmic rotation. A
general discussion of inflation in anisotropic space-times can
be found in Rothman and Ellis."*

In the present model vorticity and the energy density of
the source-free U(1) gauge field are intimately connected.
With this in mind, it can be understood that vorticity does
not speed up expansion in this model as the energy density of
the gauge field will also increase when o is increased.

Through a time dilation effect with respect to the coor-
dinate time, the rotating fluid observers will find a greater
cosmic age than that of the coordinate time. For these ob-
servers, the transition into an inflationary era takes more
time than in the nonrotating coordinate frame.

It should also be noted that the energy density of the
U(1) gauge field and the vorticity of the cosmic fluid will
have an exponential decay during inflation. The amount of
decay depends on the total expansion during inflation. To
solve the flatness and horizon problems an expansion of the
order 10%® is required. Thus the minimal decay of vorticity is
of the order 10~2%. In addition the nonrotation of the vacu-
um fluid should be taken into account, as this will introduce
a further diluting effect that reduces vorticity by a factor of
the order 107 "' during the reheating period."

The effect of vorticity on the microwave background
was analyzed by Collins and Hawking'® and by Barrow et
al.,'” who found that the present rotation period must be
more than 3X10° Ty, where Ty is the Hubble time
(1-2X 10 years) in the case k = 0. Taking into account the
diluting effect we find that the present period of rotation will
be much greater than the observed limit even for minimal
inflation. The huge rotation period of the universe may be a
test of the inflationary hypothesis, if an observed lower limit
to the period could be established.
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Erratum: Canonical formalism of dissipative fields in the thermo field
dynamics [J. Math. Phys. 28, 2741 (1987)]
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H. Umezawa and Y. Yamanaka

Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton T6G 2J1, Canada

(Received 14 January 1988; accepted for publication 27 January 1988)

Attheend of Sec. V, p. 2751, left column, it is stated that
x(k) = 0 is one of the solutions of the self-consistent equa-
tions (5.11). But the solution x (k) = Ois not allowed for the
following reason. When we perform our perturbation calcu-
lation with the free fields without dissipation (« = 0), the
nonvanishing imaginary part of the self-energy is naturally
created even at one-loop level through the decay process of a
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nontilde particle into another nontilde particle and a tilde
one. What was wrong in the paper resides in the dispersion
formula (5.13c) for the renormalized energy. Since the Lor-
entz symmetry is broken in thermal situations, we should
not assume the relativistic form of the dispersion like
(5.13¢).
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